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Inverse QRD BEACON Algorithm

José A. Apolinario Jr., Mohammad Mobien Shoaib, and St&f&erner

Resume—Este artigo deriva a versio usando decompos&p
QR inversa (IQRD) do algoritmo Bounding Ellipsoidal Adaptive
CONstrained least-square¢BEACON). O algoritmo BEACON
pertencea familia de algoritmos conhecida comaet-membership
filtering (SMF) que apresenta atualiza8o esparsa no tempo e
boa capacidade de rastreamento. A caracteristica proeménte de
atualizacdo esparsa em SMF vem de uma restrép predefinida

quanto aos limites do erro de saida especificada no projeto

do filtro. Como uma conseqi&ncia, um conjunto de estimativas
validas de vetores de coeficientes se conforn@ar a restricao ao

invés de uma estimativa pontual. A escolha da restrép ao erro

aparece naturalmente em warias aplicagdes de processamento
de sinais, por exemplo, quando a ordem do modelo do &

conhecida ou a dishncia entre pontos de uma consteldp é

conhecida a priori num equalizador do tipo decision-feedback
O novo algoritmo , o IQRD-BEACON, implementa a mesma
funcdo objetivo que o BRACON e, portanto, apresentadi, em

precisdo infinita, resultados identicos em termos de curvas de
aprendizagem e fregi&ncia de atualiza@o. A vantagem do IQRD-

BEACON vem com o uso de rotaes numericamente estveis nas

equag@es de atualizago, evitando pois 0 uso de recui®s mal-

condicionadas associadas ao emprego do lema de in&ssde

matrizes no BEACON convencional. Nossas reivindicdgs com

respeito ao desempenho do IQRD-BEACON & verificadas por

meio de simula@es em computador.

Palavras-Chave-Filtragem adaptativa, Filtragem  Set-
Membership filtering, Algoritmos com decomposi@o QR.

Abstract—This paper derives the inverse QR-decomposition
(IQRD) version of the Bounding Ellipsoidal Adaptive CONSstrai-
ned least-squares (BEACON) algorithm. The BEACON algorithm
belongs to the family of set-membership filtering (SMF) alge
rithms that feature sparse updating in time and good tracking
capability. The prominent characteristic of sparse updatng in
SMF arises from a predefined bounded error-constraint spedied
in the filter design. As a consequence, a set of valid coeffidie
vector estimates will conform to the constraint rather than a
single point-estimate. The choice of the error constraint ppears
naturally in various signal processing applications, e.g.when
model-order is unknown or distance between constellation @nts
is a priori known in a decision-feedback equalizer. The new
algorithm, the IQRD-BEACON, implements the same objective
function as BEACON and will, therefore, in infinite-precision
environment present identical results in terms of learningcurves
and update frequency. The advantage of the IQRD-BEACON
comes with the use of numerically stable rotations in the updte
equations, thus avoiding the use of the ill-conditioned raarsions
associated with the matrix-inversion lemma employed in the
conventional BEACON. Our claims regarding the performanceof
the IQRD-BEACON are verified through computer simulations.
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RLS algorithm.
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I. INTRODUCTION

Set-membership filtering (SMF) algorithms may be consi-
dered attractive options for a wide range of adaptive filigri
applications. This is due to their reduced average comiputat
nal complexity when compared to their conventional LMS and
RLS counterparts. In addition, they feature fast convergen
and good tracking capability. In SMF algorithms, coeffitien
vector updating is not performed unless the output errohef t
filter is larger than a certain threshold. This sparse updati
in time (or data-selectivity) enables efficient usage ofrstia
resources when multiple adaptation processes are handled
simultaneously, or reduced power consumption is desired.

The SMF concept has been successfully employed in a
number of algorithms that minimize the MSE (Mean Squared
Error) by changing the respective objective function suwt t
a bound is specified on the magnitude of error, e.g., Set-
membership Normalized Least Mean Square (SM-NLMS) [1]
and the Set-membership Affine Projection Algorithm (SM-
APA) [2]. The same idea can also be extended to another ob-
jective function including th&\eighted Least Squares used by
the RLS Recursive Least Squares) family of algorithms [3].

In [4], a recursive algorithm named BEACON was derived
according to an optimal bounding ellipsoid (OBE) criterion
The BEACON algorithm was shown to feature a highly
selective update mechanism (approximately 5% of the time)
and an ability to track fast time-varying conditions.

Although other OBE algorithms were implemented using
Givens rotations [3], [5], [4], this paper implements a QR
decomposition version of the BEACON [4] algorithm based
on the inverse Cholesky factor.

