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A Leakage Quasi-Newton Adaptation Algorithm

Fabiano T. Castoldi and Marcello L. R. de Campos

Abstract— This paper proposes an alternative view on adaptive objective function is described as a minimum-norm function
filtering algorithm development and analysis. More than jug subjected, or not, to constraints.
rewriting objective functions minimized by the algorithms, the This paper is organized as follows. In Section Il we pre-
alternative approach explored in this article gives us exta tools -
for optimizing with respect to other parameters, for exampk the sent .neW derivation for. some LS-based and .th_e _QI\_I-_based
convergence factor. algorithms based on their least-squares deterministieabip
Adaptation algorithms are usually developed based eitherm function and the minimum-disturbance counterpart. In orde
a stochastic approximation of the gradient vector and Hessin  to demonstrate the potential of those new algorithms, Secti

matrix, or on a deterministic minimization of quadratic a 1} yrovide some numerical simulations. Concluding rensark
posteriori output errors. Gradient-descent algorithms, such as the

LMS (Least Mean Squares) algorithm and the QN (Quasi Newton) and some directions for further research are given in Sectio

algorithm, are usually placed in the first group, whereas the V.
RLS (Recursive Least Squares) algorithm is placed in the second

group. Obviously these are just how algorithms are usually II. CONVEX OPTIMIZATION INTERPRETATION
presented and analyzed; the RLS algorithm can also be seen as

an stochastic approximation algorithm, and the LMS algorihm ~A. Least-Squares Algorithm A

also dges mir:.imize ffidd?tefn)ini?ticf0bi$0tiVe fgn.cti.onal-l;owver, The RLS algorithm has certainly become one of the pre-
some descriptions of deterministic functions minimized bysome : : . : .
algorithms, such as the LMS algorithm, offer very limited insight ferred alternatives to gra(_jlent-type algorithms in am'““?s
on its behavior. In this work we propose to shed new light where fast convergence is needed. Although computatipnall
onto known adaptation algorithms by means of describing the ~complex and possibly unstable, the RLS algorithm provides
deterministic objective function as a quadratic norm of the excellent performance in terms of convergence speed and
coefficients, optionally subjected to equality constrairg, which cqefficient-error variance in steady state. The algorittam e

are functions of the output error. We show how this approach : S : N
can be used to derive some LS-based and QN-based adaptationdenved as a recursive implementation that minimizes thm su

algorithms, such as the Leakage QN Algorithm mentioned in te  Of the squares of the posteriori output errors. One possible
title. and general format of the recursive least squares objective

Keywords— Convex Optimization, Adaptation Algorithms, function can be written as [2]

Adaptive signal processing n 9
§A,n = Z Mg [dz - szWn} (1)
i=1

I. INTRODUCTION _ _ _
Many adaptation algorithms have been proposed in tMg]eredi andx; denote the desired response and input-signal

past forty years, offering trade-offs in convergence spee ctor pair at Flme Instan, an(_j wn_denotes the coeﬁ|<_:|_ent
robustness, and computational complexity. Lack of rolesdn vector at time |r1_stantz. The yvelght_s,ui, usually are posmve
may be due to accumulation of quantization errors or due alars. The objective functiay » is related to algorithmd

loss of positive definiteness of the Hessian matrix caused B time instantn. . N

nonpersistently exciting input signals [1]. _ If one wants to obtaln vectow,, that mlnlmlzesgfm at
The RLS algorithm presents good convergence speed, H[He instants, the following approach may be used:

its robustness is not guaranteed unless we opt for a QR- 9¢,, 0 ~ d — = .

decomposition implementation, or some other regulagrati w, e Z”i iXi = meixi Wn

scheme. Robust RLS-algorithm implementations with reduce =1 =t

computational complexity are usually based on QR decom-We may define the sample-based stochastic approximations

positions, which are complex to implement and maintain [2pf the input-signal autocorrelation matri 4., and input-

There are other algorithms that have been developed based&fgrence-signal crosscorrelation vectpy, .., as

known convex optimization methods, like the Quasi-Newton n

and IPLS (Interior Point Least Square) algorithms [1], [3]. R, = ZHiXiXiT =Ran-1+ fnXnX), 2)

These algorithms offer increased robustness at a cost of i=1

extra computational complexity, for they do not aditN) and

implementations. n
In this paper we present a different approach to the deri- p,, = Zmdixi =Pan-1+ pndnXn
vation of the conventional adaptation algorithms, wherttey i=1
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which is in the form of Wiener-Hopf equations [4]. The [Ran—1+ tnXi X ] Won = Ran—1Wpo1 + findnXn
coefficient vector that solves this set of linear equatios i
unique if and only ifR 4, has full rank, and it corresponds
to a global minimum in the objective function surface if and R4 ,w, = R4, Wy_1 + tnenXp
only if R4, is positive definite. The latter should be the case

