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Abstract— This paper compares the performance of phase re-
covery techniques for optical dual-polarization quadrature phase-
shift keying (DP-QPSK) coherent receivers, using simulated and
experimental data. In particular, we investigate the following
phase recovery techniques: the Viterbi & Viterbi feedforward
(V&V) algorithm; the decision-directed (DD) algorithm; an d a
hardware efficient feedforward algorithm.

We find that 10 tap filters are sufficient for a satisfactory
performance of both DD and V&V algorithms, and that the
hardware efficient algorithm presents a minimum penalty, com-
pared to the V&V algorithm, for a 5 tap filter size. The problem
of obtaining the SNR at the receiver from a set of noise corrupted
samples is also addressed.

Keywords— dual-polarization quadrature phase-shift keying,
phase noise, phase recovery, SNR estimation.

I. I NTRODUCTION

The increasing demand for data traffic in optical networks
has been motivating the development of spectrally-efficient
systems using polarization multiplexing and multilevel mo-
dulation formats. DP-QPSK coherent detection systems have
emerged as an attractive alternative to meet this demand. These
systems require sophisticated signal treatment techniques,
done by digital signal processing. One degrading effect that a
receiver must compensate is the phase noise of the transmitter
and receiver oscillators, modeled by a Wiener process [1].
Several techniques for phase noise compensation, known as
phase recovery algorithms, are found in literature [2], [3], [4],
[5].

In this paper we simulate and compare the performance
of some of these techniques, validating our simulations by
experimental data processing. The experimental data was ge-
nerated by the setup described in [6]. We investigate the Viterbi
& Viterbi feedforward phase recovery algorithm (V&V), the
decision-directed phase recovery algorithm (DD) [2] and a
hardware efficient feedforward phase recovery algorithm [3],
using Monte Carlo simulations. Two of these algorithms, V&V
and DD, employ a maximum likelihood (ML) estimator, that
requires the SNR as a parameter. Thus, an error in the SNR
estimation affects the accuracy of the ML estimator, worsening
the system performance. We investigate the impact of SNR
estimation errors on the system performance.

The rest of the paper is structured as follows: Section II
overviews the system model; Section III describes the phase
recovery and the SNR estimation algorithms used in this
paper; Section IV presents the experimental results; Section
V summarizes the results and draws conclusions.

II. SYSTEM MODEL

Fig. 1 shows the discrete time system model used in this
paper.

Fig. 1. System model.

The QPSK signal, corrupted by amplified spontaneous emis-
sion noise (ASE), modeled as complex additive white Gaussian
noise (AWGN) with zero mean and varianceσ2

w = N0, is
submitted to a Wiener process that models the phase noise [1].
Two blocks of the receiver structure perform phase recovery,
decoding and error counting.

The k-th received complex signal sample,rk, is given by:

rk = sk exp(jθk) + wk, (1)

wheresk is the transmitted symbol,wk is the complex AWGN
sample andθk is the phase offset. We modelθk as a discrete
Wiener process by:

θk = θk−1 +∆k,

θk±i = θk ±

i−1∑

m=0

∆m, (2)

where∆k and∆m are Gaussian distributed random variables
with zero mean and varianceσ2

∆ = 2π∆νTs. Bandwidth∆ν
is the sum of the carrier laser and receiver local oscillator
(LO) 3 dB linewidths, andTs is the symbol period. Phase
recovery algorithms, therefore, estimateθk for the subsequent
compensation.

III. PHASE RECOVERY ALGORITHMS

A. Viterbi & Viterbi Feedforward Phase Recovery

The block diagram for the V&V algorithm is shown in
Fig. 2.

Fig. 2. Viterbi & Viterbi feedforward phase recovery scheme.
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Firstly, the V&V algorithm removes data dependency of the
sampled sequence by raising it to theM -th power [7]:

rMk−i =

{

sk−i exp

[

j(θk +

i−1∑

m=0

∆m)

]

+ wk−i

}M

,

≈ sMk−i exp

[

jM(θk +

i−1∑

m=0

∆m)

]

+ zk−i, (3)

wherezk−i is a Gaussian random variable with zero mean and
varianceσ2

z = M2EM−1
s σ2

w, andEs = |sk|
2. Assuming low

phase noise we approximate exp
(
∑i−1

m=0 ∆m

)

by the first two
terms of its Taylor series:

rMk−i ≈ EM/2
s exp(jMθk)

(

1 + jM

i−1∑

m=0

∆m

)

+ zk−i.

