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A Leakage Quasi-Newton Adaptation Algorithm
Fabiano T. Castoldi and Marcello L. R. de Campos

Abstract— This paper proposes an alternative view on adaptive
filtering algorithm development and analysis. More than just
rewriting objective functions minimized by the algorithms, the
alternative approach explored in this article gives us extra tools
for optimizing with respect to other parameters, for example the
convergence factorµ.

Adaptation algorithms are usually developed based either on
a stochastic approximation of the gradient vector and Hessian
matrix, or on a deterministic minimization of quadratic a
posteriori output errors. Gradient-descent algorithms, such as the
LMS (Least Mean Squares) algorithm and the QN (Quasi Newton)
algorithm, are usually placed in the first group, whereas the
RLS (Recursive Least Squares) algorithm is placed in the second
group. Obviously these are just how algorithms are usually
presented and analyzed; the RLS algorithm can also be seen as
an stochastic approximation algorithm, and the LMS algorithm
also does minimize a deterministic objective function. However,
some descriptions of deterministic functions minimized bysome
algorithms, such as the LMS algorithm, offer very limited insight
on its behavior. In this work we propose to shed new light
onto known adaptation algorithms by means of describing their
deterministic objective function as a quadratic norm of the
coefficients, optionally subjected to equality constraints, which
are functions of the output error. We show how this approach
can be used to derive some LS-based and QN-based adaptation
algorithms, such as the Leakage QN Algorithm mentioned in the
title.

Keywords— Convex Optimization, Adaptation Algorithms,
Adaptive signal processing

I. INTRODUCTION

Many adaptation algorithms have been proposed in the
past forty years, offering trade-offs in convergence speed,
robustness, and computational complexity. Lack of robustness
may be due to accumulation of quantization errors or due to
loss of positive definiteness of the Hessian matrix caused by
nonpersistently exciting input signals [1].

The RLS algorithm presents good convergence speed, but
its robustness is not guaranteed unless we opt for a QR-
decomposition implementation, or some other regularization
scheme. Robust RLS-algorithm implementations with reduced
computational complexity are usually based on QR decom-
positions, which are complex to implement and maintain [2].
There are other algorithms that have been developed based on
known convex optimization methods, like the Quasi-Newton
and IPLS (Interior Point Least Square) algorithms [1], [3].
These algorithms offer increased robustness at a cost of
extra computational complexity, for they do not admitO(N)
implementations.

In this paper we present a different approach to the deri-
vation of the conventional adaptation algorithms, wherebythe
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objective function is described as a minimum-norm function
subjected, or not, to constraints.

This paper is organized as follows. In Section II we pre-
sent new derivation for some LS-based and the QN-based
algorithms based on their least-squares deterministic objective
function and the minimum-disturbance counterpart. In order
to demonstrate the potential of those new algorithms, Section
III provide some numerical simulations. Concluding remarks
and some directions for further research are given in Section
IV.

II. CONVEX OPTIMIZATION INTERPRETATION

A. Least-Squares Algorithm A

The RLS algorithm has certainly become one of the pre-
ferred alternatives to gradient-type algorithms in applications
where fast convergence is needed. Although computationally
complex and possibly unstable, the RLS algorithm provides
excellent performance in terms of convergence speed and
coefficient-error variance in steady state. The algorithm can be
derived as a recursive implementation that minimizes the sum
of the squares of thea posteriori output errors. One possible
and general format of the recursive least squares objective
function can be written as [2]

ξA,n =

n
∑

i=1

µi

[

di − xT
i wn

]2
(1)

wheredi andxi denote the desired response and input-signal
vector pair at time instanti, andwn denotes the coefficient
vector at time instantn. The weights,µi, usually are positive
scalars. The objective functionξA,n is related to algorithmA
at time instantn.