This paper is organized as follows: in Section Il, basic
concepts concerning the SMF algorithms are reviewed as
well as the basic derivation of the BEACON algorithm. The
inverse (and the basic equations for a direct) QRD-WLS
version of the BEACON algorithm is derived in Section IIl.
Simulation results are detailed in Section IV and conclusio
are summarized in Section V.

Il. SET MEMBERSHIP FILTERING AND THEBEACON

Mean-square error (MSE) based adaptive filtering algo-
rithms such as the Least-Mean-Square (LMS) algorithm or the
Affine Projection Algorithm (APA) [6] search, at time instan
k, a coefficient vectow that minimizesE[e?(k)], where the
output estimation error is given by

e(k) = d(k) — w”

— w2 (k) (1)

with d(k) being the reference signal andk) the input-signal
vector.

In set-membership filtering (SMF), an upper bound of the
output estimation error is specified such that all coefficien
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vectors satisfying the error constraint are consideresliéa
The resulting adaptation algorithms are data-selectith @i
considerably reduced average computational complexity.

As an example, the Set-Membership Normalized LMS (SM-
NLMS) algorithm proposed in [1], updates the coefficient
vector w(k — 1) to w(k) only if the a priori output error
exceeds a certain threshojd Let S denote the space model,
i.e., (x,d) € S, and© the set of all possible vectors that
result in an error with a norm not exceedimngThe feasibility
set © is defined as the set of all filter vectoxs satisfying the
error constraint for all possible input-desired data paird is
given by

o=

(T,d)esS

{we RY - jd—wTx| < v} (2)

The set of allw satisfying the error bound, obtained after
training with the k-th input-desired data pair{x(k),d(k)},

denoted byH(k), is called theconstraint set and can be Fig. 1. First iteration of the OBE procedure.

expressed as
H(k) = {w e RY: |d(k) —w'z(k)| <~} (3)

The exact membership set ¢(k) = NF_ H(4) is the superset
of the feasibility set and is defined as the minimal set egém

recursions for the BEACON algorithm are quite similar in
form with the equations of the conventional RLS algorithm
6‘and are presented in Table |, see [4] for the details of the

for © at timek. Also note that the feasibility s€? lies in the derivation.
constraint set(k). TABEL |
The objective is to estimate the membership sét) at THE BEACON ALGORITHM.
each instant: in order to find the weightsv satisfying the
bound. The membership set(k) forms an N-dimensional _ BEACON
convex polytope, which is not easily computed. The problem | 'nitialize v, S(=1) = 5 I, andw(-1)
is greatly simplified if a tightly outer bounded ellipsoid is f{or ’2(:)0_’1&('5 T — ()
estimated instead. The ellipsoid is defined as if e (k)| < ~
. R then % Do not hi ng:
er ={we RN . (w— wk)TRk(w —wy) <o}t (@) A= 0o S(k) = S(k —1)

whereo, > 0 and Ry, is a deterministic weighted autocor-
relation matrix of the input signal. Using this, it is podsib
to define an ellipsoid, as the set of all vectow such that
{w e RN (w — wo)T Ry(w — 1g) < 00} wheredw, is the
first estimate ofw, and Ry, is the first estimate ofR.

Note that, if we initialize Ry = I, the ellipsoideq will
actually become a circle. Moreover, fér= 1, the ellipsoid
1 is shown as in Fig. 1 wherg; D {eg NH(1)}.

The basic idea of OBE algorithms, as seen in [4] is to outer
bound the membership set at each instant by a mathematically
tractable ellipsoid:

w(k) =wk —1)
else% Updat e the BEACON Al g. :
A, — 1 (\e(k)\ _ 1)
k= 2T (k)S(k—1)x (k) ¥
(k) = A S(k=1D)®(k)

T 142 x2T (k) S(k—1)x(k)
S(k) =Sk —1) — r(k)xT (k)S(k — 1)
w(k) = wk — 1)+ e(k)x(k)

I1l. THEINVERSEQRD-WLS BEACON

Comparing the BEACON algorithm in Table | with the

ex D {ek—1 NH(k)} D (k). (5)

The process is carried out given an initial ellipsaigl =
{we RN : (w—wo)"S™(0)(w —wo) <00} with some
properly initialized estimatesv, and S(0) = R;'; the
algorithm then starts a recursive procedure for computieg t
sequence of ellipsoids.

