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Abstract� In this work, we propose a new method for
source separation of post-nonlinear mixtures that brings together
evolutionary-based global search, entropy estimation via order-
statistics and a local search step based on the FastICA algorithm.
The rationale of the proposal is to attempt to obtain ef�cient
and precise solutions using with parsimony the available com-
putational resources. The new proposal was tested in different
scenarios, and, in all cases, we attempted to establish grounds
for comparison with an alternative approach whose optimization
step does not include the local (memetic) search stage. Simulation
results indicate that a good tradeoff between performance and
computational cost was indeed reached.

Keywords� Post-Nonlinear, evolutionary algorithms, Blind
Source separation, high-order statistics.

Resumo� Neste trabalho, propomos um novo método para
separaç�ao de fontes que une uma ferramenta de busca global
baseada em computaç�ao evolutiva, o método de estat�́sticas de
ordem para estimaç�ao de entropia e uma etapa de busca local
conduzida pelo algoritmo FastICA. A idéia subjacente �a proposta
é procurar obter soluç�oes precisas e e�cientes usando de maneira
parcimoniosa os recursos computacionais dispon�́veis. A nova
proposta foi testada em diferentes cenários, e, em todos os
casos, tentamos estabelecer bases para comparaç�ao com uma
abordagem alternativa cujo passo de otimizaç�ao n�ao inclui o
estágio de busca local (ou �memética�). Os resultados obtidos
por meio de simulaç�oes indicam que um bom compromisso entre
desempenho e custo computacional foi, de fato, atingido.

Palavras-Chave� Post-Nonlinear, algoritmos evolutivos,
separaç�ao cega de fontes, high order statistics.

I. INTRODUCTION

The problem of blind source separation (BSS) is related to
the idea of recovering a set of sources from samples that are
mixtures thereof. Until the end of the last decade, the majority
of the proposed techniques [1] were designed to solve the
standard linear and instantaneous mixture problem. However,
some practical applications [4] may exhibit a strong nonlinear
character, which renders the use of this classical framework
impractical: it is thus of paramount relevance to seek a broader
systemic view.
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In the classical linear scenario, it is fairly usual to associate
the solution of a blind source separation problem with the
notion of performing ICA (Independent Component Analysis),
a methodology derived from the �eld of data analysis that can
be seen as an extension of the classical Principal Component
Analysis (PCA). The existence of ef�cient ICA algorithms -
such as the well-known FastICA - is indicative of the degree
of maturity reached insofar as the linear case is concerned;
on the other hand, a direct extension of these ideas to the
nonlinear context must be considered with care, since, in such
a case, there is no guarantee that it will be always possible to
rely solely on the assumption of mutual independence between
sources, which is the very essence of the ICA idea, to carry
out the separation task. Fortunately, there are some classes of
nonlinear mixture models in which the ICA framework still
holds [4], such as that of the so-called Post-Nonlinear (PNL)
models.

Post-Nonlinear models are characterized by the existence
of memoryless monotonic nonlinearities that further distort
linearly-mixed signals. In [4], Taleb and Jutten proposed a
solid paradigm for inverting the action of a PNL mixture
system that was based on the minimization of the mutual
information between the source estimates. Despite its the-
oretical soundness, this approach suffers from two major
practical drawbacks. The �rst one comes from the fact that
the evaluation of the mutual information demands estimation
of the marginal entropies, which may be a rather complex task.
The second one is related to the presence of local minima in
the mutual information-based cost function [9], which poses
a problem to the adaptation of the separating system via
gradient-based algorithms. Therefore, one may conclude that
an effective approach to the PNL problem should be founded
on an optimization technique that contains mechanisms to
avoid convergence to local minima and also on an ef�cient
entropy estimator, since the cost function to be optimized is
built with the aid of the marginal entropies of the recovered
signals.