If one wants to obtain vectorwn that minimizesξA,n at
time instantn, the following approach may be used:

∂ξA,n

∂wn

= 0 =⇒
n

∑

i=1

µidixi =
n

∑

i=1

µixix
T
i wn

We may define the sample-based stochastic approximations
of the input-signal autocorrelation matrix,RA,n, and input-
reference-signal crosscorrelation vector,pA,n, as

RA,n =

n
∑

i=1

µixix
T
i = RA,n−1 + µnxnxT

n (2)

and

pA,n =
n

∑

i=1

µidixi = pA,n−1 + µndnxn

respectively. The set of equations that solve the minimization
problem can be rewritten as

RA,nwn = pA,n
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which is in the form of Wiener-Hopf equations [4]. The
coefficient vector that solves this set of linear equations is
unique if and only ifRA,n has full rank, and it corresponds
to a global minimum in the objective function surface if and
only if RA,n is positive definite. The latter should be the case
for all persistently exciting signals of orderM , whereM is the
dimension of the problem, i.e.,wn andxn areM ×1 vectors.
The coefficient-vector solution to the minimization problem
described by Eq. (1) is given by

wn = wn−1 +
en

1

µn
+ τn

tn (3)

where:

en = dn − xT
nwn−1 (4)

τn = xT
nR−1

A,n−1
xn (5)

tn = R−1

A,n−1
xn (6)

Hereen is thea priori output error and the inversion of matrix
RA,n needed in Eqs. (5) and (6) can benefit from the recursive
structure of Eq. (2) via Woodbury formula, also known as
matrix-inversion lemma [4], which is given by

[A + BCD] = A−1 − A−1B
[

C−1 + DAB
]

DA−1 (7)

Using the matrix-inversion lemma given by Eq. (7) and
makingA = Rn−1, B = DT = xn andC = µn, the inversion
of matrix in Eq. (2) is

R−1

A,n = R−1

A,n−1
−

tntT
n

1

µn
+ τn

(8)

wheretn andτn are given by Eqs. (6) and (5), respectively.
One may quickly realize that Eq. (1), and consequently Eqs.

(3)–(6), describe the conventional RLS algorithm whenµi =
1. Although general, formulation of the objective function as
in Eq. (1) does not yield the exponentially weighted RLS
algorithm, as described in [2] and [4].

1) A Minimum-Disturbance Description: An alternative
objective function that yields the exact same algorithm as
described by Eqs. (3)–(6) is presented below. The alternative
objective function follows a minimum-disturbance objective
given by some quadratic norm of the coefficient disturbance
from iterationsn − 1 to n, but also takes into account the
instantaneous squareda posteriori output error weighted by
µn:

ξA,n = ‖wn − wn−1‖
2
RA,n−1

+ µn

[

dn − wT
nxn

]2
(9)

In the equation above, the quadratic norm is defined as

‖x‖2
A = xTAx

for some vectorx, given any positive definite matrixA.
This minimum-disturbance description has been used before

to derive and analyze adaptation algorithms, e.g., [5]. Our
approach and objectives in this paper, however, are slightly
different.

By minimizing ξA,n in Eq. (9) with respect to the filter
coefficientswn, one can obtain the same recursive update as
in Eq. (3):

∇ξA,n = 2RA,n−1 [wn − wn−1]−2µn

[

dn − wT
nxn

]

xn = 0

[

RA,n−1 + µnxT
nxn

]

wn = RA,n−1wn−1 + µndnxn

RA,nwn =
[

RA,n − µnxT
nxn

]

wn−1 + µndnxn

RA,nwn = RA,nwn−1 + µnenxn

wn = wn−1 + µnenR−1

A,nxn (10)

In Eq. (10) one can use Eq. (8) to yield the same Eq. (3). The
advantages of this alternative minimum-disturbance approach
will be explored in some more detail in the following sections.

Eq. (1) presents an objective functionξA,n which is a sum
of squareda posteriori output errors calculated at pointwn

and weighted by their correspondingµi. This strategy possess
only limited ability to “forget” past information; at each time
instantn, µn only acts upon the currenta posteriori errorεn =
dn −xT

nwn, as can be verified by Eq. (9). In the next section,
a different function is proposed as objective for minimization.

