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Resumo— Neste artigo, express̃oes exatas para a taxa de
cruzamento de ńıvel e tempo ḿedio de desvanecimento para
dois ramos utilizando combinaç̃ao por seleç̃ao, ganho igual
e máxima razão em ambiente com desvanecimento Hoyt são
apresentadas. As expressões podem ser utilizadas para sistemas
com diversidade em canais desbalanceados, não idênticos e
correlacionados. A soluç̃ao geral foi particularizada e validada
para casos mais simples, onde já se conhecem os resultados. Como
resultado intermediário, também foi encontrada a distribuição
Hoyt bidimensional conjunta da fase e envolt́oria com parâmetros
de desvanecimento arbitŕarios.

Palavras-Chave— Tempo médio de desvanecimento, taxa de
cruzamento de ńıvel, combinaç̃ao por seleç̃ao, combinaç̃ao por
ganho igual, combinaç̃ao por razão máxima, desvanecimento
Hoyt.

Abstract— In this paper, exact expressions for the level crossing
rate (LCR) and average fade duration (AFD) for two-branch
selection, equal-gain and maximal-ratio combining systems in a
Hoyt fading environment are presented. The expressions apply
to unbalanced, non-identical, correlated diversity channels and
have been validated by specializing the general results to some
particular cases whose solutions are known. In passing, the joint
bidimensional envelope-phase Hoyt distribution with arbitrary
fading parameters is obtained.

Keywords— Average fade duration, selection combining, equal-
gain combining, maximal-ratio combining, Hoyt fading channels,
level crossing rate.

I. I NTRODUCTION

Level crossing rate (LCR) and average fade duration (AFD)
are widely-used performance measures of wireless diversity
systems. However, although the branch signals may be cor-
related and non-identically distributed in practical systems
[1]–[4], the literature on LCR and AFD of diversity tech-
niques over non-identical correlated fading is rather scarce.
Pioneering work on this issue was carried out by Adachi
et al. [1] for dual branch selection (SC), equal-gain (EGC),
and maximal ratio combining (MRC) overbalanced correlated
Rayleigh channels. The unbalanced correlated Rayleigh case
was addressed in [2] for two-, three-, and four-branch MRC.
More recently, [3] presented a unified treatment for the LCR
and the AFD ofM -branch SC over unbalanced correlated
Rayleigh, Ricean, and Nakagami-m channels. In [4], the
LCR and AFD for the MRC were derived for a correlated,
unbalanced Nakagami environment.
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This paper fully generalizes the approach used in [1], and
provides expressions for the LCR and AFD of dual-branch
SC, EGC, and MRC operating overnon-identical, correlated
Hoyt (Nakagami-q) channels.

This work is organized as follows: Section II derives the
Joint Bidimensional Envelope-Phase Hoyt distribution; Section
III presents general expressions for LCR and AFD of the
combining output; Section IV-A derives the matrices for
the conditional joint distribution; Section IV-B computesthe
means and variances for each diversity system; Section V
shows some numerical plots, and finally Section VI draws
some conclusions.

II. T HE JOINT BIDIMENSIONAL ENVELOPE-PHASE HOYT

DISTRIBUTION

In a Hoyt fading environment, the received signal at thei-th
antenna (i = 1, 2), can be represented in a complex form as

Xi (t) + jYi (t) = Ri (t) exp(j Θi (t)) (1)

where Xi (t), Yi (t) are zero mean independent Gaussian
processes with varianceσ2

Xi
andσ2

Yi
, respectively. The variates

Ri (t) and Θi (t) follow the envelope and phase of the Hoyt
distribution [5], respectively.

We now proceed to determine the joint distribution
of Xi , Xi (t), Yi , Yi (t), (i = 1, 2).
Defining the vector Z = [X1Y1X2Y2] =
[R1 cos (Θ1) R1 sin (Θ1) R2 cos (Θ2) R2 sin (Θ2)], the
joint Gaussian distributionpZ (z) can be written as [6]

pZ (z) =
1

(2π)
2
(detb)

1/2
exp

(

−
1

2
zb−1zT

)

(2)

where:
(i) [·]

T denotes the transpose matrix,b is the covariance
matrix given by

b =

2664 σ2

X1
0 σX1

σX2
µ12 −σX1

σY2
η12

0 σ2

Y1
σY1

σX2
η12 σY1

σY2
µ12

σX1
σX2

µ12 σY1
σX2

η12 σ2

X2
0

−σX1
σY2

η12 σY1
σY2

µ12 0 σ2

Y2

3775
(3)

