
Knowledge-Aided Parameter Estimation Based on

Conjugate Gradient Algorithms

Silvio Fernando Bernardes Pinto and Rodrigo C. de Lamare

Center for Telecommunications Studies (CETUC)

Pontifical Catholic University of Rio de Janeiro, RJ, Brazil.

Emails: silviof@cetuc.puc-rio.br, delamare@cetuc.puc-rio.br

Abstract—The performance of many parameter estimation
algorithms used for direction finding and localization techniques
depends on the accuracy of the signal covariance matrix estimate.
For a small number of sensors, the commonly used sample
covariance matrix estimation procedure may only provide a poor
estimate of the unknown true covariance matrix. In scenarios
with low signal-to-noise ratio, stationary and non-stationary
signal sources, a more accurate estimate of the signal covariance
matrix can be achieved by incorporating a priori knowledge
about the direction of arrival (DOA) of dominant signals. In this
paper, we combine the weighted sample covariance matrix and a
weighted knowledge-aided (KA) covariance matrix. We present a
KA-Conjugate Gradient (KA-CG) algorithm that processes the
enhanced covariance matrix estimate. Simulation results show
that the proposed KA-CG algorithm substantially improves the
probability of resolution of unknown close sources in the system,
especially at middle low signal-to-noise ratios (SNR), requiring

a reasonable number of samples for this aim.

I. INTRODUCTION

In array signal processing and wireless communications,

parameter estimation is a key task in a broad range of

important applications including direction finding, localization

and channel estimation and many different approaches have

been developed over the years [1], [14]. In spite of the

numerous parameter estimation techniques developed over

the last decades and their specific properties, advantages and

drawbacks, their estimation accuracy depends on the (M×M)
dimensional signal covariance matrix of the sensor array data

vector x(i), which is defined for the ith snapshot as

R = E
[

x(i)xH(i)
]

, i = 1, . . . , N, (1)

where the superscript H and E [·] denote the conjugate trans-
pose and the statistical expectation respectively, and N is the

number of available snapshots. In practice, the true signal

covariance matrix in (1) is unknown, but can be estimated

via the widely used sample-average formula given by

R̂ =
1

N

N
∑

i=1

x(i)xH(i). (2)

Applying the covariance matrix estimate in (2), the estimation

accuracy is essentially determined by the data record size N .

Thus, in applications where the number of available sensors

M is small, the increase in the number of snapshots become

more significant.

In practical scenarios with low signal-to-noise ratio (SNR),

stationary and non-stationary sources whose DOAs are to be

estimated, the knowledge of the directions of strong consistent

users can be effectively exploited in order to increase the

estimation accuracy of non-stationary sources, which enter the

system. The knowledge of previously estimated DOAs can

be exploited in the form of a known covariance matrix C .

Knowledge-aided (KA) signal processing techniques, which

make use of a priori knowledge of key parameters of interest

such as the existence of strong interferers, cognitive users

and geographical localization of users [18] have recently

gained significant attention [2]-[7]. In KA techniques, the

key issues are how to obtain a priori knowledge about

the parameters of interest and how to exploit them. Prior

work on KA algorithms has considered the design of space-

time adaptive processing (STAP) techniques [2]-[4],[6], [7]

and beamforming algorithms [5]. These methods have shown

superior performance to conventional approaches that do not

rely on KA techniques when the limited sample support is used

in highly nonstationary environments. Despite the existence of

KA methods combined with classical algorithms for parameter

estimation, KA methods have not been combined with high-

resolution source localization algorithms so far, nor has any

combined approach to obtain prior knowledge and estimate

the parameters been detailed to date.

In this paper, we propose a knowledge-aided parameter

estimation technique, termed as KA-CG, that combines the

(CG) algorithm [8], [9], [10] and a priori knowledge of the

directions of arrivals of source signals. We present a strategy

to improve the estimates of the signal covariance matrix by

incorporating a priori knowledge about the directions of domi-

nant signals. The proposed KA-CG algorithm is developed for

complex-valued data and considers the general case, where

C is rank deficient and the noise power is assumed to be

unknown. We also develop a procedure to obtain prior knowl-

edge based on the CG algorithm that is employed with the

proposed KA-CG algorithm. A study of the proposed KA-CG

algorithm is carried out and shows its superior performance

to the conventional CG algorithm, in terms of resolution of

closely spaced-sources with a reasonable number of samples

and a moderate SNR. The paper is organized as follows.

Section 2 describes the system model. Section 3 formulates

the problem, whereas in Section 4 the KA-CG algorithm is

presented. Section 5 presents and discusses the simulation
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results and Section 6 gives the concluding remarks of this

work.

