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Abstract— Mutual coupling effects lead to resolution

degradation of smart antenna arrays. To improve that, we
employ a transformation of the real array into an equivalent
ideal array, without coupling. The output signals of the ideal
array are processed by the LMS algorithm, and we analyze the
errors and the limitations originated by the transformation of
the real array. The eigenvalues of the signal correlation matrix
and the LMS convergence speed are investigated through
simulation for different virtual array element spacing. By
increasing the spacing between elements of the virtual array, it
is possible to increase the speed of convergence.

Keywords— adaptive process, direction-of-arrival estimation,
intelligent antenna array, mutual coupling.

Resumo— A existência de acoplamento mútuo provoca
degradação de resolução em redes de antenas ineligentes. Para
melhorar essa característica, é usada uma transformação da
rede real numa rede ideal equivalente, sem acoplamento. Os
sinais de saída da rede ideal são processados com o algoritmo
LMS, sendo então analisados os erros e  limitações originados
na transformação da rede real. Através  de simulações, são
investigados os autovalores da matriz de correlação dos sinais e
a velocidade de convergência do LMS para diferentes
espaçamentos entre elementos da rede  virtual. Aumentando-se
o espaçamento entre elementos da rede virtual, é possível
aumentar-se a velocidade de convergência.

Palavras-chave— processo adaptativo, estimativa de direção
de chegada, redes de antenas inteligentes, acoplamento mútuo.

I. INTRODUCTION

n smart antenna array simulation and analysis, the
antenna models used are generally considered ideal,

disregarding the mutual coupling effects between their
elements. Nevertheless, these effects are very significant in
the performance of such arrays, leading to resolution
degradation and decrease of precision of the adapted weights
or the direction-of-arrival (DOA) estimation [5]. In a
previous work [1] we have analyzed real adaptive arrays,
taking into account the mutual coupling effects between their
elements by employing a transformation of the real array
into an equivalent ideal array, without coupling. The output
of this ideal array was processed by the LMS adaptive
algorithm to reduce the interference from signals coming
from different directions, and the obtained weights were
finally transported back to the real array. In the present work
we investigate this subject a little further, analyzing the error
and the limitations originated by the transformation of the
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real array into an ideal one.

II. THEORY
We consider a simple linear equally spaced M-element

antenna array, as in Fig. 1, operating in the receive mode
(uplink). Each branch of the array has a weighting
coefficient wm. The weight vector whose components are the
coefficients wm is denoted by w. The array response in a
given direction is the steering vector, and a set of steering
vectors, either measured or calculated over different angles,
forms [1,2] the steering matrix A. The process used here
consists in calculating or measuring induced voltages in each
array element by each incident signal over a certain angular
sector, forming the steering matrix  A(φ) , and then
calculating the ideal steering matrix Av(φ) supposing that
there is no mutual coupling. The ideal steering vector for
incident direction φi is given by:

where k is the wave number and xi is the distance from
array element i to the reference element. The transformation
T between the two steering matrices for all angles φ  within
the predefined sector is defined by:

Using the Least Squares (LS) method, the solution to (2)
is given by:

and the real weights can be obtained from the ideal ones
by the expression:

w being the weight vector used to combine signals from
the real array elements in order to obtain a desired radiation
pattern, and wv the corresponding virtual array weight
vector. Here we use an evaluation of the interpolation error
to measure the precision when finding the matrix T,
following the definition in [3] (L is the number of incident
signals directions):
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A. Effect of spacing between array elements

Matrices A and Av can be identified to induced
normalized voltages [2]. By making a detailed analysis of
element (i,1) in matrix Av , we see that it can be expressed as
a two-part sum, one coming from the corresponding element
Ai1 in matrix A, and another coming from the other elements:

 The second term on the right side of eq. (6) takes into
account the differences in response from the two arrays (real
and virtual), including the mutual effects and the progressive
phase difference in the two arrays due to eventually different
element spacings. If the spacing is the same in the real and in
the virtual arrays, then the differences between the arrays
come exclusively from the mutual effects, and in this case
the matrix T will be symmetric, since its elements refer to
mutual coupling coefficients which, considering the array
reciprocity property [4], are also reciprocal. On the other
hand, if mutual coupling effects are not considered, the
coefficients Tik   for k not equal to i are null, and the matrix T
equals the unity matrix I. But, if spacing between elements
in the real and virtual arrays is not equal, additional
differences arise, eliminating the symmetry in matrix T.

After the transformation to a virtual array, the obtained

result differs from the corresponding ideal array only by a
scale factor and by the error related to the LS process used
in the referred transformation. So, there are two main aspects
of the transformation T to consider: a) the modification in
the correlation matrix R considering the virtual array
geometry and the incident signals; and b) the modification in
R from errors in the LS process that lead to the matrix T,
that is, errors coming from a distortion in T.