In accordance with these ideas, our approach is founded
on a twofold basis. In order to estimate the marginal entropy,
one can use an approach based on the so-called order statis-
tics [14]. On the other hand, in order to build an effective
search method, it is possible to combine the explorative
power of evolutionary algorithms (in particular, of an arti�cial
immune system) with the remarkable local search potential
derived from the use of the FastICA algorithm. This new
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method, which can be understood as an extension of the work
reported in [6], is tested under a number of different scenarios.

The work is structured as follows. In Section II, the fun-
damentals of the problem of separating PNL mixtures are
discussed. Section III presents the algorithms and exposes the
proposal for the PNL problem. Simulation results are discussed
in Section IV. And �nally, Section V presents the concluding
remarks.

II. FUNDAMENTALS: BLIND SOURCE SEPARATION OF PNL
MIXTURES

Let s(t) = [s1(t), s2(t), . . . , sN (t)]T denote N mutually
independent sources and x(t) = [x1(t), x2(t), . . . , xN (t)]T be
the N mixtures of the source signals, i.e., x(t) = φ(s(t)).
The aim of a BSS technique is to recover the source signals
based solely on the observed samples of the mixtures and on
a minimal amount of statistical information about the signals.

The function φ can be either a linear or a non-linear func-
tion. In the former case, it is a linear BSS problem, in which
the following model holds: x(t) = As(t), being A the mixing
matrix. Separation can be achieved by multiplying the mixture
vector by a separating matrix W, such that y(t) = Wx(t)
and the elements of y(t) are statistically independent. Ideally,
the separating matrix W will be, up to scaling factors and
permutations, inverse to the mixing matrix A. This approach
is known as Independent Component Analysis (ICA) [1].

On the other hand, the standard BSS problem can be
extended by considering φ as a nonlinear mixture. In such
case, the independence hypothesis, which is the crux of ICA,
may no longer be enough to obtain the original sources: this
makes the idea of restricting the nonlinear mixing model to a
class of separable models very attractive.

The most representative example of a nonlinear separable
mixture model is the PNL (Post-Nonlinear) system (Fig. 1).
The PNL model divides the problem into its linear and nonli-
near parts, wherefore it can be understood as being composed
of two separate but interrelated problems. Mathematically, the
mixture process is given by x(t) = f(As(t)), where f(·) =
[f1(·), f2(·), . . . , fn(·)]T denotes the nonlinearities applied to
each output of the linear mixing stage.

A
f(.)
fn(.)en(t)e(t)

sn(t)s(t)
xn(t)x(t)

Fig. 1. The PNL problem structure

In contrast to the linear model, the PNL one may be very
suitable to describe the situation wherein the sensors are
working in a saturated region [4]. This capability permit us
to envisage some applications. For instance, the PNL model
could be employed to describe MIMO communication systems
with nonlinear ampli�er stages.

Source separation of PNL mixtures can be achieved by
considering the separating system y(t) = Wg(x(t)) [4],

where g(·) = [g1(·), g2(·), . . . , gn(·)]T is a set of nonlinear
functions that must be precisely adjusted in order to invert
the action of the nonlinearity f(·). Interestingly, it has been
shown [4] that, under some mild conditions over A, W, f(·)
and g(·), it is possible to separate the sources in this scenario
relying exclusively on the well known ICA framework. The
relevance of this fact, which cannot be underestimated, is
decisive insofar as our option for this model is concerned.

A. Nonlinearities: Source Separation Based on the Minimiza-
tion of Mutual Information

With Fig. 1 in mind, let us mathematically divide the
problem, as proposed before, in its linear and nonlinear parts,
by calling z(t) = g(x(t)):

y(t) = Wg(x(t)) =
{

y(t) = Wz(t)
z(t) = g(x(t)) (1)

As stated in previous sections, source separation is achieved by
seeking a condition of independence between the components
of the estimated vector y, which means that, to minimize the
mutual information between them, the recovery of the source
signals is a straightforward procedure.