B. Least-Squares Algorithm B

As an alternative objective function to that described in Eq.
(1), a weighted least squares objective function can be defined,
where at any time instantn the weightµn acts upon the whole
sequence of pasta posteriori errors, i.e.,

ξB,n =

n
∑

i=1

µi,n

[

di − xT
i wn

]2
(11)

with

µi,n =

n
∏

j=i+1

µj = µn µi,n−1

As usual, vectorwn, which minimizesξB,n, is obtained taking
the first derivative ofξB,n with respect town and making it
equal to zero, as follows:

∂ξB,n

∂wn

= 0 =⇒

n
∑

i=1

µi,ndixi =

n
∑

i=1

µi,nxix
T
i wn

The stochastic approximations of the input-signal autocorre-
lation matrix and input-reference crosscorrelation vector are
given by

RB,n =

n
∑

i=1

µi,nxix
T
i = µnRB,n−1 + xnxT

n (12)

and

pB,n =

n
∑

i=1

µi,ndixi = µnpB,n−1 + dnxn

respectively. One can readily spot the weighted RLS algorithm
above, either from the recursive representations ofRB,n and
pB,n, or from Eq. (11).

The coefficient-vector solution to the weighted least squares
minimization problem described by Eq. (11) is given by

wn = wn−1 +
en

µn + τn

tn (13)

where en, τn, and tn are defined as before in Eqs. (4)–(6),
andR−1

B,n is

R−1

B,n =
1

µn

[

R−1

B,n−1
−

tntT
n

µn + τn

]

(14)
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The differences between Eqs. (1) and (11) are subtle, but
nonetheless important to explain algorithm behavior and ca-
pabilities. For the latter, the “forgetting factor” at any time
instant n has some control over the entire history of data
pairs xi and di. The exponentially weighted recursive least
squares algorithm [4][2] fits nicely in this framework if we
makeµn = λ, i.e., the RLS forgetting factor [4].

1) A Minimum-Disturbance Description: As in the previous
case, the least squares algorithm with variable forgettingfactor
just described can also be alternatively formulated under the
minimum-disturbance approach. In this case,

ξB,n = µn‖wn − wn−1‖
2
RB,n−1

+
[

dn − xT
nwn

]2

The minimum-disturbance description of the objective func-
tion, in this case, shows that the “convergence factor” is
applied to the quadratic norm of the coefficient disturbance
from iterationsn−1 to n, not to the squareda posteriori output
error as before. This way of presenting the RLS algorithm is
not the most common one, but has some resemblance with
that presented in [5]. The derivation to obtain Eqs. (13) and
(14) is similar to that carried out for Algorithm A.

C. Least-Squares Algorithm C

If we examine closely the minimum-disturbance descripti-
ons of the algorithms presented in the previous sections, a na-
tural, perhaps trivial, modification of the objective function is
to make it a convex combination between minimum-coefficient
disturbance anda posteriori output error, as follows:

ξC,n = (1−µn)‖wn −wn−1‖
2
RC,n−1

+µn

[

dn − xT
nwn

]2

If we make the first derivative ofξC,n with respect town

equal to zero, we obtain

∂ξC,n

∂wn

= 0

=⇒ (1−µn)RC,n−1(wn−wn−1) = µnxn(dn−xT
nwn)

If we defineRC,n−1wn−1 = pC,n−1 and

RC,n = (1 − µn)RC,n−1 + µnxnxT
n

pC,n = (1 − µn)pC,n−1 + µndnxn

then naturallyRC,nwn = pC,n. Using the matrix-inversion
lemma we have

R−1

C,n =
1

1 − µn

[

R−1

C,n−1
−

tntT
n

1−µn

µn
+ τn

]

(15)

and following the same deduction as in Algorithm A, one can
obtain the update formula for the filter coeficients as

wn = wn−1 +
en

1−µn

µn
+ τn

tn (16)

Interesting enough, this third option also becomes equivalent
to the RLS algorithm when1−µn = λ < 1, which has already
been named LMS-Newton in [6]. Indeed, the same algorithm
can be obtained if we minimize

ξC,n =

n
∑

i=1

n
∏

j=i+1

(1 − µj)µi

[

di − xT
i wn

]2
(17)

with respect town.