RA,an - [RA,n - /Lnxzxn} Wp—1+ /Lndnxn

-1
for all persistently exciting signals of ordéy, whereM is the Wn = Wn1 F fnenR g 5 Xn (10)
dimension of the problem, i.ew,, andx,, are M x 1 vectors. In Eq. (10) one can use Eq. (8) to yield the same Eq. (3). The
The coefficient-vector solution to the minimization prable advantages of this alternative minimum-disturbance aggro
described by Eq. (1) is given by will be explored in some more detail in the following secton
en Eq. (1) presents an objective functign , which is a sum
Wn = Wn—1+ ﬁt" ®) of squareda posteriori output errors calculated at point,,

and weighted by their corresponding. This strategy possess
only limited ability to “forget” past information; at eaclnte

en =dp — XZWn—l (4) instantn, u,, only acts upon the curreatposteriori errore,, =

d, —xI'w,, as can be verified by Eq. (9). In the next section,
a different function is proposed as objective for minimiaat

where:

Tn = XZRZ}n_lxn (5)
t, = R;,}nflxn (6)

. . . . . B. Least-Sguares Algorithm B
Heree,, is thea priori output error and the inversion of matrix

R.1 ., needed in Egs. (5) and (6) can benefit from the recursiveS an _alternative objective fun_ctio_n to tha’F described in Eq
structure of Eq. (2) via Woodbury formula, also known akl), a weighted least squares objective function can beetifin

matrix-inversion lemma [4], which is given by where at any time instant the weightu,, acts upon the whole

4+ BOD| = A1 — A-1B [0*1 . DAB] DAl (@) sequence of past posteriori errors, i.e.,

n

2
Using the matrix-inversion lemma given by Eq. (7) and  &Bn = D Hin [di — X[ W] (11)
makingA = R,,_1, B = DT = x,, andC = p,,, the inversion i=1
of matrix in Eq. (2) is with
t,t? s
R, =R, -+~ (8) pin = [I wi=tm trins
o T j=it1

wheret,, and 7, are given by Egs. (6) and (5), respectively.As usual, vectow,,, which minimizes{s ,,, is obtained taking
One may quickly realize that Eq. (1), and consequently Edée first derivative of¢ g ,, with respect tow,, and making it
(3)—(6), describe the conventional RLS algorithm when= equal to zero, as follows:
1. Although general, formulation of the objective functios a n n
in Eg. (1) does not yield the exponentially weighted RLS pn _ 0 — Zﬂmdixi = Zui,nXiX?Wn
algorithm, as described in [2] and [4]. Own i=1 i=1
1) A Minimum-Disturbance Description: An alternative The stochastic approximations of the input-signal aut@sor

objective function that yields the exact same algorithm agion matrix and input-reference crosscorrelation vecire
described by Egs. (3)—(6) is presented below. The altematbiven by

objective function follows a minimum-disturbance objeeti "
given by some quadratic norm of the coefficient disturbance . _ xxl = Rp o1 +x.xT 12
from iterationsn — 1 to n, but also takes into account the B ;Mm P T Hn BB T X0 % (12)
instantaneous squarexd posteriori output error weighted by an

Mo

d

§A,n = Hwn - Wn—lH%{.A n—1 + tn [dn - ngn}Q (9) PBn = Z’ui’ndixi = HnPBn-1+ dnXn
' i=1

respectively. One can readily spot the weighted RLS allyorit
x| = x" Ax above, either from the recursive representation®Ref,, and
for some vectoi, given any positive definite matriA. pB”F]’ or fr?fm. Eq. (11). luti h iahted |

This minimum-disturbance description has been used beforeT. € coe |C|entl;)\|/ectc;r S0 l'.lgog tt? the weig Fe .eastbsqsar
to derive and analyze adaptation algorithms, e.g., [5]. Olrprmlmlzauon problem described by Eq. (11) is given by
approach and objectives in this paper, however, are sfightl w, =w,_; + t, (13)
different. fin + Tn . _

By minimizing €4, in Eq. (9) with respect to the filter wheree,, 7,, andt,, are defined as before in Eqgs. (4)—(6),
coefficientsw,,, one can obtain the same recursive update asd R;}n is
in Eq. (3):