The mutual information between the components of y is
given by:

I(y) =
∑

i
H(yi)−H(y), (2)

where H(y) represents the joint entropy of y and H(yi) is the
entropy of each one of its components. Again, having in mind
Fig. 1 and the main idea of equation (1), one can develop (2)
by applying the entropy transformation law [1]. Therefore, the
following expression can be written down

I(y) =
∑

i
H(yi)−H(x)−log |detW|−E

{
log

∏
i
|g′i(xi)|

}
,

(3)
with g′i(·) denoting the �rst derivative of the nonlinearity gi(·).
Also note that this equation (3) holds only if the functions gi(·)
are invertible. So, when developing the learning algorithm, this
restriction must be taken into account.

By observing Eq. (3) one can see that estimation of the
mutual information relies basically on an accurate estimation
of both H(yi) and H(x). Taking a closer look at these terms,
and considering that our main goal is to minimize Eq.(3)
with respect to the parameters of the separating system, it is
important to note that H(x) does not depend on the parameters
of the separating system and is constant for static mixing
systems. This means that it can be ignored in the learning
process.

This fact restricts our optimization efforts to the term
H(yi), the marginal entropy of the outputs, which is strongly
dependent of the separating system, since it is related to
the output y. More will soon be said about the process of
estimation of these terms.

III. OPT-AINET AND FASTICA
As discussed in the previous section, in the nonlinear BSS

problem, there are two main issues to be addressed: estimation
of mutual information by estimating the marginal entropies



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ �OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

of each output yi and avoidance of local minima. Mutual
information is the cost function to be adopted in this work,
allied with a method based on the so-called order statistics for
estimation of the marginal output entropies. The optimization
process, on the other hand, is something that, in contrast with
the idea presented in [6], is carried out by an evolutionary
algorithm together with a local search technique, the FastICA.

As it was mentioned earlier, it is possible to think of
the PNL mixing process as being composed of two parts.
Analogously, it is natural to apply the same division to the
separating system, by using the evolutionary algorithm to
adapt the parameters of the nonlinearities gi(·) given a certain
matrix W. Moreover FastICA is used to adapt the linear
part of the model, a task to which it is particularly suited.
This strategy of combining a general-purpose search tool with
a remarkable global search potential and a specialized local
search algorithm is in consonance with the notion of memetic
algorithm, a name coined having in mind Richard Dawkins'
concept of meme - a unit of cultural evolution that can exhibit
local re�nement [13]

In simple terms, this puts together three elements: an
evolutionary technique - the arti�cial immune network called
opt-aiNet -, the FastICA algorithm and a method for entropy
estimation based on order statistics - the estimator, it is
important to say, leads to a good tradeoff between accuracy
and complexity. These three elements give rise to a learning
process with two main features:

1) From the standpoint of the opt-aiNet, only the parame-
ters of the nonlinear functions are optimized.

2) Whenever it is necessary to evaluate the �tness of a
given set of parameters, the FastICA algorithm is used
to calculate the matrix W that, together with these
parameters, will be associated with a certain value of
mutual information - the basis of the �tness measure.

Since the ability to perform global search is inherent to
the opt-aiNet and the ef�ciency in performing local search
is something typical of the FastICA, satisfactory results are
expected.

A. The FastICA algorithm
The FastICA [7] is a widespread algorithm applied, as

a rule, in linear BSS problems. The method optimizes a
nonlinear contrast function tailored with the aid of a measure
of the non-Gaussianity of the signals.

This work employs the algorithm described in [8], which
implements an approximate Newton iteration for minimizing
the contrast function. This means that, contrarily to gradient-
based algorithms, there are no step size parameters to choose.