Assuming that we have, at timé — 1, all data pairs
(x(0),d(0)) to (x(k — 1),d(k — 1)), the updated coeffici-
ent vector of the BEACON algorithm is obtained from the
minimization of a cost functioV;_;(w) = (w — w(k —
INTS Yk — 1)(w — w(k — 1)) — ox_1 subject to|d(k) —

conventional RLS algorithm, it can be seen that its coefiicie
vector can be expressed as(k) =
R (k) or

S(k)p(k), S(k) =

-1

Rk)

where R(k) = R(k — 1) + Mz (k)xT (k) andp(k) = p(k —

wlz(k)|> < 4% which implies thatw(k) € H(k). The 1)+ \d(k)z(k).
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N

This means that the BEACON algorithm minimizes the(k) = [[;_, cosb;(k), 6;(k) are the rotation angles iQ,(k);
following objective function(k) Fk) = VXU T (B)x(k);
k E(k)=U""(U" (k- 1);
(k) = Nie?(i) = e (k)e(k) = [le(k)]? @) 9k) =-—(ka(k) = —v(kwxm.
i=0 a(k)
where The Inverse QRD-RLS algorithm [7], instead, updates the
e(k) = d(k) — X (k)w(k) (8) inverse of the Cholesky factor. In order to derive the ingers

RD-RLS algorithm we start from the basic update equation

with d(k) being the weighted desired or reference signgk the deterministic weighted autocorrelation matrix anitev
vector andX (k) the input data matrix, defined as follows. it jn terms of the Cholesky factor matrix.

/\V )\kdd((kk) y UT (k) U(k) = UL (k — 1)Uk — 1) + Mpx(k)x" (k) (15)
vV Ak—1d(k —
dk) = ) (9) Taking the inverse of both sides and using the matrix in-
: version lemma 4 + [BCD]™! = A=! — A='B[BA™'D +
VAod(0) C~1171DA~1), the update for the inverse Cholesky factor is
Vet (k) obtained.
VA1t (k- 1)
X(k) - : (10) vt Ty =vtk-nuTmw-1
' VIRU Tk = DU T (b — Dx(k)xT (k) U (e — DU~ T (k — 1) /X, (16)
\/EwT (0) - xT () U1 (k — 1)/ X/ U~ T (k — 1)x(k) + 1 :

The premultiplication of (8) by the orthogonal matrix (reUsing the definiton of a(k), defining wu(k) =
presenting an overall triangularization process via eteary —~ (k) U *(k — 1)U*T(l~c — Dx(k), and vy(k) =
Givens rotations matrice€) (k) triangularizesX (k) without ——————, the update equation becomes

. . 1+aT (k)a(k)
affecting the cost function.

Ul UTk)=UHk—1DU T(k—1) —uk)ul (k)

17)
Q(k)e(k) = [ € (k) ] = { da, (K) ] - { 9 ]w(k) The updating equation for the new algorithm, the IQRD-
eq (k) dg, (k) U(k) ! . .
(11) WLS BEACON, is obtained following from the QRD-RLS

where U (k) is the Cholesky factor ofX” (k)X (k), i.e., expression and Eq (17):
product U” (k)U (k) corresponds toX” (k)X (k), and the T (k) o”
subscriptsl and?2 indicate the first: — N and the lastV + 1 { U (k) ] = Qy(k) [ Uk —1) } (18)
components of the vector, respectively.

The weighted-square error (or cost function) can be mininie is observed that with the updating d& 7 (k) we can
zed by choosingv (k) such that the termd,, (k) — U (k)w(k) compute vectoa(k), and that froma (k) we can obtain matrix
is zero. The tap-weight coefficients, for the case of a diregl, (k).
QRD-WLS BEACON algorithm (the QRD-based algorithm |n order to have all necessary equations, the vector ugglatin
that updated/ (k) from U (k — 1) as seen in the following), equation is obtained from the BEACON algorithm by realizing
could be computed using the well-known back-substitutiahat vectors(k) corresponds to—v/Xzy(k)u(k):
procedure.

