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Abstract— In this article we formulate a new Radio Resource
Allocation problem in Orthogonal Frequency Division Multi ple
Access systems. The formulated problem has the objective of
maximizing the number of User Equipments with fulfilled rate
requirements. In order to solve the conceived problem, we use
Genetic Algorithms in its modeling. The gains of the solution to
this problem are shown in simulation results.
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Resumo— Neste artigo ńos formulamos um novo problema de
Alocação de Recursos de Ŕadio em sistemas de Acesso Múltiplo
por Divisão de Freqûencia Ortogonal. O problema formulado tem
o objetivo de maximizar o número de usúarios satisfeitos com
seus requerimentos de taxa. Para resolver este problema, nós
usamos Algoritmos Geńeticos em sua modelagem. Os ganhos da
soluç̃ao deste problema s̃ao mostrados por meios de resultados
de simulaç̃ao computacional.

Palavras-Chave— OFDMA, Algoritmo Gen ético, RRA e
satisfaç̃ao do usúario.

I. I NTRODUCTION

The main standard bodies are planning to use Orthogonal
Frequency Division Multiple Access (OFDMA) as the multiple
access scheme of future wireless networks such as Long
Term Evolution (LTE) and Worldwide Interoperability for
Microwave Access (WiMAX). The reasons for this are
several. Firstly, these schemes can combat multipath fading
problems caused by multiple copies of the transmitted signal
which arrives at the receiver with different time delays and
attenuations by using narrowband subcarriers that experience
approximately flat fading channels. Secondly, because of the
smaller frequency spacing between subcarriers allowed by the
orthogonality, these schemes have a high spectral efficiency.
Finally, OFDMA systems are scalable to high data rates and
offer many possibilities of which Radio Resource Allocation
(RRA) algorithms take advantage.

OFDMA systems offer a new dimension in diversity to RRA
algorithms: the frequency diversity. Due to channel selectivity,
it is likely that a given User Equipment (UE) can have some
subcarriers in bad and good channel state simultaneously.
Therefore, the resource allocator can increase the system
efficiency even more by assigning only the good subcarriers
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to this UE. Besides, in point-to-multipoint connections,
opportunistic RRA can benefit from the multi-user diversity.

Many RRA problems have been formulated in the literature
in order to fulfill the UE requirements while utilizing the
OFDMA system resources efficiently in downlink [1]. The
Rate Maximization (RM) problem intends to allocate resources
in such a way as to maximize the system spectral efficiency.
The RM problem has a simple solution which consists in
allocating the subcarriers to the UEs in better channel state
in each subcarrier and performing water filling algorithms to
distribute power among subcarriers. However the solution to
this problem can cause starvation of UEs with poor channel
conditions. The Margin Adaptive (MA) problem has the
objective of minimizing the total used power constrained to
UE rate requirements subjected to a constant power budget.
Another problem is the Rate Adaptive (RA) problem which
aims at maximizing the minimum UE data rate. These two
other problems are claimed to be NP-complete problems and
no efficient optimal solution are known [1].

Combinatorial problems like MA and RA cannot be solved
in a optimal way analytically. One of the options is the
brute force enumeration, but this method is impractical.
Other works have aimed at solving these problems in a
suboptimal way [2], [3]. One interesting option is the
use of heuristic algorithms like the Genetic Algorithm
(GA). The employment of evolutionary algorithms in the
telecommunications branch has risen since 1992. Some of
the earliest evolutionary telecommunications papers focused
on areas like network dimensioning, routing, call admission
and frequency assignment (see e.g. [4] for a survey).
Nowadays, the evolutionary concepts and biological-inspired
approaches are applied in most of telecommunications
areas. Features provided by GAs, such as search diversity,
effectiveness and robustness, are important for combinatorial
optimization problems as those found in OFDMA. GAs have
proved to be effective because of their ability to exploit
favorable characteristics of previous attempts to construct
better solutions. The robustness lies in their power to deal
with discontinuities and large multi-modal noisy search spaces
[5]. GA has been utilized to solve problems in OFDMA
systems in [6] where it considers the problem of total power
minimization needed for an Orthogonal Frequency Division
Multiplexing (OFDM) symbol, subject to Quality of Service
(QoS) restrictions. The QoS restrictions refer to a maximum
target Bit Error Rate (BER) and the number of bits of each
UE that need to be transmitted in an OFDM symbol.