II. SYSTEM MODEL

Let us assume that P narrowband signals from far-field

sources are impinging on a uniform linear array (ULA) of

M (M > P) sensor elements with the unknown directions

θ = [θ1, . . . , θP ]
T . The ith data snapshot of the (M × 1)-

dimensional array output vector can be modeled as

x(i) = A(Θ)s(i) + n(i), i = 1, 2, . . . , N, (3)

where s(i) = [s1(i), . . . , sP (i)]
T ∈ C

P×1 represents the zero-

mean source data vector, n(i) ∈ CM×1 is the vector of white

circular complex Gaussian noise with zero mean and variance

σ2
n, and N denotes the number of available snapshots. The

matrix A(Θ) = [a(θ1), . . . ,a(θP )] ∈ CM×P contains the

array steering vectors a(θj) corresponding to the nth source,

which can be expressed as

a(θn) = [1, ej2π
∆

λc
sin θn , . . . , ej2π(M−1) ∆

λc
sin θn ]T , (4)

where n = 1, . . . , P , ∆ denotes the interelement spacing of

the ULA and λc is the signal wavelength.

Using the fact that s(i) and n(i) are modeled as uncor-

related linearly independent variables, the M × M signal

covariance matrix is calculated by

R = E
[

x(i)xH(i)
]

= A(Θ)RssA
H(θ) + σ2

nIM , (5)

where Rss = E[s(i)sH(i)], which is diagonal if the sources

are uncorrelated and nondiagonal for partially correlated

sources, and E[n(i)nH(i)] = σ2
nIM with IM being the

M ×M identity matrix.

III. PROBLEM FORMULATION

In order to obtain an enhanced covariance matrix estimate

R̃, we assume that the a priori knowledge matrix C is non-

random, according to [12], and perform a linear combination

of C and the sample covariance matrix R̂ by applying the

weight factors α and β, which are formulated as

R̃ = αC + βR̂, (6)

where the combination factors are constrained to α > 0 and

β > 0, and C is restricted to be positive semi-definitve to

ensure that R̃ is also positive semi-definite.

The aim is to find optimal estimates of the weight factors α
and β, which efficiently combine C and R̂ depending on the

scenario. One of the most common criteria is the minimization

of the parameters in a mean squared error (MSE) sense, that

is

min
α,β

MSE = E

[

‖R̃−R‖2F

]

s.t. R̃ = αC + βR̂,
(7)

where ‖ · ‖F denotes the Frobenius matrix norm. Note that

the optimization problem is solved by minimizing the MSE

with respect to the two parameters α and β, which as expected
depend on each other and the unknown true covariance matrix

R. Another widely used criterion to reduce the complexity of

the optimization problem, which can be considered a special

case of the function (7), is the optimization described by (8):

min
α

MSE = E

[

‖R̃−R‖2F

]

s.t. R̃ = αC + (1− α)R̂
(8)

with α being restricted to α ∈ (0, 1) to ensure the positive

semi-definiteness of R̃. Both types of optimization are briefly

discussed and applied to the simulations in Section V.

IV. KNOWLEDGE-AIDED CONJUGATE GRADIENT

ALGORITHM

Assuming the knowledge of the DOAs of k signals that

are impinging on the array from the known directions θ̄ =
[θ1, . . . , θk]

T , the a priori covariance matrix C can be calcu-

lated by

C =

k
∑

l=1

a(θl)a
H(θl)σ

2
l , (9)

where a(θl) is the array steering vector of the lth known DOA
and σl is the power of the lth signal.

Let α0 and β0 denote the optimal values α and β that satisfy

(7) and (8). The estimates α̂0 and β̂0, of α0 and β0, obtained

from the available data, can be compactly expressed by means

of two approaches, as follows:

A. KA-General Linear Combination

Where the estimates given in (10) and (11) are the two

weight factors to be applied to (7)

β̂o =
γ̂

ρ̂+ γ̂
, (10)

α̂o = ν̂(1− β̂o), (11)

and γ̂, ν̂ and ρ̂ are defined as

γ̂ = ‖ν̂C − R̂‖2F , (12)

ν̂ =
Tr{CHR̂}

‖C‖2F
, (13)

ρ̂ =
1

N2

N
∑

i=1

‖x(i)‖4F −
1

N
‖R̂‖2F . (14)

B. KA-Convex Combination

Where the estimate given in (15) is the the sole weight

factor to be applied to (8)

α̂0 =
ρ̂

ρ̂+ ‖R̂−C‖2F
, (15)

and ρ̂ is defined as (14).
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C. Summary of KA-CG

The aim of the proposed KA-CG algorithm is to exploit

a priori knowledge in the form of the enhanced signal co-

variance matrix R̃ in (6) and process it using a CG based

algorithm. As can be seen in [12], one can calculate the a

priori covariance matrix C in (9) by means of the steering

vectors in (4) based on the known directions of impinging

signals. The proposed alternative method considers the system

model described in Section II and is composed of three stages.