Using the fact thaQ (k) is orthogonal and the definition of w(k) = w(k —1) = e(k)y(k) v/ Au(k). (19)
X (k), we can write the produd® (k)X (k) as The new algorithm is detailed in Table II.
T o T O
QR [ 5 artey [ adts ][Wi’“J:[ }
[ Q k-1 } R Sl A A U(k) V. SIMULATION RESULTS
I X (k) In this section, we present the results of an experiment

_ _ _ (12)  carried out in order to show the performance of the proposed
such that the following fixed order expression to update thggorithm in a system identification scenario. We used the
(here assumed lower triangular matrix) Cholesky factor [§RD-wLS BEACON algorithm to identify an unknown plant

obtained. wopr (k) = 6(k)+0.95(k — 1) — 0.85(k —2) +0.16(k — 3) +
07 V3T (k) 0.66(k—4)+0.20(k—5)—0.46(k—6)40.28 (k—7)—0.16 (k—8).
[ U(k) } = Qo(k) { U(k—-1) ] (13)  We have usedv = 9 (no undermodeling) and a colored input

nal produced by passing Gaussian white noise through an
filter with system function given bxm and
normalizing its variance (such that = 1). The observation

(k) gT(k) noise was white noise with2 such that theSNR was set
Qu(h) - | } (14)

f(k)  E(k) . ~ _ N
INoting thatS(k—1) = R ' (k—1) = Uk — 1)U T(k — 1), we
where: replace it in the definition of vectak(k), and simplify.

The last expression shows the update of the Cholesky facﬁ(lg
U (k). Matrix Q,(k) can be partitioned as
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TABEL Il
THE NEW ALGORITHM.

IQRD-WLS BEACON

Initialization:
~ (see [8] for some hints)
U-T(0) = o?shankel ([ zeros(N-1,1); 1]);
for k=1,2,...
{ % otaining the a priori
e(k) = d(k) — wT (k — 1)x(k)
% Checking the error:
if Je(k)] < v
then % Do not hi ng:
U Tk)y=UT(k-1)
w(k) =wk—1)
else% Updat e the BEACON | QRD- WS:
a(k) =U"T(k —1)a(k)
A = (1B 1) /aT (k)a(k)
% bt ai ni ng vector a(k):
a(k) = Vara(k)
% bt ai ning Qy(k) and ~(k):

{ (k) } :Qe(’f){ —al(k> }

% bt ai ni ng w(k) and updating U7 (k):
ul'(k) | _ o”
U*T(k) - Qe(k) U*T(k _ 1)

% Updating the coefficient vector:

w(k) = w(k — 1) — e(k)y(k)vAru(k)

error:

MSEdB

AL =0=

0 T T

Fig. 2.

Learning curves (RLS and BEACON)

RLS <
BEACON
= = = |QR-RLS .
= = = |QR-BEACON

= = = MSE 1
min

300 400 500

Learning curves of BEACON and RLS algorithms.

important since it allows the existence of this version;same
does not occur when one attempts to derive a faA())
version for this algorithm. The main difficulty for obtaimgn

a fast version of the proposed algorithm raises from the fact
that the input data matrix as seen in (12) no longer presents
a shift structure as in the case of the QRD-RLS algorithms.

to 80dB. In thi i t, dnaise threshold v = ) T . .
° n fhis experiment, we usednaise thresno'd 7y Further investigation is required to obtain a Fast QRD-WLS

/402 and the results were averaged over000 independent

runs.

The learning curve of the proposed algorithm,
to the BEACON algorithm also implemented, is depictea
in Fig. 2. The conventional RLS algorithm and the IQRD-
RLS algorithm, with a forgetting factok = 0.99, were also
implemented for comparison and, as expected, also prese
identical learning curves. It is worth mentioning that iteal
curves are obtained only if (a careful) equivalent inigation

BEACON algorithm as well as to investigate the stabilityhu t
identiceﬂrOposed algorithm compared to the conventional BEACON
Igorithm, that is, to check if the innovation check and theet
varying lambda of the new algorithm has (or not) altered the
attractive numerical properties of the original Givensation
rRgsed Inverse QRD-RLS algorithm.
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of convergence; nevertheless, a slightly higher misadtjest

is the price for this better performance. As any other set-
membership algorithm, the BEACON can trade off rate of1]
updating with misadjustment. Certainly, a smaller value of

~ would cause a lower misadjustment with the cost of an

increase in the number of updates. In this experiment, the]
proposed algorithm was updated approximatelys% of the
iterations. 3]

V. CONCLUSIONS [4]

In this paper, we have proposed a new algorithm corres-
ponding to the Inverse QRD version of theunding ellipsoi- 5]
dal adaptive constrained least-squares (BEACON) algorithm.
The proposed algorithm, once minimizing the same objective
function and assumed properly initialized, presents antidal  [®]
learning curve when compared to the conventional BEACON;
algorithm.

All expressions for this new algorithm were derived and
resulted to be coherent with the case of non updating; this g
so because, for this cask, = 0 and the main variable of the
algorithm keeps unaltered/ " (k) = U7 (k — 1). This is
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