In our paper, we propose a new RRA problem in the
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OFDMA context so that the number of UEs with fulfilled
bit rate requirements are maximized. Furthermore, we provide
the modeling to solve the problem utilizing GA although
other heuristic tools could be used for the same problem.
The remainder of the paper is organized as follows. Section II
presents the system modeling. Section III shows the problem
formulation and the modeling utilized to solve the problem
with GA, and also describes the algorithms that are used for
comparison. Finally in sections IV and V, the numerical results
achieved by simulation and the conclusions are provided,
respectively.

II. SYSTEM MODELING

In the modeled OFDMA system, in order to overcome the
frequency selective fading, the bandwidth of each subcarrier is
chosen to be sufficiently smaller than the coherence bandwidth
of the channel. Therefore, subcarriers are modeled asN flat
Rayleigh fading channels correlated in time and frequency.

The subcarriers are shared byJ UEs using a Non-real time
(NRT) service characterized by a minimum rate requirement
Rreq which has to be fulfilled at each Transmission Time
Interval (TTI). It is assumed that the UEs have always a full
data buffer. In addition, a fluid model is assumed for the traffic,
i.e., the UE data is completely divisible. The base station is
assumed to have knowledge of the channel gainhj,n of each
UE j in each subcarriern.

The Signal-to-Noise Ratio (SNR)γj,n of UE j in subcarrier
n is defined as

γj,n =
hj,n · p

σ2
, (1)

wherep is the subcarrier transmit power, that is considered
equal in all subcarriers, andσ2 is the Additive White Gaussian
Noise (AWGN) noise power.

The transmit data rateRj,n in each subcarrier is given by

Rj,n = w · log
2

(

1 +
γj,n

Γ

)

, (2)

wherew is the subcarrier bandwidth and

Γ = −
ln(5 · BER)

1.5
, (3)

is the SNR gap for the system BER requirements [7].
To represent the finite Modulation and Coding Schemes

(MCSs) of the system, the capacity curve was sampled in
the M-Quadrature Amplitude Modulation (QAM) modulations
(M = 2m; m = 1, 2, 3, 4, 5 and6) as can be seen in Fig. 1.
Therefore, the set of possible rates in each subcarrier is not
any more continuous and has only 6 valuesRm

j,n, one for each
MCS levelm.

The allocated data rate for each UEj is designed byrj and
depends on the assignment vectorx whose integer elementsxn

(n = 1, 2, . . . , N) represent the UE assigned to the subcarrier
n.

Once the subcarrier and bit allocation are defined by the
scheduler, it is assumed that this information is sent via a
separate control channel.

8 10 12 14 16 18 20 22 24 26 28 30
0 

10

20

30

40

50

60

70

80

90

100

SNR [dB]

D
at

a
ra

te
R

m j
,n

[k
b

p
s]

Fig. 1. Link adaptation curve of the subcarrier.

III. A LGORITHM DESCRIPTION

In order to compare with the performance of the proposed
solution, classical RRA algorithms were used in this work.
The classical algorithms are: Rate Maximization and Rate
Adaptive. The description of those algorithms is presented
in the following, together with a description of the proposed
solution using GA. In order to evaluate only the subcarrier
assignment schemes, the transmission power is assumed equal
in all subcarriers in all solutions presented in the following,
although schemes that also involve power allocation is possible
in the presented algorithms.

A. Rate Maximization

One of the first problems studied in OFDMA RRA was the
RM. The objective of this algorithm is to maximize the sum of
the UE data rates subject to the constraint that one subcarrier
cannot be shared by more than one UE at the same time. The
problem formulation is presented in equation (4).

max
x

∑

j

rj(x). (4)

The solution to this problem is very simple. Each subcarrier
has to be assigned to the UE that has the highest channel gain
on it. In spite of its simple solution, the RM problem is not
suitable when one considers fairness issues. This algorithm
can cause starvation of UEs at cell edge due to high path loss.
This algorithm will be used to give the upper bound of total
system data rate [1].

B. Rate Adaptive

In the RA approach, the objective is to maximize the
lowest UE throughput. The problem formulation is presented
in equation (5).

max
x

ǫ

subject to

rj(x) ≥ ǫ ∀j.

(5)
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The RA problem belongs to the group of combinatorial
programming ones that have no immediate solution. Rheeet al.
proposed a sub-optimal solution to the RA problem in [3] and
concluded that its performance is comparable to the optimal
one. The solution provided in the paper will be used here for
the purpose of comparisons in our simulations.