The steps of the algorithm can be summarized as follows:
1) Center the data to make its mean zero
2) Whiten the data to obtain z̄, i.e., transform the centered

data to obtain z̄ such that Rz̄z̄ = E{z̄z̄T } = I . This
can be done using the eigenvalue decomposition of the
original autocorrelation matrix;

3) Since the data have been whitened, the separating matrix
W will be orthogonal. Therefore, choose initial values

for wi (columns of W), each of unit norm. Orthogona-
lize W as in step 4 below

4) For every i, let
wi ← E

{
zg

(
wT

i z
)}− E

{
g′

(
wT

i z
)}

wi

where g (x) = tanh (x)
5) Do a symmetric orthogonalization of W

W ←
(
WWT

)−1/2

W

6) If the algorithm has not converged, go back to step 3

B. Evolutionary Optimization Technique - Opt-ainet
Evolutionary algorithms have been applied, in the last

decade, to a myriad of engineering problems. In this work, they
will be useful due to their remarkable global search potential,
which can be decisive in a multimodal context like the one
that emerges from the use of an information-theoretical cost
function in the Post-Nonlinear scenario. Among a number of
possibilities, the arti�cial immune network was chosen. This
is the opt-aiNet (Optimization version of Arti�cial Immune
Network) [12], which is founded on the combination of notions
like clonal selection and af�nity maturation and the concept
of immune network.

Under the conceptual framework of clonal selection and
af�nity maturation, the immune system is understood as
being composed of cells and molecules that carry receptors
for antigens (disease-causing agents). In simple terms, when
these receptors recognize a given antigen, they are stimulated
to proliferate. During the process, controlled mutation takes
place, and, thereafter, the individuals are subjected to a natural
selection mechanism that tends to preserve the most adapted.

The immune network theory also states that it is possible for
these immune cells and molecules to interact with each other
generating �eigenbehavior� even in the absence of antigens.
This means that invasions could be seen as perturbations of
the status-quo, evolving the immune cells into a new level of
adaptation.

In order for this theory to be ef�ciently applied, there are
some important points that need to be taken into account: 1)
The �tness function, which is the one being optimized, is, in
fact, a measure of af�nity between antibody and antigen; 2)
Each solution corresponds to the information contained in a
given receptor (network cell); 3) The af�nity between cells is
measured by a simple Euclidean distance.

These are the key points when structuring an opt-aiNet
algorithm, which can be seen in more details below:

1) Initialization: randomly create initial network cells;
2) Local search: while the stopping criterion is not met, do:

a) Clonal expansion: for each network cell, determine
its �tness (an objective function to be optimized).
Generate a set of Nc antibodies, named clones,
which are the exact copies of their parent cell;

b) Af�nity maturation: mutate each clone with a rate
that is inversely proportional to the �tness of its
parent antibody, which itself is kept unmutated.
The mutation follows
c′ = c+αN(0, 1), with α = β−1 exp (−f∗) (4)
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where c′ and c represent the mutated and the origi-
nal individual, respectively; β is a free parameter
that controls the decay of the inverse exponential
function, and f∗ is the �tness of an individual. For
each mutated clone, select the one with highest
�tness and calculate the average �tness of the
selected cells;

c) Local convergence: if the average �tness of the
population does not vary signi�cantly from one
iteration to the other, go to the next step; else,
return to Step 2;

3) Network interactions: determine the similarity between
each pair of network antibodies;

4) Network suppression: eliminate all but one of the
network cells whose af�nity with each other is lower
than a pre-speci�ed threshold σs, and determine the
number of remaining cells in the network;

5) Diversity: introduce a number of new randomly genera-
ted cells into the network and return to Step 2.

Step 1 accounts for initialization, then Step 2 implements a
local search applying clonal expansion and af�nity maturation
based on a �tness-dependent mutation operator; Steps 3 and 4
give the algorithm its main characteristic: an �immune network
character� by evolving the antibodies and selecting the �most
adapted� ones, thus restricting the size of the population; and
at last, Step 5 augments the diversity of the population by
adding new features into it. The combination of these stages
produces an algorithm that allies a good balance between
exploration and exploitation with the notion of seeking a
parsimonious use of the available resources.

C. Entropy Estimation using Order Statistics

Order statistics has an historical of successful implemen-
tation in BSS problems throughout the literature [14]. As
mentioned before, this is an attractive method due to its low
computational complexity, when compared to other methods
that use density estimation, for example. However, the use of
order statistics in entropy estimation does not easily render
gradient-based algorithms for blind source separation [14],
motivating the use of different optimization tools, like the opt-
aiNet algorithm presented in section III-B.