(i i) µij = µij (0) and ηij = ηij (0) are the correlation
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coefficients, defined as

µij (τ) =
Cov(Xi (t) , Xj (t + τ))

√

Var(Xi (t)) Var(Xj (t + τ))

=
Cov(Yi (t) , Yj (t + τ))

√

Var(Yi (t)) Var(Yj (t + τ))
(i 6 j) (4)

and

ηij (τ) = −
Cov(Xi (t) , Yj (t + τ))

√

Var(Xi (t)) Var(Yj (t + τ))

=
cov(Yi (t) , Xj (t + τ))

√

Var(Yi (t)) Var(Xj (t + τ))
(i 6= j) (5)

and

ηii (τ) =
Cov(Xi (t) , Yi (t + τ))

√

Var(Xi (t)) Var(Yi (t + τ))
(i = 1, 2) (6)

Var(·) andCov(·) are the variance and covariance operators,
respectively. For Gaussian processes, the following relations
are valid: µ22 = µ11, µ21 = µ12, η21 = −η12, and η22 =
η11 [7]. The joint densitypR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2) can be
written as pR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2) = |J | pZ (z), where
|J | = r1r2 is the Jacobian of the transformation. Accordingly,
the joint bidimensional envelope-phase Hoyt distribution, as
derived here, is given by

pR1,R2,Θ1,Θ2
(r1, r2, θ1, θ2) = (7)

r1 r2 e
−

1
2(1−ρ2)

"
r2
1

 
sin2(θ1)

σ2
Y1

+
cos2(θ1)

σ2
X1

!#
4π2 (1 − ρ2) σX1

σY1
σX2

σY2

×e
−

r2
2

2(1−ρ2)

 
sin2(θ2)

σ2
Y2

+
cos2(θ2)

σ2
X2

!
(8)

e
r1 r2µ12

(1−ρ2)

�
sin(θ1) sin(θ2)

σY1
σY2

+
cos(θ1) cos(θ2)

σX1
σX2

�
(9)

e
r1 r2η12

(1−ρ2)

�
sin(θ1) cos(θ2)

σY1
σX2

+
cos(θ1) sin(θ2)

σX1
σY2

�
(10)

where
ρ2 = µ2

12 + η2
12 (11)

III. LCR AND AFD

The LCR nR(r) and AFD TR(r) of a random signal are
defined, respectively, as the average number of upward (or
downward) crossings per second at a given level and as the
mean time the signal remains below this level after crossingit
in the downward direction. The LCR and AFD of the combiner
outputR = R(t) at levelr are, respectively, given by [8]

nR(r) =

∫
∞

0

ṙpR,Ṙ(r, ṙ)dṙ (12)

TR(r) =
PR(r)

nR(r)
(13)

where pR,Ṙ(·, ·) is the joint probability density function
(JPDF) ofR and its time derivativeṘ, andPR(·) is the cumu-
lative distribution function (CDF) ofR. In the following, (12)
and (13) shall be calculated for the dual-branch, correlated,

non-identical Hoyt fading environment using the SC, EGC and
MRC techniques.

A. Diversity Systems

The output envelope and its time derivative for the SC, EGC
and MRC combining systems are given, respectively, by

R =







max{R1, R2} SC
R1+R2

√

2
EGC

√

R2
1 + R2

2 MRC
Ṙ =







Ṙ1 R1 > R2

Ṙ2 R1 < R2
SC

Ṙ1+Ṙ2
√

2
EGC

R1Ṙ1+R2Ṙ2√
R2

1+R2
2

MRC

(14)
Given that Ṙi is zero-mean Gaussian [9], it

is clear from (14) that the conditional density
pṘ|R1,R2,Θ1,Θ2

(ṙ|r1, r2, θ1, θ2) is also Gaussian with
meansmṘ(r1, r2, θ1, θ2) and varianceσ2

Ṙ
(r1, r2, θ1, θ2). Of

course, these quantities depend on the combining scheme and
shall be determined latter. Now

pṘ,R1,R2,Θ1,Θ2
(ṙ, r1, r2, θ1, θ2) = (15)

pṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)pR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2)