B. Convergence of the LMS process

The LMS algorithm transient behavior [6] is associated with
a geometrical series where an exponential envelope with
time constant τk  may be adjusted, considering one iteration
cycle duration as being the unit of time. Time constant τk
defines the time necessary to the k-th natural mode decrease
to 1/e of its initial value, and the time needed by the
exponential to reach a value equal to 0.02 of its initial value
is approximately equal to four times the time constant τk .
Being  λmax the largest eigenvalue of the signal correlation
matrix and µ the step parameter, the algorithm is stable if
and only if:

III. SIMULATIONS AND RESULTS
The method here described was applied to a 5 parallel

dipole array with spacing λ/4 in 900 MHz, λ being the
wavelength. The desired signal is incident in the H plane
from direction 80º, and interfering signals coming from 40º,
60º and 120º directions are also considered. The LMS
algorithm was used to calculate the optimum weight vector
for different virtual array spacings, with the purpose of
observe and analyze the speed of convergence and the
precision in the resulting radiation patterns. In order to avoid
the occurrence of grating lobes [4], element spacing was
restricted to a maximum of λ/2. Table 1 shows the minimum
and maximum eigenvalues of the original (real) signal
correlation matrix R and of the transformed matrix (ideal) Rv

and also their respective spreads for different virtual array
element spacing. It also shows the Least Squares solution
error, the speed of convergence, and the interfering signal
discrimination. From these values one can observe: a) a
higher speed of convergence for a lower eigenvalue spread
of the transformed signal correlation matrix; b) a higher
Least Squares process error for larger virtual array element
spacing. Fig. 2 shows detailed learning curves that
correspond to some of the simulated cases and that confirm
the observations made above.

In each of these cases, we have tried to obtain the
maximum speed of convergence by maximizing the
parameter µ  in accordance to (7). To complete the analysis,
we evaluated the interfering signal discriminations, and
some radiation patterns are showed in Fig. 3. All simulations
were performed using the method of the moments. We
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Fig. 1. A linear equally spaced array oriented along the x axis,
receiving a plane wave from direction  (θ,φ ).
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observe that the discrimination values indicated in Table 1
are in general higher than 40 dB for these cases, showing
that the goal of discriminating the interfering signals with the
employed array spacing was always reached.

From these results we can conclude that the convergence
is slower with virtual array spacing smaller than in the real
array, and that by increasing the virtual array spacing the
speed of convergence may rise progressively. On the other
hand, the error from the solution of the transformation
matrix by the LS method has a minimum value when the
chosen virtual array spacing is equal to the real array case
(for linear arrays). This situation does not correspond, in
general, to a higher speed of convergence, and this error is
directly related to the pattern precision, since a LS process
error means a deviation from the original data. From these
results we can conclude that a magnitude of LS process error
until around 0.5, as defined in (5), is acceptable under the
point-of-view of desired radiation pattern and that, for more
than one incident signal, arrays with larger element spacing
and up to 0.5λ generally result in signal correlation matrix
with smaller eigenvalue spread, allowing a higher speed of
convergence with the LMS algorithm.

TABLE 1
RESULTS FROM ADAPTIVE PROCESSING IN A 5 PARALLEL DIPOLE ARRAY
WITH SPACING λ/4 IN 900 MHZ, FOR INCIDENT SIGNAL FROM 80º AND

INTERFERENCE SIGNALS FROM 40º, 60º AND 120º , AND FOR DIFFERENT
EQUIVALENT IDEAL ARRAY SPACINGS.

Ideal array
element spacing   0.20    0.25    0.30    0.40   0.50
(wavelengths)

λmax (Rv ) 16.47 15.10 12.72 10.07 8.33
λmin (Rv ) 0.01 0.05 0.22 1.01 0.93
λmax (Rv )/ λmin (Rv ) 1511 299 56 10 9
µ    0.052    0.060  0.064   0.081  0.100
µmax = 1/λmax (Rv )    0.060    0.066  0.078   0.099  0.120
Interpolation error  0.2x10-2  0.4x10-4  0.04  0.29  0.42
Steps to converge   6935   1307   282      47    47
Interference         40º -     47    67    87   77
discrimination     60º -     56    67    99   58
(dB)                    120º -     51   69    91   63

λmax (R ) = 5.72; λmin (R ) = 0.04; λmax (R ) / λmin (R ) = 143

Fig. 2. Learning curves for real array with element spacing equal
to 0.25λ and different virtual array spacings: ________ 0.5λ;
.................. 0.25λ .

Fig. 3.  Radiation patterns resulting from adaptive process for the
cases described on Table 1. Element spacing values on the ideal
equivalent array are as indicated.
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IV. CONCLUSION

 We have considered mutual coupling effects in adaptive
arrays, recognizing that they are significant in resolution
degradation and in the precision of adapted weights and
direction-of-arrival (DOA) estimation. A transformation of
the real array into an ideal one was used. The eigenvalues of
the correlation matrix as well as the convergence speed in
the LMS algorithm were investigated for different virtual
array element spacing. From the results we concluded that
by increasing the spacing between elements of the virtual
array it is possible to increase the speed of convergence in
the LMS algorithm.
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