Aiming to introduce the notion of order statistics, one
may consider a set of N samples of the random variable Y
organized as

y(1:T ) ≤ y(2:T ) ≤ · · · ≤ y(T :T ). (5)

The so-called kth order statistic, denoted by y(r:T ), is nothing
more than the rth value, in ascending order, among the T
available samples [14].

In order to clarify the applicability of order statistics to
the problem of entropy estimation, let us rewrite the entropy
of a random variable Y in terms of its quantile function
QY (u) = inf {y ∈ < : P (Y ≤ y) ≥ u}, which is, in fact, the
complement of the cumulative distribution function FY (y) =
P (Y ≤ y). Using this de�nition, it is possible to show

that [14]

H (y) =
∫ ∞

−∞
fY (τ) log Q

′
Y [FY (τ)] dτ =

∫ 1

0

log Q′Y (u)du,

(6)
where fY (y) and Q

′
Y (y) denote the probability density func-

tion and the derivative of the quantile function of y, respecti-
vely.

For practical reasons, in order to evaluate the entropy of a
given signal yi, it is necessary to obtain a discretized form of
(6), which is given by

H (yi) ≈
L∑

k=2

log
[
QYi (uk)−QYi (uk−1)

uk − uk−1

]
uk − uk−1

uL − u1
(7)

with {u1, u2, . . . , uL} denoting a set of increasing number in
the interval [0, 1].

The link between entropy estimation and order statistics
lies in the close relationship between order statistics and
the quantile function. In fact, an estimate of the value of
QY ( k

T+1 ), called empirical quantile function, is given by kth
order statistic y(k:T ) [14]. Therefore, one can approximate
the value of QY (·) in Eq. (7) by QYi (u) ≈ y(k:T ), for k
such that k

T+1 is the closest point to u. This simpli�cation
results in a fast algorithm for entropy estimation, which is a
desirable characteristic when dealing with optimization using
evolutionary algorithms.

IV. SIMULATION RESULTS

In order to illustrate the effectiveness of the proposed
methodology, this section provides the simulation results from
two different scenarios, with 2 and 3 sources, respectively.

A. First scenario
The �rst PNL-based scenario is composed of two uniformly

distributed sources (between [−1, 1]) mixed in accordance with
the following model:

A =
[

1 0.6
0.5 1

]
and f1(e1) = tanh(2e1)

f2(e2) = 2 5
√

e2
. (8)

From the expression of the PNL model output: y(t) =
Wg(x(t)), it is observable that W is the linear square matrix
that needs to be optimized. Furthermore, the nonlinear function
g(·) is ideally the inverse of f(·), and is modeled as a polyno-
mial of order 5 with odd powers: gi(xi) = ax5

i + bx3
i + cxi.

Since a crucial requirement of the PNL model is that each
function be monotonic, the coef�cients of each polynomial
are restricted to be positive.

Since the main novelty of this paper is the introduction of
a local search term in the optimization process (wherefore
our proposal will receive the epithet �memetic�), our results
shall be compared with those obtained with a method based
solely on an evolutionary algorithm [6] (this method will
be referred to as �standard opt-aiNet method�). The tests
concerning the standard method involve 10 experiments run
with the following parameters: N0 = 5, Nc = 5, β = 50,
σs = 3. For the memetic algorithm, the same number of
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TABLE I
RESULTS RELATED TO CONVERGENCE AND SIMULATION TIME IN THE

FIRST SCENARIO.

opt-aiNet memetic
Convergence speed (iterations)∗ 10500 1550

Time spent per iteration (ms) 80 194
Average time to converge (min) 14 3.5

∗ Average number of iterations spent to reach the algorithm
convergence.

TABLE II
AVERAGE MSE RESULTS FOR THE FIRST SCENARIO.