Knowing pṘ,R1,R2,Θ1,Θ2
(ṙ, r1, r2, θ1, θ2), as in (15), and the

relations of R1, R2, Ṙ1, Ṙ2, as in (14), the joint density
pṘ,R(ṙ, r) can be obtained to be used in (12). The kernel
of the problem now turns out to be the estimation of

pṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2) =

1
√

2π σṘ(r1, r2, θ1, θ2)

× exp

(

−
(ṙ − mṘ(r1, r2, θ1, θ2))

2

2σ2
Ṙ
(r1, r2, θ1, θ2)

)

(16)

More specifically, the tricky part of the problem is the de-
termination of mṘ(r1, r2, θ1, θ2) and σ2

Ṙ
(r1, r2, θ1, θ2) for

each combining scheme. For the moment, assume that these
quantities are known. Then, by means of [1, Eq. 8] for SC and
of [9, Eqs. (12) and (17)] for EGC and MRC, respectively, the
LCR can computed as in (17).

Now, with (16) in (18)

ϑ(r1, r2) =
σṘ(r1, r2, θ1, θ2)

√
2π

exp

(

−
m2

Ṙ
(r1, r2, θ1, θ2)

2σ2
Ṙ
(r1, r2, θ1, θ2)

)

+
mṘ(r1, r2, θ1, θ2)

2

(

1 + erf

(

mṘ(r1, r2, θ1, θ2)
√

2σṘ(r1, r2, θ1, θ2)

))

(19)

where erf(·) is the error function. The CDFPR(r) can be
obtained as [10]

PR(r) =

∫ γ1

0

∫ γ2

0

∫ 2π

0

∫ 2π

0

× pR1,R2,Θ1,Θ2
(r1, r2, θ1, θ2) dθ1dθ2dr2dr1 (20)

with






γ1 = γ2 = r for SC
γ1 =

√
2r γ2 =

√
2r − r1 for EGC

γ1 = r γ2 =
√

r2 − r2
1 for MRC

(21)

The AFD follows directly from (13), (17), and (20).
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nR(r) =







R
2π

0

R
2π

0

R r

0
ϑ(r1, r)pR1,R2,Θ1,Θ2 (r1, r, θ1, θ2) dr1dθ1dθ2

+
R

2π

0

R
2π

0

R r

0
ϑ (r, r2) pR1,R2,Θ1,Θ2 (r, r2, θ1, θ2) dr2dθ1dθ2 SCR

2π

0

R
2π

0

R √

2r

0

√

2 ϑ(r1,
√

2r − r1)pR1,R2,Θ1,Θ2

�
r1,

√

2r − r1, θ1, θ2

�
dr1dθ1dθ2 EGCR

2π

0

R
2π

0

R r

0

r
√

r2
−r2

1

ϑ(r1,
p

r2
− r2

1
)pR1,R2,Θ1,Θ2

�
r1,

p
r2

− r2

1
, θ1, θ2

�
dr1dθ1dθ2 MRC

(17)

in which

ϑ(r1, r2) ,

∫
∞

0

ṙ pṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2) dṙ (18)

IV. CONDITIONAL STATISTICS OFṘ

The aim of this section is to find the meanmṘ(r1, r2, θ1, θ2)
and the varianceσṘ(r1, r2, θ1, θ2) of the conditional Gaussian
distribution pṘ|R1,R2,Θ1,Θ2

(ṙ|r1, r2, θ1, θ2) for each combi-
ning technique.

A. Preliminaries

From (1), it follows thatṘi = cos(θi)Ẋi + sin(θi)Ẏi. Then
the expressions in (22), (23), and (24) follow directly. Note
that from (22) and (23) the mean and the variance ofṘi

given Z can be computed as a function of the mean, the
variance, and the covariance ofẊi and Ẏi given Z. In order
to obtain these statistics, the following will be carried out:
1) Defining Ż = [Ẋ1 Ẏ1 Ẋ2 Ẏ2], the multivariate Gaussian
distributionp

{Ż Z}
({ż z}) 1 will be determined; 2) Using the

result of [6], the mean matrixM and the covariance matrix
∆ of the conditional Gaussian distributionpŻ|Z(ż|z) will be
obtained; 3) Using these matrices, the mean, the variance
and the covariance oḟXi and Ẏi given Z will be attained;
4) Finally, using (22) and (23), and (24) the mean and the
variance ofṘ given Z will be found.