C. Proposed Framework

1) Problem Formulation: We formulate a problem where
the objective is to maximize the number of UEs satisfied
with their respective transmission rates, where each subcarrier
is allocated to only one UE. If the rate requirement
for the satisfaction of the UEs isRreq and rj is the
obtained transmission rate by the UEj, this problem can be
mathematically formulated as:

max
x

∑

∀j

U(rj(x) − Rreq). (6)

The optimization criterion or utility function of this
formulation is composed by a sum of unit step functions
U(rj−Rreq) where each one refers to one UE and assumes the
value 1 if the UEj is satisfied with the obtained transmission
rate rj , that is rj > Rreq or 0, otherwise (rj < Rreq).
Therefore, this utility function implies on the maximization
of the number of satisfied UEs. As the formulation (6) is a
combinatorial problem, we use Genetic Algorithms (GAs) to
solve it.

2) Modeling and Solution Using Genetic Algorithm:
GAs are optimization algorithms inspired on the theory of
natural selection. They combine the principle of survival of
the fittest individual with randomized information exchange
(reproduction) to exploit past information and speculate on
new search points with expected improved performance. The
main advantages of GAs in relation to traditional optimization
methods (like calculus-based approaches) are its robustness,
efficiency, and flexibility.

GAs operate on a set of elements called population.
Each element, called individual or chromosome represents a
possible solution. The chromosomes are codified according
to the problem nature. In this case, a chromosome is an
integer string whose length is the number of subcarriersN

to be assigned toJ UEs and each integer number in the
string corresponds to a UE of the set{1, 2, 3, . . . , J}. Fig. 2
illustrates this codification.

Subcarrier 1 Subcarrier 2 Subcarrier 3 Subcarrier 4 ... SubcarrierN -2 SubcarrierN -1 SubcarrierN

UE 4 UE 7 UE 1 UE J UE 7 UE 2 UE 4

Fig. 2. Structure of the chromosome.

GAs use fitness functions in order to guide the optimization
process. These fitness functions are closely related to the
objective to be optimized. The higher the fitness of a
chromosome, the higher the quality of the solution represented
by it. In this problem, the following fitness function is used:

∑

∀j

U(rj(x) − Rreq) +
Rtotal

Rmax

. (7)

The maximization of this fitness function is related to
the maximization of the number of satisfied UEs with their
transmission rates. The first term is the utility function in
the formulation problem (6). The second term is the ratio
between the sum of the transmission rates of all UEsRtotal

and the maximum possible transmission rateRmax of the
system (this occurs when all subcarriers are transmitting using
the higher modulation order). Therefore, this term can assume
values between 0 and 1 and consequently, this term has a
magnitude smaller than the first term. Indeed, it will serve to
rank solutions with the same number of satisfied UEs. That
is, among solutions with the same number of satisfied UEs,
those with higher total rate are preferable.

GAs start with a population ofq individuals and
execute the genetic operators in each generation, producing
successive populations. Four genetic operators are performed
in each generation: selection, crossover, mutation and elitism.
Selection is the process by which individuals are chosen
according to their fitness in order to mate. Their probabilities
of choice are proportional to their fitness function values,thus
simulating natural selection.Crossover is the genetic process
in which two selected members change genetic material. It
consists of choosing a random cut point and dividing each of
the two chromosomes into two parts. Two offsprings are then
generated by concatenating the segment of one parent on the
left of the cut point with the segment of the second parent on
the right of the cut point. Fig. 3 illustrates this mechanism.
This is the most important mechanism, through which new
solutions are built from the best partial solutions. It is also
possible to implement crossover where more than one cut point
exist. Mutation consists in altering bits of the chromosomes
randomly with a given probability (mutation rate). Fig. 4
illustrates this process, where the the sixth subcarrier was
randomly selected to be mutated (UE 2 was randomly changed
to UE 8). This operator has the effect of perturbing a certain
chromosome in order to introduce new characteristics not
present in any element of the parent population. Then, it
becomes possible to escape from local minima.Elitism is
the process in which the best individual of the population is
maintained. Then, we avoid that the most adapted individual
be lost in the next generation with the application of other
operators.

UE 4UE 4 UE 9UE 9 UE 1UE 1

UE 3
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Fig. 3. Example of crossover.

Finally, the q generated offsprings have their fitness
evaluated. The new population is composed by the(q − 1)
best adapted offsprings and the best individual from the
current generation (elitism). This process is repeated in several
generations, until the stop criteria (number of generations)
is attained, as shown in Fig. 5. When the last generation
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x UE 4UE 4 UE 9UE 9 UE 1UE 1 UE 3UE 3 UE 4UE 4 UE 2 UE 1UE 1 UE 5UE 5 UE 8

Before mutation After mutation

Mutation
Operator

Fig. 4. Example of mutation.

finishes, the best individual of the final population will be
the solution to the problem. Then, a sub-optimum solution,
or even optimum, will be attained [5]. Indeed, an optimum
solution is only guaranteed if the number of generations is high
enough and the other algorithm parameters are well adjusted.
Parameters related to GA used in this study are displayed in
Table I.