Thus, for a givenθk, the conditional probability density
function (pdf) of a 2N+1 size vectorr of past and future
samples, raised toM-th power:

r = [rMk−N , ..., rMk−1, r
M
k , rMk+1, ..., r

M
k+N ] (4)

is given by a multi-variable Gaussian distribution function:

fr|θ[k](r | θ[k]) =
1

(2π)(2N+1)/2 |C|1/2
× (5)

× exp

[

−
1

2
(r − mr )

H C−1(r − mr )

]

, (6)

where
mr = E{r} = E2

s e
jMθ[k]1. (7)

In the previous equation,1 = [1 1 . . . 1]T(2N+1) , andC is a
covariance matrix:

C = EM
s M2σ2

∆K + EM−1
s M2σ2

w I (2N+1)x(2N+1), (8)

with

K =
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. (9)

The logarithmic ML function is defined as:

θML
k = arg max

θk

ln
(
fr|θk(r | θk)

)
. (10)

It can be shown that

θML
k =

1

M
arg
(

1TC−1 · r
)

. (11)

Finally, a phase unwrapping (PU) block is applied, allowing
θk to vary from−∞ to +∞, instead of being limited between
−π/M and+π/M [2]. Eq. 12 shows the operation performed
by the PU algorithm:

PU(·) = (·) +

(⌊

1

2
+

θ̂k−1 − (·)

2π/M

⌋)

2π

M
. (12)

The estimated phase deviation for the k-th symbolθ̂k is,
therefore:

θ̂[k] = PU

{
1

4
arg

(

1T C−1 · r
)}

. (13)

We define ML filter as:

W = C−1 · 1T . (14)

The ML filter shape depends on the SNR and the Wiener
noise process parameter. Fig. 3 shows the normalized coeffi-
cients of a 41 tap ML filter for a fixed∆νTs = 10−3. We
observe that an increase in SNR narrows the filters shape,
making it more selective to the phase noise.
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Fig. 3. ML filter coefficients for∆νTs = 10−3 for past and future samples.

B. Decision-Directed Phase Recovery

The block diagram for the DD algorithm is shown in Fig. 4.

Fig. 4. Decision-directed phase recovery scheme.

The DD algorithm usesN previous output symbols of
the minimum distance decision block to remove the data
dependency of the input samples [2]. This is accomplished
by multiplying the received past samplesrk−i by the complex
conjugate of the estimated symbolsŝ∗k−i, resulting in the data
independent sampleṡrk−i:

ṙk−i = (sk−ie
j(θk+

∑
i−1

m=0
∆m) + wk−i)ŝ

∗
k−i,

≈ Ese
j(θk+

∑
i−1

m=0
∆m) + wk−iŝ

∗
k−i

︸ ︷︷ ︸

ẇk−i

, (15)
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whereσ2
ẇ = Esσ

2
w.

As in case of V&V, an ML filter is used. However, only
the past samples are considered, because of the decision
requirement.

The sample vectoṙr = [ṙk−N , ..., ṙk−1] is used as the input
for the ML filter W, described as:

W = C−1 · 1T , (16)

where the covariance matrixC is defined by:

C = E2
sσ

2
∆K + Esσ

2
wINxN , (17)

andK is anNxN matrix for a filter size ofN taps:

K =
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...

...
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. (18)

The filter output is the estimated complex phasorejθ̂k−1

used to compensate for thek-th symbol phase offset. Thek-
th estimated symbol,̂sk, is then:

ŝk = rk

(
N∑

i=1

ṙk−iWi

)

, (19)

whereWi is the i-th coefficient of the ML filter.
The DD ML filter exhibits a similar behavior as those in

Fig. 3. However, only the past samples are considered in this
case. Since this algorithm relies on decided symbols, erroneous
decisions may lead to poor phase estimation. Therefore, it is
only accurate for sufficiently high SNRs.