In order to determinep
{Ż Z}

({ż z}), the joint multidimen-
sional Gaussian distribution given in (2) will be used with the
covariance matrix given by

Λ = E
[

{Ż Z}T {Ż Z}
]

− E
[

{Ż Z}T
]

E
[

{Ż Z}
]

=

[
a c

cT b

]

From [11, Eq. 9.106], the following relations are valid:
E[P(t)Ṗ(t + τ)] = dE[P(t)P(t+τ)]

dτ
, E[Ṗ(t)P(t + τ)] =

−dE[P(t)P(t+τ)]
dτ

, E[Ṗ(t)Ṗ(t + τ)] = −d2E[P(t)P(t+τ)]
dτ2 . Now

we define µ̇ij =
dµij(τ)

dτ

∣
∣
∣
τ=0

, µ̈ij =
d2µij(τ)

dτ2

∣
∣
∣
τ=0

, η̇ij =

dηij(τ)
dτ

∣
∣
∣
τ=0

, η̈ij =
d2ηij(τ)

dτ2

∣
∣
∣
τ=0

, where µij (τ) and ηij (τ)

are given by (4), (5), and (6), respectively. Then

a =

2664 -µ̈11σ2

X1
0 -µ̈12σX1

σX2
η̈12σX1

σY2

0 -µ̈11σ2

Y1
−η̈12σY1

σX2
−µ̈12 σY1

σY2

-µ̈12σX1
σX2

−η̈12σY1
σX2

-µ̈11σ2

X2
0

η̈12σX1
σY2

−µ̈12 σY1
σY2

0 -µ̈11σ2

Y2

3775
(25)

c =

264 0 -η̇11σX1
σY1

−µ̇12σX1
σX2

η̇12σX1
σY2

η̇11σX1
σY1

0 −η̇12σY1
σX2

−µ̇12σY1
σY2

µ̇12σX1
σX2

η̇12σY1
σX2

0 -η̇11σX2
σY2

−η̇12σX1
σY2

µ̇12σY1
σY2

η̇11σX2
σY2

0

375
(26)

1{Ż Z} =

h
Ẋ1Ẏ1Ẋ2Ẏ2X1Y1X2Y2

i

and the matrixb is given in (3). Note that the diagonal
elements in the matrixc are all null, because for a stationary
process the correlation coefficient between the process andits
time derivative is always null atτ = 0 (µ̇11 = 0) [11].

Using the results from [6, pp. 495-496], the conditional
distribution ofŻ givenZ 2, pŻ|Z(ż|z), is Gaussian distributed
with the mean matrixM and the covariance matrix∆,
respectively, given by (27) and (28). Using this and after a
tedious procedure, the matrices obtained are given by

M =

2666664 m1x1 + m2

σX1
σY1

y1 + m3

σX1
σX2

x2 + m4

σX1
σY2

y2

-m2

σY1
σX1

x1 + m1y1 − m4

σY1
σX2

x2 + m3

σY1
σY2

y2

-m3

σX2
σX1

x1 + m4

σX2
σY1

y1 − m1x2 + m2

σX2
σY2

y2

-m4

σY2
σX1

x1 − m3

σY2
σY1

y1 − m2

σY2
σX2

x2 − m1y2

3777775 (29)

∆ = −

2664 σ2

X1
∆1 0 σX1

σX2
∆2 -σX1

σY2
∆3

0 σ2

Y1
∆1 σX2

σY1
∆3 σY1

σY2
∆2

σX1
σX2

∆2 σX2
σY1

∆3 σ2

X2
∆1 0

-σX1
σY2

∆3 σY1
σY2

∆2 0 σ2

Y2
∆1

3775
(30)

where m1 = µ12 µ̇12+η12 η̇12

1−ρ2 , m2 = η12µ̇12−µ12 η̇12−η̇11

1−ρ2 ,

m3 = η̇11η12−µ̇12

1−ρ2 , m4 = η̇12+η̇11µ12

1−ρ2 ,

∆1 = µ̈11+
µ̇2

12+η̇2
12+η̇

2

11+2η̇11(µ12 η̇12−µ̇12 η12)

1−ρ2 ,

∆2 = µ̈12+
2 η̇12(η12 µ̇12−η̇11)−µ12 (µ̇2

12−η̇2
11−η̇2

12)
1−ρ2 ,

∆3 = η̈12+
2 µ̇12(η̇11+µ12 η̇12)+η12(η̇2

12−η̇2
11 −µ̇2

12)
1−ρ2 , and ρ is

given in (11).