D. On the Choice of µ

Although it can be stated generally that factorµ is a
positive scalar that controls how past and present data is
weighted, considerable research has been devoted in the
past three decades to the study of “optimal” values for this
parameter. Optimality criteria can be speed of convergence,
misadjustment, robustness, to name a few. In the following
sections we will touch the surface of the subject, pointing out
how constraints can be included into the minimum-disturbance
representation of objective functions. These constraintscan
normalize solutions such that they lie in the hyperplane of
zeroa posteriori output errors, or they can somehow improve
robustness, for example.

E. Other Normalized Algorithms

From what has been discussed so far, it seems appropriate
at this point to investigate other options of objective functions
following the minimum disturbance approach. For the normali-
zed least mean squares (NLMS) algorithm, the quadratic norm
is taken with respect to the identity matrix and a constraintfor
zeroa posteriori output error shall be enforced:

ξNLMS,n = ‖wn − wn−1‖
2 s.t. dn = xT

nwn

The solution after minimizingξNLMS,n with respect town

is the NLMS algorithm. Using the technique of Lagrange
multipliers, we have

ξNLMS,n = ‖wn − wn−1‖
2 + α

[

dn − xT
nwn

]

∇ξNLMS,n = 2 [wn − wn−1] − αxn = 0

wn = wn−1 +
αxn

2
(18)

Substituing this result in the restriction to findα, yields

dn − xT
n

[

wn−1 +
αxn

2

]

= 0

2en = α‖xn‖
2

α =
2en

‖xn‖2

Now, using this value ofα in Eq. (18) to obtain the recursion
formula for the filter coefficients, we have

wn = wn−1 +
en

‖xn‖2
xn

Any other positive matrix matrix would do in the quadratic
norm above, not just the identity matrix. However, it seems
natural that the identity matrix is as good as any other choice,
if we have no knowledge about the statistics of the input signal.

Another normalized algorithm, in the sense that it also
yields zeroa posteriori error, is the QN algorithm proposed
in [1]. This algorithm was developed based on the rank-
one update of the Hessian matrix, and its good numerical
properties are in part due to the fact that the condition

xT
nR−1

QN,nxn =
1

2
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is always satisfied. The minimum-disturbance description of
the QN algorithm is given below:

ξQN,n = ‖wn −wn−1‖
2
RQN,n−1

s.t.

{

dn = xT
nwn

xT
nR−1

QN,nxn = 1/2

(19)

After minimizing ξQN,n with respect town, we obtain

wn = wn−1 +
en

τn

tn

and

R−1

QN,n = R−1

QN,n−1
−

1 − 1

2τn

τn

tntT
n

or, equivalently,

RQN,n =

n
∑

i=1

2

[

1 −
1

2τi

]

xnxT
n

Normalization implies a 3dB penalty in the algorithm mi-
sadjustment [1]. It might be worth investigating what modi-
fication in ξQN,n would be necessary in order to maintain a
good numerical behavior, but at the same time allow a penalty
to be applied to the normalization in order to let the solution
wander away from the hyperplane given bydn − xT

nwn = 0.

F. Leakage QN Algorithm

An objective function of a “leakage” quasi-Newton algo-
rithm that preserves the good numerical properties of the
original QN algorithm proposed in [1] can be constructed as

ξLQN,n = µn‖wn − wn−1‖
2
RLQN,n−1

+
[

dn − xT
nwn

]2

s.t. xT
nR−1

LQN,nxn = 1/2 (20)

Minimization of the equation above with respect to the
coefficient vector,wn, yields

wn = wn−1 +
en

µn + τn

tn

with

R−1

LQN,n =
1

µn

[

R−1

LQN,n−1
−

tntT
n

µn + τn

]

(21)

as in Eq. (14). As the restriction imposed to this algorithm
does not include the coefficient vector,wn, then the only
difference between this algorithm and the algorithm presented
in the subsection II-B is in the choice of theµn.