C. SNR Estimation

Implementation of an ML filter requires the signal SNR.
We used the scheme proposed in [8] to estimate the symbol
energy,Es, and the noise variance,N0, of the AWGN process:

Ês =

√

2|r|
2
2

− |r|
4
, (20)

N̂0 = |r|
2
− Es, (21)

wherer is the received signal. In this work, the SNR estima-
tion was performed over a set of5× 105 symbols.

D. Hardware Efficient Feedforward Recovery

The V&V and the DD algorithms involve high complexity
operations, such as complex multiplications, feedback scheme
and serial processing, inefficient for hardware implementation
in high rate real-time systems.

One alternative is a multiplier-free angle-based algorithm,
proposed in [3]. This algorithm, whose block diagram is shown
in Fig. 5, in addition to dispensing complex multiplications,
does not require feedback and allows parallel processing.

The phase deviation term,ϑk, is calculated by the following
operation:

ϑk = 1/4(arg(r4k)). (22)

Fig. 5. Hardware efficient phase recovery scheme.

The estimation process is based on a sliding window with
2N+1 inputs for each estimated̂θ, or 2N+M for anM size
block output, performing selective operations to approximate
the ML filter. The window uses intermediate cells multiple
times in parallel, increasing computational efficiency. This
process is named SMLPA (selective maximum likelihood
phase approximation) [3].

In this paper we use the SLMPA algorithm forM = 4 and
N = 2 (SML2), shown in Fig. 6, with the basic cell operation
defined as:

µ = 1/4(arg(ej4α + ej4β)), (23)

whereα andβ are the cell inputs andµ is the sell output.

Fig. 6. Sliding window scheme forN = 2 andM = 4.

Each output,̂θ(k+i), is computed by submitting the samples
ϑ(k+ i), ϑ(k+ i±1) andϑ(k+ i±2) to the mesh of the basic
cell operations. Nevertheless, the sample weight distribution is
unequal, with the sampleϑ(k + i) being the most significant,
and ϑ(k + i ± 2), the least significant ones. Grafically (see
Fig. 6), this weight distribution is represented by the number of
cells in the path from each sample to the corresponding output.
The structure can be modeled by a pyramid-like filter, with the
highest peak value at the middle, decreasing in discreet steps
to both sides.

IV. SIMULATION AND EXPERIMENTAL RESULTS

This section starts with the analysis of the impact of
imperfect SNR estimation on the system performance. For
that purpose, we forced SNR estimation errors in the V&V
algorithm, while observing the BER penalization. Figs. 7 and
8 show SNR versus BER curves for rates of 10 Gbaud and
25 Gbaud and 1 MHz laser linewidth, resulting in∆νTs =
2.0× 10−4 and∆νTs = 8.0× 10−5, respectively.

The figures also show the theoretical limit curve for diffe-
rential coherent QPSK (DCQPSK) systems that is given by
[9]:

BER = erfc

(√
Eb

N0

)

,
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Fig. 7. Eb/N0 x BER curves for 10 Gbaud, 1 MHz lasers and 41 tapsV&V.

whereerfc is the complementary error function.
Since the SNR defines the optimal shape of the ML filter, its

erroneous estimation causes performance penalties. SNR un-
derestimation broadens the filter, making distant samples more
significant, reducing filter phase noise selectivity. On theother
hand, SNR overestimation narrows the filter, increasing phase
noise selectivity, but penalizing additive noise mitigation. Fig.
7 shows, however, that the degradation in the last case is less
severe, because the narrowed filter is still sufficiently large
and robust for additive noise effects. For the 41 taps ML filter
used, SNR estimation errors up to +6 dB are insignificant to
the phase estimation, while errors of -3 dB and -6 dB degrade
the performance significantly.
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Fig. 8. Eb/N0 x BER curves for 25 Gbaud, 1 MHz lasers and 41 tapsV&V.