B. Mean and variance of Ṙis

Using (14), the conditional means and variances for each
combining scheme can be obtained as:

1) Selection Combining:

• If R1 > R2

mṘ (r1, r2, θ1, θ2) = mṘ1
(r1, r2, θ1, θ2) (31)

σ2
Ṙ

(r1, r2, θ1, θ2) = σ2
Ṙ1

(r1, r2, θ1, θ2) (32)

• If R1 < R2

mṘ (r1, r2, θ1, θ2) = mṘ2
(r1, r2, θ1, θ2) (33)

σ2
Ṙ

(r1, r2, θ1, θ2) = σ2
Ṙ2

(r1, r2, θ1, θ2) (34)

2Note that to provide the information about the variatesZ = [X1Y1X2Y2]

is the same as to provide the information about the variates[R1Θ1R2Θ2].
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mṘi
(r1, r2, θ1, θ2) , E

[

Ṙi|Z
]

= cos (θi) E
[

Ẋi|Z
]

+ sin (θi) E
[

Ẏi|Z
]

(22)

σ2
Ṙi

(r1, r2, θ1, θ2) , Var
(

Ṙi|Z
)

= cos2 (θi) Var
[

Ẋi|Z
]

+ sin2 (θi) Var
[

Ẏi|Z
]

+ sin (2θi) Cov
[

Ẋi, Ẏi|Z
]

(23)

σṘ1,Ṙ2
(r1, r2, θ1, θ2) , Cov

(

Ṙ1, Ṙ2|Z
)

= E
[

Ṙ1 Ṙ2|Z
]

− E
[

Ṙ1|Z
]

E
[

Ṙ2|Z
]

=

= cos (θ1)
[

cos (θ2) Cov
(

Ẋ1, Ẋ2|Z
)

+ sin (θ2) Cov
(

Ẋ1, Ẏ2|Z
)]

+

+sin (θ1)
[

cos (θ2) Cov
(

Ẏ1, Ẋ2|Z
)

+ sin (θ2) Cov
(

Ẏ1, Ẏ2|Z
)]

(24)

M =











E
[

Ẋ1|Z
]

E
[

Ẏ1|Z
]

E
[

Ẋ2|Z
]

E
[

Ẏ2|Z
]











=
(
cb−1

)
Z (27)

∆ =











Var
(

Ẋ1|Z
)

Cov
(

Ẋ1, Ẏ1|Z
)

Cov
(

Ẋ1, Ẋ2|Z
)

Cov
(

Ẋ1, Ẏ2|Z
)

Cov
(

Ẋ1, Ẏ1|Z
)

Var
(

Ẏ1|Z
)

Cov
(

Ẏ1, Ẋ2|Z
)

Cov
(

Ẏ1, Ẏ2|Z
)

Cov
(

Ẋ1, Ẋ2|Z
)

Cov
(

Ẏ1, Ẋ2|Z
)

Var
(

Ẋ2|Z
)

Cov
(

Ẋ2, Ẏ2|Z
)

Cov
(

Ẋ1, Ẏ2|Z
)

Cov
(

Ẏ1, Ẏ2|Z
)

Cov
(

Ẋ2, Ẏ2|Z
)

Var
(

Ẏ2|Z
)











= a − cb−1cT (28)

2) Equal Gain Combining:

mṘ (r1, r2, θ1, θ2) =
1
√

2

{
mṘ1

(r1, r2, θ1, θ2)

+ mṘ2
(r1, r2, θ1, θ2)

}
(35)

σ2
Ṙ

(r1, r2, θ1, θ2) =
1

2

{

σ2
Ṙ1

(r1, r2, θ1, θ2)

+σ2
Ṙ2

(r1, r2, θ1, θ2)

+ 2σṘ1,Ṙ2
(r1, r2, θ1, θ2)

}

(36)

3) Maximal Ratio Combining:

mṘ (r1, r2, θ1, θ2) =
1

√

r2
1 + r2

2

{
r1mṘ1

(r1, r2, θ1, θ2)

+ r2mṘ2
(r1, r2, θ1, θ2)

}
(37)

σ2
Ṙ

(r1, r2, θ1, θ2) =
1

r2
1 + r2

2

{

r2
1σ

2
Ṙ1

(r1, r2, θ1, θ2)

r2
2σ

2
Ṙ2

(r1, r2, θ1, θ2)