The first stage estimates the unknown DOAs, making use of

the CG algorithm [8], [10]. The second stage encompasses

two substeps. The first substep is to calculate the a priori

covariance matrix C , using the steering vectors of part of

the preceding estimates. The second substep is to obtain an

enhanced covariance matrix R̃ (7) or (8), making use of C ,

the covariance sample R̂ (2) and the weight factors according

to the combination to be applied. For KA-General Linear

Combination (KA-GLC), the factors are α̂o (11) and β̂o and

(10). In the case of KA-Convex Combination (KA-CC), α̂0 is

given by (15). Our proposed KA-CG algorithm makes use of

the latter approach. In both cases, the covariance matrix to be

applied to the first stage of the KA-CG algorithm is obtained

by the sample average formula given in (2). In the last stage,

the first stage is repeated after replacing the covariance matrix

R̂ with R̃ given in (7) or (8) to further enhance the estimates

of the DOAs.

The CG method, which the first and the last stages of the

KA-CG are based on, is used to minimize a cost function,

or analogously, to solve a linear system of equations by

approaching the optimal solution step by step via a line search

along successive directions, which are sequentially determined

at each direction [11]. As a result of the application of the CG

algorithm to direction finding, we have a system of equations

that is iteratively solved for w at each search angle:

Rw = b(θ), (16)

where R is the covariance matrix and b(θ) is the initial vector
defined as

b(θ) =
R a(θ)

‖R a(θ)‖
(17)

where a(θ) is the search vector.

The extended signal subspace of rank P is obtained by

means of the CG algorithm summarized in the first stage of

the Table I. The set of orthogonal residual vectors

Gcg,P+1(θ) = [gcg,0(θ),gcg,1(θ), . . . ,gcg,P (θ)], (18)

where b(θ)= g0(θ) generates the well-known extended Krylov

subspace comprised of the true signal subspace of dimension

P and the search vector itself. All the residual vectors are

normalized except for the last one. If θ ∈ {θ1, . . . θP },

the initial vector b(θ) lies in the true signal subspace space

spanned by the [gcg,0(θ),gcg,1(θ), . . . ,gcg,P−1(θ)] basis vec-

tors of the extended Krylov subspace. Therefore, the rank of

the generated signal subspace drops from P+1 to P and we

have

gcg,P (θ) = 0, (19)

where gcg,P is the last unnormalized residual vector.

In order to exploit this behavior, the proposed KA-CG

algorithm makes use of the spectral function defined in [15]:

PK(θ
(n)) =

1

‖gH
cg,P (θ

(n))Gcg,P+1(θ(n−1))‖2
, (20)

where θ(n)denotes the search angle in the whole angle range

{−90o, . . . , 90o} with θ(n) = n∆o − 90o, where ∆o is

the search step and n = 0, 1, . . . , 180o/∆o. The matrix

Gcg,P+1(θ
(n−1)) contains all residual vectors at the (n −

1)th angle and gcg,P (θ
(n)) is the last residual vector calcu-

lated at the current search step n . If θ(n) ∈ {θ1, . . . , θP },

gcg,P (θ
(n)) = 0 and we can expect a peak in the spec-

trum. Taking into account that R̂ in (2) is only a sample

average estimate, which is unknown in practical applications,

gcg,P (θ
(n)) and Gcg,P+1(θ

(n−1)) become approximations.

Hence the spectral function in (20) can just provide very large

values but they do not tend to infinity as for the original

covariance matrix.