Stop criterion

Initialize population

Output the best 
chromosome

Substitute current generation by 
offsprings and use elitism

Mutation

Crossover

Select parents

No

Yes

Fig. 5. Flowchart of GA.

TABLE I

GENETIC ALGORITHM PARAMETERS.

Parameter Value

Number of generations 800
Size of population 200

Mutation Rate 10%
Kind of crossover One cut point

Use of elitism Yes

IV. RESULTS

In this section we present the numerical results obtained
from computational simulations. In this paper we study the
case of a single cell system. The multi-cell case is left for
a forthcoming paper. We simulated 20 independent snapshots

for several system loads and calculate the average number of
satisfied UEs with their obtained transmission rates, as well as
the average transmission rate of the system for each load for
Rate Maximization, Rate Adaptive and the proposed solution
using Genetic Algorithms. The main parameters used in the
simulations are shown in the following.

The central operating frequency is 2 GHz. It is considered
that there are 150 subcarriers available in the cell with
a bandwidth of 15 kHz for each subcarrier. Regarding
propagation, the path lossL [dB] at distanced [km] is
calculated byL = 128.1 + 37.6 · log

10
(d). The shadowing

standard deviation is 8 dB. The modeled power budget has
the following values. The noise power is -123.24 dBm per
subcarrier, the total base station power is 20 W, and the
cell radius is 1 km. Also, we assumed that the UEs are
static and uniformly distributed in the cell coverage area.The
transmission rate requirementRreq which defines the threshold
of satisfaction in this work is 256 kbps, for each UE.

In Fig. 6, we show the proportion of satisfied UEs with
their obtained transmission rates for several simulated loads.
We can see that the proposed scheme yields in a higher number
of satisfied UEs with a larger performance gain in relation to
the other schemes.

The proposed scheme performs better than RA algorithm
because the first one tries to maximize the number satisfied
UEs in a best-effort way according to fitness function (7),
without worrying about the fairness in the distribution of
the subcarriers, while RA algorithm takes into account in
its formulation the fairness among the UEs, since it tries to
maximize the minimum transmission rate among the UEs.
Although one may think that a fair scheme is a good option,
this procedure can be disastrous in some cases, because it
can yield in situations where all the UE rates are balanced in
a value lower than the rate requirementRreq and, therefore,
all links become unsatisfied while cause waste of resources.
For that reason, a scheme that avoids this behavior, like the
proposed algorithm, is more effective for the general case.

In relation to RM, this algorithm does not take into account
the UE rate requirements. Therefore, it is expected that
concerning the percentage of the satisfied UEs, it presents the
worst performance, as it can be seen in Fig. 6 where for the
lower load in the figure (5 UEs) the proportion of satisfied
UEs is only 39 %.

Other advantage of the proposed scheme is the fact that it
prevents an abrupt decrease of the percentage of satisfied UEs
in relation to the other algorithms. The relative decrease for
GA is 11.9% when we vary the system load from 5 UEs to
20 UEs, while for RA and RM these decreases are 53.7% and
68.6%, respectively. Therefore, the proposed scheme is more
robust with the load variation.

In relation to the total cell transmission rate shown in Fig.7,
we can see that RM algorithm, as it was expected, outperforms
the two other algorithms. This can be explained by the fact that
this algorithm exploits the multi-user and frequency diversities,
in such a way, that it schedules only the UEs with the best
channel conditions in each subcarrier. Also note that the total
cell transmission rate has a light increase with the system load
due to the higher multi-user diversity.
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Fig. 6. Percentage of satisfied UEs for a rate requirement of 256 kbps.
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Fig. 7. Total cell transmission rate for a rate requirement of 256 kbps.

GA presents the second better performance on the total
cell transmission rate, however, the difference on the total
cell transmission rate between RM and GA is not so large,
compared to the difference observed on the percentage of
satisfied UEs. Therefore, we can consider that the proposed
scheme is better in a general context.

V. CONCLUSION

In this paper, we proposed a new Radio Resource Allocation
problem in downlink of Orthogonal Frequency Division
Multiple Access systems whose solution presents some
advantages compared with other RRA problems such as Rate
Adaptive and Rate Maximization. The solution of this new
problem provides the maximization of the number of UEs with
fulfilled rate requirements. In order to solve this problem,we
utilized Genetic Algorithm by performing a suitable problem
modeling.

The next steps are the evaluation of the solution of new
problem in scenarios where the sessions have different rate
requirements, and the conception of algorithms based on
simple heuristics to solve the formulated problem in a smaller
run time.
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