In the equation above, the quadratic norm is defined as

€n

1 t,tL
R, = —|Rp, , ——= (14)
’ Hn ’ Hn + T

VgA.,n = 2RA.,n71 [Wn - anl]_2,un [dn - ngn] Xn = 0
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The differences between Egs. (1) and (11) are subtle, it On the Choice of i
nonetheless important to explain algorithm behavior and ca Although it can be stated generally that factoris a

pab|I|t|es. For the latter, the “forgetting fa_\ctor”_ at anyne positive scalar that controls how past and present data is
ms_tantn has some control over the _ent|re hlstory of dat(’i}/eighted, considerable research has been devoted in the
pairs x; and d;. The exponentially weighted recursive leasf,qt three decades to the study of “optimal” values for this
squares algorithm [4][2] fits nicely in this framework if we o ameter. Optimality criteria can be speed of convergence

mikeﬁ’ﬁ/l.:.)" i.e.l,jthe ELS f%rgetping fa}cfr .[4]'h . misadjustment, robustness, to name a few. In the following
) Inimum-Disturbance Description: AS in the previous o 0 we will touch the surface of the subject, pointing o

case, the least squares algorithm with variable forgefantpr how constraints can be included into the minimum-distudean

Ju_st_descrl?eg cban also be altﬁrnlat%gly formulated untler trepresentation of objective functions. These constraiais
minimum-disturbance approach. In this case, normalize solutions such that they lie in the hyperplane of
B = tinllWn — Wo1llR, ., + [dn — xanf zeroa posteriori output errors, or they can somehow improve

- . - _— robustness, for example.
The minimum-disturbance description of the objective func P

tion, in this case, shows that the “convergence factor” is
applied to the quadratic norm of the coefficient disturband& Other Normalized Algorithms

from iterationsn—1 to n, not to the squared posteriori output o0 \yhat has been discussed so far, it seems appropriate
error as before. This way of presenting the RLS algorithm 5 this point to investigate other options of objective fiiors

that pres.er.lted in [5]. Thg derivation to Ot,’tai” Egs. (13) a%d least mean squares (NLMS) algorithm, the quadratic norm
(14) is similar to that carried out for Algorithm A. is taken with respect to the identity matrix and a constriant

C. Least-Squares Algorithm C zeroa posteriori output error shall be enforced:

If we examine closely the minimum-disturbance descripti-  &nxrasn = ||[Wn — wWo1]? st d, = xfwn
ons of the algorithms presented in the previous sectiong;a n ) o ]
tural, perhaps trivial, modification of the objective fuioctis 1 N€ solution after minimizingyrass,, With respect tow,
to make it a convex combination between minimum-coefficieft the NLMS algorithm. Using the technique of Lagrange
disturbance and posteriori output error, as follows: multipliers, we have

Sen = (1 _Mn)”Wn _Wn—1||%lc,n71 + fn [dn - szn]g ENLMSn = Hwn - Wn—1H2 +ta [d" - ngn}
If we make the first d_erivative ofc,, with respect tow,, VENLMSm = 2 [Wn — Wp_1] —ax, =0
equal to zero, we obtain
_ axX,
e —0 Wp = Wp_1 + N (18)
ow,,

Substituing this result in the restriction to find yields
— (l_ﬂn)RC,nfl(Wn_anl) = Han(dn—XZWn)

) dn—xg [wn_1+%}=0
If we defineR¢,,—1W,—1 = pc.n—1 and 2
RC,n = (1 - /Ln)RC,nfl + annxz 2671 = QHXHHQ
Pcn = (1 - Mn)pc,n—l + Mndnxn 2e,
then naturallyRc¢ ,w,, = pc,,. Using the matrix-inversion “= (1%
lemma we have : . : . .
T Now, using this value o in Eq. (18) to obtain the recursion
a1 -1 tnty formula for the filter coefficients, we have
Re, = Reno1— 1= (15)
’ 1 - //Ln ’ —H'un + Tn en
. . " . . Wy = Wp_1+ —2Xn
and following the same deduction as in Algorithm A, one can [ ]|
obtain the update formula for the filter coeficients as Any other positive matrix matrix would do in the quadratic
W, = W, 1 + #tn (16) norm above, nqt jusfc the id_en_tity matrix. However, it seems
ot natural that the identity matrix is as good as any other ahoic

to the RLS algorithm whem—p1,, = A < 1, which has already ~ Another normalized algorithm, in the sense that it also
been named LMS-Newton in [6]. Indeed, the same algorithvields zeroa posteriori error, is the QN algorithm proposed

can be obtained if we minimize in [1]. This algorithm was developed based on the rank-
n n ) one update of the Hessian matrix, and its good numerical
fom = Z H (1 — pj)pi [di — %] W] (17) properties are in part due to the fact that the condition
i=1 j=i+1
1

. Tp-1 —
with respect tow,,. x, Ry, Xn = 3
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is always satisfied. The minimum-disturbance descriptibn o I11. SIMULATIONS

the QN algorithm is given below: Simulations were carried out to test convergence of the
algorithms only. As out main goal was to show a different
Eonm = ||[Wn — Wn_l”%lwwH s.t.{ SR _ p(_arspecti\(e to adapta_tion_—algorithm develop_ment andygh;al
X RN nXn 1/2 with possible generalization of known algorithms and impro
(19) vements to their robustness characteristics, our sinauatilid
not intend to compare algorithms in terms of their conver-
gence speed or misadjustment, as is usually the case. In our

_ T
dn = X;, Wy,

After minimizing g, With respect tow,,, we obtain

W, = Wp_1 + e—”tn simulations, an unknown system was to be identified by the
Tn adaptive filter and zero-mean white noise was added to the
and output signal of the system to form the reference signal. The
. . — % . signal-to-noise ratio (SNR) was constant and equal to 40dB
Ronn =Ronn-1— —rtaty, for all simulations.
_ " The unknown system was an FIR filter with transfer function
or, equivalently, given by
n 1, -2, - 4

i=1 normalized to unitary gain.