TABLE I
PROPOSED KA-CONJUGATE GRADIENT ALGORITHM

First stage:

w0 = 0, d1 = gcg,0 = b, ρ0 = gH
cg,0gcg,0

for i=1 to P do:

vi = Rdi

αi = ρi−1 / d
H
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi

ρi = gH
cg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖
2 / ‖gcg,i−1‖

2

di+1 = gcg,i + βidi

end for

form Gcg,P+1(θ) (18)

compute PK(θ
(n)) (20)

find P̂ largest peaks of PK(θ
(n)) to obtain

estimates θ̂l of the DOA

Second stage:

compute C (9), for θl = θ̂l , l < P

compute α̂0 (15) for convex combination or β̂0 (10) and α̂0

(11) for general linear combination

compute R̃ (7) or (8) according to the combination in use as

previously mentioned

Last stage:

Repeat the first stage to obtain enhanced estimates of DOA

making use of R̃ instead of R
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V. SIMULATIONS

In this section, we focus on the estimation performance

of the proposed Knowledge-Aided Conjugate Gradient (KA-

CG) algorithm for direction finding and localization tech-

niques. Specifically, we evaluate the probability of resolution

of two signals with closely-spaced angles. For this purpose, we

compare the KA-CG, the KA-ESPRIT and the KA-MUSIC,

where the a priori covariance matrices C (9) are based on

estimates, to their original versions and also to their KAv

versions, in which C is constructed with known DOAs. All

experiments are based upon a scenario with P = 2 equal-

power uncorrelated closely-spaced signals at (89.05, 90.95)◦

impinging on a ULA with M = 12 sensors equally spaced by

half wavelength. The sample matrix (2) is computed with 180
snapshots and the simulated curves are obtained by averaging

the results over 200 independent trials. We consider that in

the the KA versions, C is calculated using the steering vector

formed with one of the estimates obtained in the first stage,

whereas in the KAv versions the steering vectors are formed

supposing that the second DOA is already known. In order to

assess the accuracy in terms of probability of resolution, we

take into account the criterion [13],[15], in which two sources

with DOA θ1 and θ2 are said to be resolved if their respective

estimates θ̂1 and θ̂2 are such that both

∣

∣

∣
θ̂1 − θ1

∣

∣

∣
and

∣

∣

∣
θ̂2 − θ2
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are less than |θ1 − θ2| /2.
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Fig. 1. Probability of resolution of the KA versions and KAv versions of
CG, ESPRIT and MUSIC versus SNR with M = 12, N = 180, P = 2,
L = 200 runs, unknown uncorrelated sources at (89.05, 90.95)◦

In the first experiment, we compare the probability of

resolution of the KA-CG, KA-ESPRIT and KA-MUSIC, to

their KAv versions, in which the a priori covariance matrices

C (9) are obtained from the steering vector of the second

DOA, which is supposed to be known. The results depicted

in Fig.1 show the best performance of each KAv version, in

which C is obtained by the configuration with one known
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Fig. 2. Probability of resolution of the KA versions and original versions
of CG, ESPRIT and MUSIC versus SNR with M = 12, N = 180, P = 2,
L = 200 runs, unknown uncorrelated sources at (89.05, 90.95)◦

DOA, over its KA version, where C is calculated using one

of the estimates.

Each KAv-version can be considered an upper bound of its

KA version. Thus, it can be noticed that the small area limited

by KA-CG and KAv-CG shows that the former already ex-

ploits its potential close to the effective optimal performance.

The gap available to improvements is situated within [-1.9,

1.6] SNR(dB) where the probability of resolution is lower

than 0.88. Differently from the previous KA-CG case, there

is a larger area limited by KA-ESPRIT and KAv-ESPRIT that

is available to enhancements. It can also be seen that their

effective optimal performance (KAv-ESPRIT) is outperformed

by both KAv-CG and KA-CG. The area limited by KA-

MUSIC and KAv-MUSIC shows that most of the potential to

be exploited is situated at the lower levels of the probability

of resolution and that the potential of improvement of the KA-

MUSIC is poor at higher ones.

In the last experiment, we compare the probability of

resolution of KA-CG, KA-ESPRIT and KA-MUSIC to their

original versions [8], [17], [16]. The results depicted in Fig.2

make clear the potential of the latter ones to be exploited in

terms of probability of resolution.

VI. CONCLUSION

A novel knowledge-aided DOA estimation technique em-

ploying the classical CG algorithm has been proposed. Differ-

ently from the standard knowledge-aided DOA methods, based

on known DOA, it only exploits estimates of part of the un-

known uncorrelated closely-spaced sources and substantially

improves the estimation accuracy of two unknown sources,

which enter the system. The enhanced signal covariance

matrix estimate R̃ is obtained by adaptively combining the

a priori covariance matrix C , based upon steering vectors
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of the estimates, and the sample covariance matrix R̂, in

a minimum mean squared error sense. The proposed KA-

CG can be applied to scenarios in which the sources are

close to each other and do not provide any restrictions on

the rank of the a priori covariance matrix. Simulation results

show that processing prior knowledge significantly increases

the probability of resolution of unknown sources at low-

to-medium SNR values, requiring a reasonable number of

samples to this end.
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