+ 2 r1r2σṘ1,Ṙ2
(r1, r2, θ1, θ2)

}

(38)

C. Special Cases

For the Rayleigh case,σXi
= σYi

= σ (i = 1, 2), then
equations from (31) to (38) reduce in aexact manner to those
of [1, Eqs. 26 and 27]. In the case of branch independence
(e.g. large separation between the antennas) the mean and
variance are not functions ofR1, R2, Θ1, and Θ2 because
µ12 = µ̇12 = µ̈12 = η12 = η̇11 = η̇12 = η̈12 = 0. Then the
results coincide with those of [9] for EGC and MRC with the
number of branchesM = 2.

V. NUMERICAL RESULTS

The expressions obtained for the LCR and AFD are general
and can be applied to any type of diversity (space, frequency
or time). In this section, we assume space diversity at the
mobile station as [1]. For incoming multipath waves having
equal amplitude and independent phases, the crosscorrelation
functions are given by [7], [12]

µ11 (τ) =
J0 (2πfmτ)

1 +
(
∆ωT

)2 (39)

µ12 (τ) =

J0

(

2π

√

(fmτ)
2

+ (d/λ)
2
− 2 (fmτ) (d/λ) cos (α)

)

1 +
(
∆ωT

)2

(40)

η11(τ) = ∆ωTµ11(τ) (41)

η12(τ) = ∆ωTµ12(τ) (42)

whereJ0 (·) is the zero-order Bessel function,λ is the carrier
wavelength,fm is the maximum Doppler shift in Hz,d is the
antenna spacing,∆ω is the angular frequency separation,T
is the time delay spread, andα ∈ [0, 2π] is the angle between
the antenna axis and the direction of the vehicle motion in
radians.

For a nil frequency separation, thenη11 (τ) = 0 and
η12 (τ) = 0. The corresponding correlation coefficients can
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be calculated as

µ11 = 1 (43)

µ12 = J0 (2πd/λ) (44)

µ̇11 = 0 (45)

µ̇12 = 2πfm cos (α) J1 (2πd/λ) (46)

µ̈11 = −2 (πfm)
2 (47)

µ̈12 = (2πfm)
2 (48)

×

{
J1 (2πd/λ)

2πd/λ
cos (2α) − cos2 (α) J0 (2πd/λ)

}

whereJ1 (·) is the first-order Bessel function. And this is the
case explored here (as well as in [1]).

In the illustrations that follow we use the Hoyt parameter

[5] bi ,
σ2

Xi
−σ2

Yi

σ2
Xi

+σ2
Yi

and the individual power branchesΩi =

σ2
Xi

+ σ2
Yi

.
For the sake of simplicity, the branches are considered

balanced and identical. Figs. 1 and 2 show the normalized
LCR (left vertical axis),NR/fm, and AFD (right vertical axis),
TRfm, for α = 0◦ and α = 90◦, respectively, as a function
of the envelope level, for SC, EGC and MRC. The following
arbitrary parameters have been used:d/λ = 0.06, bi = 0.5.

Figs. 3 and 4 show the normalized LCR and AFD for two
different antenna anglesα = 0◦ andα = 90◦, respectively, as
a function of the parameterd/λ, for the SC, EGC and MRC.

An envelope level atr/
√

Ω1+Ω2

2 = −20 dB, identical fading
parametersbi = 0.5, and balanced channels have been used.
It can be seen that as the antenna spacing becomes larger, the
LCR decreases, becoming oscillatory and convergent. Fig. 2
also shows that the MRC has the smaller LCR in both cases
of antenna angles. It can be seen in Fig. 3 that the shape of the
AFD curves for the SC, EGC and MRC are loosely dependent
on the antenna spacing whenα = π/2.

VI. CONCLUSIONS

Exact formulas for level crossing rate and average fade
duration of the dual branch SC, EGC and MRC techniques
in a unbalanced, non-identical, and correlated Hoyt fadingen-
vironment have been presented. In passing, this paper derives
the joint Hoyt bidimensional envelope-phase distribution. The
paper compares previous approximated results and the exact
results obtained here showing that they differ considerably.
These formulas have been validated by specializing the general
results to some particular cases whose solutions are known.
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Hoyt fading parameterbi = 0.5.
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