Normalization implies a 3dB penalty in the algorithm mi- For each different algorithm, a sufficient order adaptivtefil
sadjustment [1]. It might be worth investigating what modiwas used and the simulations were realized until convergenc
fication in {gn,, would be necessary in order to maintain avas reached. The input signal to the unknown system and to
good numerical behavior, but at the same time allow a penattie adaptive filter was the same zero-mean white noise signal
to be applied to the normalization in order to let the solutioThe MSE (Mean Squared Error) shown in the figures were
wander away from the hyperplane given #ly — x.'w,, = 0. obtained after averaging over an ensemble of 100 simukgtion

In the simulations, the algorithms will be named after the
F. Leakage QN Algorithm section where they were presented.
An objective function of a “leakage” quasi-Newton algo- Learning curves of algorithmgd to C' are shown in figure

rithm that preserves the good numerical properties of t _w(rjl_eret Wet?djusltl tthhe vaIIue tcr’]j" to obtain the same
original QN algorithm proposed in [1] can be constructed adnsadjustment for afl three aigonthms.

Convergence of MSE for Algorithms A, B and C

2
gLQN,n = ,LLnHWn - Wn71||%(LQN’n71 + [dn - ngn} 10’ X .

“Algorithm A
—— Algorithm B
= = =Algorithm C

s.t. XzRchgmen =1/2 (20)

Minimization of the equation above with respect to the
coefficient vectorw,,, yields
en
= _ + 71}
W, Wn—1 ,Un‘f'Tn n

10

10°F

MSE

10°F

with

1 t,t7
—1 _ —1 nen
RLQN,n = M_n RLQN.,nfl - Lin & T

as in Eq. (14). As the restriction imposed to this algorithm
does not include the coefficient vectox;,, then the only E % w0
difference between this algorithm and the algorithm prée=egn
in the subsection II-B is in the choice of the,.

Applying the restrictionfoZéN_’nxn = 1/2 to the update

(21) i

L L
150 200 250 300
Iterations

Fig. 1. Learning curves of Algorithmsl, B andC.

—1 .
formula of R}, ., gives Figure 2 shows an interesting comparison between the
(1 ) t,t7 algorithmsE (QN algorithm) andF’ (LQN algorithm), where
Xn {— [RLQN,nl - T"T] } Xp =1/2 it is possible to observe the effect of the normalizationhia t
. Hn 7 T misadjustment. These two algorithms use variable values fo
or, equivalently, [in, given by
1 Tn(ﬂn‘i‘Tn)_Tﬁ} 1
- =1/2 n=— 23
Hn |: Hn +Tp / H 27, (23)
Solving the equation above with respect g to find the and
algorithm step update, yields [in = Tn (24)

Hn = Tn respectively.
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Comparison of MSE of Algorithms E and F

Algorithm
—— Algorithm F|

10

200 250 300

150
Iterations

Fig. 2. Comparison of the misadjustment in MSE between QMrilgn
and Leakage QN algorithm.

IV. CONCLUSIONS AND CRITIQUE

This work presented an alternative tool for the derivation
of adaptation algorithms, via a coefficient-vector minimum
disturbance approach possibly combined with the squared
a posteriori output error and equality constraints. Although
the minimum-disturbance approach has been used before to
present alternative derivations of the LMS algorithm asd/d-
riations, we have showed that a proper choice of the quadrati
norm used to measure thiksturbance of the coefficients can
yield different LS-like or QN-like algorithms. Besides gig
us tools to derive new algorithms, the approach described
herein puts all algorithms under the same framework and
provides us different insight on their expected behavior.

Perhaps the most interesting aspect of the framework just
described is the presentation of an alternative detertignis
objective function for LS-like algorithms that does not in-
cluden instances of the coefficient vector. Although a detail
that might easily pass unnoticed, the alternative detastiin
objective function allows us to optimize with respect to the
convergence factoy,,,, without the difficulty imposed by the
implicit dependence of the instances o, to u,,. Although
the derivation of adaptation algorithms and variable fttigg
factors are subjects that may have already been explored to
exhaustion, still our work offers a different perspectivett
may attract and amuse the expert and help the novice.
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