Applying the restrictionxT
nR−1

LQN,nxn = 1/2 to the update
formula of R−1

LQN,n, gives

xT
n

{

1

µn

[

R−1

LQN,n−1
−

tntT
n

µn + τn

]}

xn = 1/2

or, equivalently,

1

µn

[

τn(µn + τn) − τ2
n

µn + τn

]

= 1/2

Solving the equation above with respect toµn to find the
algorithm step update, yields

µn = τn

III. SIMULATIONS

Simulations were carried out to test convergence of the
algorithms only. As out main goal was to show a different
perspective to adaptation-algorithm development and analysis,
with possible generalization of known algorithms and impro-
vements to their robustness characteristics, our simulations did
not intend to compare algorithms in terms of their conver-
gence speed or misadjustment, as is usually the case. In our
simulations, an unknown system was to be identified by the
adaptive filter and zero-mean white noise was added to the
output signal of the system to form the reference signal. The
signal-to-noise ratio (SNR) was constant and equal to 40dB
for all simulations.

The unknown system was an FIR filter with transfer function
given by

H(z) = 1 + z−1 + z−2 + z−3 + z−4 (22)

normalized to unitary gain.
For each different algorithm, a sufficient order adaptive filter

was used and the simulations were realized until convergence
was reached. The input signal to the unknown system and to
the adaptive filter was the same zero-mean white noise signal.
The MSE (Mean Squared Error) shown in the figures were
obtained after averaging over an ensemble of 100 simulations.
In the simulations, the algorithms will be named after the
section where they were presented.

Learning curves of algorithmsA to C are shown in figure
1, where we adjust the value ofµn to obtain the same
misadjustment for all three algorithms.
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Fig. 1. Learning curves of AlgorithmsA, B andC.

Figure 2 shows an interesting comparison between the
algorithmsE (QN algorithm) andF (LQN algorithm), where
it is possible to observe the effect of the normalization in the
misadjustment. These two algorithms use variable values for
µn, given by

µn =
1

2τn

(23)

and

µn = τn (24)

respectively.
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Fig. 2. Comparison of the misadjustment in MSE between QN algorithm
and Leakage QN algorithm.

IV. CONCLUSIONS AND CRITIQUE

This work presented an alternative tool for the derivation
of adaptation algorithms, via a coefficient-vector minimum-
disturbance approach possibly combined with the squared
a posteriori output error and equality constraints. Although
the minimum-disturbance approach has been used before to
present alternative derivations of the LMS algorithm and its va-
riations, we have showed that a proper choice of the quadratic
norm used to measure thedisturbance of the coefficients can
yield different LS-like or QN-like algorithms. Besides giving
us tools to derive new algorithms, the approach described
herein puts all algorithms under the same framework and
provides us different insight on their expected behavior.

Perhaps the most interesting aspect of the framework just
described is the presentation of an alternative deterministic
objective function for LS-like algorithms that does not in-
cluden instances of the coefficient vector. Although a detail
that might easily pass unnoticed, the alternative deterministic
objective function allows us to optimize with respect to the
convergence factor,µn, without the difficulty imposed by the
implicit dependence of then instances ofwn to µn. Although
the derivation of adaptation algorithms and variable forgetting
factors are subjects that may have already been explored to
exhaustion, still our work offers a different perspective that
may attract and amuse the expert and help the novice.

REFERÊNCIAS

[1] M. L. R. de Campos and A. Antoniou, “A new quasi-newton adaptive
filtering algorithm,” in IEEE Transactions on Circuits and Systems,
November 1997, vol. 44, pp. 924–934.

[2] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implemen-
tation, Kluwer Academic Publishers, Norwell, Massachusetts, 2002.

[3] K. H. Afkhamie, Z.-Q. Luo, and K. M. Wong, “Adaptive linear filtering
using interior point optimization techniques,” inIEEE Transactions on
Signal Processing, June 2000, vol. 48, pp. 1637–1647.

[4] S. Haykin,Adaptive Filter Theory, Prentice Hall, New Jersey, 2nd edition,
1991.

[5] A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons,
2003.

[6] M. L. R. de Campos, P. S. R. Diniz, and A. Antoniou, “Analysis of LMS-
Newton adaptive filtering algorithms with variable convergence factor,”
IEEE Transactions of Signal Processing, vol. 43, pp. 617–627, 1995.


