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   Abstract – The objective of this work is to use PBG 
(Photonic Band Gap) material in the unilateral and 
bilateral finlines. To analyze its efficiency, it’s necessary to 
determine the phase, attenuation and effective dielectric 
constants. To analyze the behavior of the finline with this 
substrate, the full wave TTL (Transversal Transmission 
Line) method is used. New numerical results for the 
attenuation and effective dielectric constant of unilateral 
and bilateral finline with PBG substrate are presented. A 
good agreement in comparison to other works is obtained. 
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I. INTRODUCTION 

     
    The unilateral finline consist of two 

conductors fins on the sides of a dielectric 
substrate, adapted in the E-plane of a rectangular 
millimeter-wave guide, as shown in Fig.1. 
According to the figure, 2a and 2b are the height 
and width of the wave guide, respectly, s and g are 
the thickness of the regions 1 and 2 respectly, εr is 
the relative permittivity of the substrate material, 
w1 is the width of the slot and f is the infinitesimal 
thickness of the fin conductor. The bilateral 
finline has fins between the 1 and 2 regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Traverse section of a unilateral finline. 
 

 
    The TTL method is used to determine the 
phase, attenuation and effective dielectric 
constants of unilateral and bilateral finlines using  
the PBG substrate, as the first time [1-8]. In this 
method the fields in the “y” direction to the real 
direction of propagation “z” and treat the general 
equations of the electric and magnetic fields as 

functions of its components  Ey and Hy, to obtain 
the eletromagnetic field components inside of the 
millimeter waveguide. Using the boundary 
conditions, leading to the determination of the 
characteristic equation, Millimeter-Waves whose 
roots allow the obtention of the attenuation (α) 
and phase (ß) constants. 
 

II. FIELDS STRUCTURES 
 

     After using the Maxwell’s equations in the 
spectral domain, the general equations of the 
electric and magnetic fields in the TTL method, 
are obtained as: 
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Where: 
 
                                                  ,   is the 
propagation constant in “y” direction; αn is the 
spectral variable in “x” direction. 
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    ε                         is the dielectric constant of the 
ith region; 
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   Γ            is the complex propagation 
constant; 
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    The equations below are applied, being 
calculated the Ey and Hy fields through the 
solution of the Helmoltz equations in the spectral 
domain [1]-[2], the equations for the regions are:   
 
 For the region 1: 
                                                    
                                                 (2.1)                                   

    As a result, the equation is transformed in an 
homogeneous matricial equation, whose non-
trivial solution corresponds to the characteristic 
equation, and it’s roots supply the phase and 
attenuation constants.    

 
 For the region 2:                            
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 For the region 3:                           

                                                                                                                     
(2.3)                                                      -∞                                                                  Kx1x1  =  ∑ fx0 (αn) Yx1x1 f*x0 (αn)    (5.1) 

 
 

    Substituting these solutions in the TTL method 
equations and applying the boundary conditions, 
the eletromagnetic field components are 
determined for each region, using the boundary 
conditions,  
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 Determination of the propagation’s constants 
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L 
Where: Jzt and  Jxt  are current density. 
l  
    A  system  equations is then obtained  that in a 
matrix form is given as:   
 
       

     Yx1x1    Yx1z1          E~
~

xt        Jxt 
K   Yz1x1    Yz1z1         E zt         Jzt       (4.3) 
 
                             
    To eliminate the components of the current 
density, the moments method was applied with the 
expansion of xt and zt in terms of known 
base functions, as:   
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    The effective dielectric constant is obtained after 
numerical solutions of the matrix determinant by 
the relation: 

 
εef  =  (β/ko)2    (6) 

 
III. PBG STRUCTURE 

 
    For a non-homogeneous structure submited, 

the incident sign goes at the process of multiple 
spread. A solution can be obtained through a 
numerical process called homogenization [9-14]. 
The process is based in the theory related to the 
diffraction of an incident electromagnetic plane 
wave imposed by the presence of a air immerged 
cylinders in a homogeneous material [9]. 

 In the Cartesian coordinates system of axes (O, 
x, y, z), are shown in the Fig. 2. A cylinder is 
considered with relative permittivity ε1, with a 
traverse section in the plane xy, embedded in a 
medium of permittivity ε2. For this process the 
two-dimensional structure is sliced in layers 
whose thickness is equal at the cylinder diameter. 
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In each slice is realized the homogenization 
process. 
 

               
Fig. 2.   Homogenized bidimensional crystal. 

 
According to homogenization theory the 

effective permittivity depends on the polarization 
[1]. For the case of s and p polarization, 
respectively, we have: 
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and β is defined as the ratio between the area of 
the cylinders and the area of the cells, α is an 
independent parameter whose value s equal to 
0.523. The A1 and A2 variables in (7) and (8) were 
included only for simplify (6) equation. 
 

IV. RESULTS   
 

      The computational program used to calculate 
the effective dielectric constant and attenuation 
constant for unilateral and bilateral finline, with 
PBG substrate, was developed in Fortran 
PowerStation and Matlab for Windows . 
     The Fig 3. shows the attenuation constant (α) 
as function of the conductivity in the region 2, for 
two different frequencies for a unilateral finline 
with PBG substrate. When the conductivity 
increase the attenuation increase. 
     The Fig 4. shows the effective dielectric 
constant  as function of the slot width, in the 
region 2, for tree different frequencies. Can be 

noticed in Fig.4 that, when the slot width increase 
the effective dielectric constant diminish. 
 

 
 

Fig  3. Attenuation constant as function of the conductivity in 
the region 2. 

  

  
Fig 4. Effective dielectric constant  

as function of the slot width. 
 

      The Fig. 5 shows the 3D results of the real 
resonance frequency as a function of the dielectric 
substrate thickness and of the normalized width. 
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Fig. 5. 3D results of the real resonance frequency as a function 
of the dielectric substrate thickness and of the normalized 

width. 
 

     The effective dielectric constant as a function  
of the frequency is shown in the Fig.6, for 
different slot width of bilateral finline with PBG. 
In this figure the effective dielectric constant 
increase when the frequency increase. 

 

 
 

Fig.6. Effective dielectric constant  
as a function  of the frequency. 

 
V. CONCLUSION 

 
     The full wave transverse transmission line 
(TTL) method was used to characterization of the 
unilateral and bilateral finlines considering 
Photonic Band Gap (PBG) substrate, at 
applications in millimeter waves. New numerical 
results for the attenuation and effective dielectric 
constant of unilateral and bilateral finline with 
PBG substrate were presented. A good agreement 
in comparison to other works was obtained when 
the substrate is a semiconductor [2], [8]. 
    This work was partially supported by CNPQ. 
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