For the baud rate of 25 Gbaud, the V&V algorithm with 41
taps ML filter does not show penalties for the SNR estimation
errors from -6 dB to +6 dB (see Fig. 8). Shorter symbol period
makes the phase noise less significant and the estimation more
tolerant to changes of the ML filter shape.

We also simulated systems that employ the V&V, the DD
and the SMLPA phase recovery algorithms, varying the filter
lengths and comparing their performances in terms of phase
noise tolerance. A computer simulated input sequence of

4× 106 bits was used in each case. In Figs. 9 and 10 we
plotted penalty curves for a fixed BER of10−3, restricting the
phase noise conditions and observing the SNR penalties.
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Fig. 9. Filter length effect for V&V and SML2 algorithms.
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Fig. 10. Filter length effect for DD and SML2 algorithms.

We observe that the increment in the filter length improves
both the V&V and the DD algorithms performance only
for low phase noise conditions. For a higher phase noise,
larger filter increases the complexity without improving the
performance. A 5 tap case of SMLPA is also shown for
comparison.

In a 5 tap case, for∆νTs smaller than3 × 10−4, all
algorithms show penalties smaller than 1 dB, with a good
approximation of the feedforward filter by the SMLPA, that
presents almost equal performance for any tested∆νTs. The
DD algorithm shows a slightly better performance for∆νTs

values smaller than8×10−4. With increased phase noise their
performances rapidly degrade.

Considering the best case scenario (41 taps V&V, 40 taps
DD, 5 taps SMLPA), in the low phase noise region, the V&V
and the DD achieve a similar, close to the theoretical limit
performance, while SMLPA shows a penalty of almost 1 dB.
Clearly, the filter size is of a great importance in that region.
However, because of the erroneous decisions and because the
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Fig. 11. DP-QPSK experimental setup.

DD filter employs only the past signal samples, in the high
phase noise region it is the least successful.

We validated the simulations using experimental data gene-
rated by the setup shown in Fig. 11 [6]. At the transmitter,
a pseudorandom binary sequence (PRBS) is generated at
28 Gb/s. The original sequence drives the in-phase component
of an I/Q Mach-Zehnder modulator (nested structure), while
a 51-bits delayed version drives the quadrature component.
The resulting optical signal is subsequently RZ-modulatedby
a pulse carver. Lastly, the polarization multiplexed signal is
generated by splitting the optical signal into two orthogonal
polarization orientations (using a polarization beam splitter),
decorrelating the horizontal (X polarization) and the verti-
cal (Y polarization) components by a 2 meters polarization
maintaining fiber, and recombining the two components in
a polarization beam combiner. In this experiment1 MHz
linewidth transmitter and local oscillator lasers were used.

In Figs. 9 and 10 “+” and “◦” symbols correspond to the
penalties calculated over106 bit sequences for X and Y pola-
rizations, respectively. The experimental analysis exhibited a
good agreement with the simulations. However, it is observed
that the experimentally calculated SNR penalties are slightly
lower than the simulated points. This may be because the
experimental SNR cannot be directly measured, and has to
be estimated from noisy samples. In our case, we believe that
the experimental SNR was underestimated.

V. CONCLUSION

We analyzed the performance of three phase recovery
algorithms, along with the impact of SNR estimation on the
overall system performance, using computer simulated data.
Our analysis showed that even large SNR estimation errors of
±6 dB lead to no significant penalty for a 100 Gb/s DP-QPSK
system with distributed feedback lasers of 1 MHz linewidth.
However, for a 40 Gb/s system, in the worst case, 1 dB penalty
occurs for a given BER of10−3. The simulations also showed
that both, DD and V&V algorithms with 10 tap filters, have a
satisfactory performance, and that a further increment in filter
size does not present noteworthy improvements. The SMLPA
has shown a good approximation to the V&V for the same
filter length. However, to match the performance of the V&V
best case scenario, the complexity of SMLPA would have to be

increased by adding taps. Therefore, there is a trade off relation
between the computational advantage and the performance
when choosing the algorithm. We have also shown that the
simulated scenarios offer a good representation of practical
systems, by direct comparison with experimental data.
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