MSE (×10−3) ŝ1 ŝ2

opt-aiNet 4.7781 2.0373
memetic 0.5753 0.1149

experiments is carried out, but now using the parameters:
N0 = 10, Nc = 7, β = 60, σs = 3. Considering that
the search space for the opt-aiNet is much larger than that
associated with the memetic algorithm, the maximum number
of interactions for the �rst algorithm was set to 15000, and to
3000 interactions for the second.

(a) Mixed signals.

(b) Recovered signals FastICA.

Fig. 2. Observed and recovered signals in the �rst scenario.

The average speed, the average time spent per iteration1 and
the average time to converge for both algorithms are depicted
in Tab. I. In addition to that, the resulting mean-square errors
(MSE) between each source and their estimates are shown in
Tab.II.

Clearly, the use of the FastICA algorithm as a local search
tool greatly improved the results obtained with the standard

1All the simulations were performed in the same machine, an Athlon64
3000+ with 1GB RAM

opt-aiNet method. It can be noticed that the memetic algorithm
was able to reduce the number of iterations to converge,
but each iteration time was increased due to the FastICA
algorithm. Nevertheless, the total time spent by the new
algorithm is 4 times smaller than the original proposal.

As far as the estimation error is concerned, it is observed
that the memetic approach led to an improvement in the quality
of the solution. Due to the local search capability introduced
by the FastICA, the new method is able to re�ne the solution
obtained solely with the opt-aiNet algorithm. Fig. 2 shows
the mixed and recovered signals using the memetic approach.
From this �gure, it becomes clear that the separating system
was able to restore the uniformly distributed sources in this
situation.

B. Second scenario

A =




1 0.6 0.5
0.5 1 0.4
0.4 0.6 1


 and

f1(e1) = 2 3
√

e1

f2(e2) = 2 3
√

e2

f3(e3) = 2 3
√

e3

.

Using the same approach as in the �rst scenario, the opt-
aiNet parameters were set to N0 = 10, Nc = 5, β = 50,
σs = 3. As in the previous case, the maximum number of
iterations for the opt-aiNet and the memetic algorithms were
set to 15000 and 3000, respectively.

Once again, one can see in Tab. III that the memetic
technique provided a signi�cant decrease in the convergence
time, showing that the approach with a local search tool is
very effective. In this case, the reduction in the convergence
time is even more pronounced than in the �rst scenario. Tab.
IV shows the estimation error obtained with both methods,
also indicating a good performance of the new proposal.

TABLE III
RESULTS RELATED TO CONVERGENCE AND SIMULATION TIME IN THE

FIRST SCENARIO.

opt-aiNet memetic
Convergence speed (iterations)∗ 13750 950

Time spent per iteration (ms) 21 28
Average time to converge (min) 48 8

∗ Average number of iterations spent to reach the algorithm
convergence.

TABLE IV
AVERAGE MSE RESULTS FOR THE SECOND SCENARIO.

MSE (×10−3) ŝ1 ŝ2 ŝ3

opt-aiNet 7.8529 0.4387 0.2187
memetic 1.0332 2.3466 6.0278

V. FINAL COMMENTS AND CONCLUSIONS

When dealing with nonlinear BSS problems, researchers
usually face two problems:1) avoidance of local convergence;
and 2) the need for an ef�cient method for evaluating the
�tness function. This work proposes a method that is capable
of dealing well with these requirements (with the aid of an



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ �OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

arti�cial immune network and of the order-statistics estimation
paradigm), and that, furthermore, contains a FastICA-based
local search step that signi�cantly enhances the convergence
performance. This method suits nicely the PNL - Post-
NonLinear - systemic context, because it is possible to think
of the separating system as being formed by stages that may
be individually adapted using the global and local search
algorithms. The simulations were analyzed having in mind
the idea of establishing satisfactory grounds for comparison
between this technique and the standard opt-aiNet algorithm
proposed in [6]. The results show that the novel (memetic)
solution is able to reach a �ne tradeoff between performance,
speed of convergence and computational effort, which leads
us to the conclusion that the idea of allying an evolutionary
algorithm to a FastICA-based re�nement stage may be decisive
in the process of implementing practical and ef�cient nonlinear
separating systems.
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