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Analysis of Phase Recovery Algorithms for
DP-QPSK Optical Receivers

Hugo B. Ferreira, Valery N. Rozental, Darli A. A. Mello

Abstract— This paper compares the performance of phase re- Il. SYSTEM MODEL
covery techniques for optical dual-polarization quadrature phase-
shift keying (DP-QPSK) coherent receivers, using simulat and Fig. 1 shows the discrete time system model used in this
experimental data. In particular, we investigate the follaving paper.
phase recovery techniques: the Viterbi & Viterbi feedforwad
(V&V) algorithm; the decision-directed (DD) algorithm; and a - —_ —- - = = - = I
hardware efficient feedforward algorithm. | Receiver

We find that 10 tap filters are sufficient for a satisfactory
performance of both DD and V&V algorithms, and that the
hardware efficient algorithm presents a minimum penalty, con-
pared to the V&V algorithm, for a 5 tap filter size. The problem
of obtaining the SNR at the receiver from a set of noise corrufed  Fig. 1. System model.
samples is also addressed.
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Keywords— dual-polarization quadrature phase-shift keying, The QPSK signal, corrupted by amplified spontaneous emis-
phase noise, phase recovery, SNR estimation. sion noise (ASE), modeled as complex additive white Ganssia
noise (AWGN) with zero mean and varianeg = Ny, is
submitted to a Wiener process that models the phase noise [1]
|. INTRODUCTION Two blocks of the receiver structure perform phase recovery
decoding and error counting.

The increasing demand for data traffic in optical networks The k-th received complex signal sample,, is given by:
has been motivating the development of spectrally-efficien ,
systems using polarization multiplexing and multilevel -mo e = sk exp(jO) + wi, (1)
dulation formats. DP-QPSK coherent detection systems h%ﬁeresk

q ttracti it tive t t this d Th is the transmitted symboly;, is the complex AWGN
emergedas an attrac |v§§1 ema 'V.e 0 meettnis dema . sample and);, is the phase offset. We mod@] as a discrete
systems require sophisticated signal treatment techsiq

done by digital signal processing. One degrading e1‘fe<Itahz:\\(’:{hener process by:

receiver must compensate is the phase noise of the traasmitt 0p = 01 + Ap,

and receiver oscillators, modeled by a Wiener process [1]. o1

Several techniques for phase noise compensation, known as Opri = Op + Z A, 2)
phase recovery algorithms, are found in literature [2], [8], 0

5].
[ ]In this paper we simulate and compare the erforman\éVhereAk and A,,, are Gaussian distributed random variables
pap P P w?th zero mean and varianeg, = 2rAvT,. BandwidthAv

of some of these techniques, validating our simulations b%/ . . .
is the sum of the carrier laser and receiver local oscillator

experimental data processing. The experimental data was S . : . .
. . . . ! 3 dB linewidths, andl, is the symbol period. Phase
nerated by the setup described in [6]. We investigate therhiit rae_cgvery algorithms, therefore, estim iy for thz subsequent

& Viterbi feedforward phase recovery algorithm (V&V), thecompensation

decision-directed phase recovery algorithm (DD) [2] and & '

hardware efficient feedforward phase recovery algorithin [3

using Monte Carlo simulations. Two of these algorithms, V&V I1l. PHASE RECOVERY ALGORITHMS

and DD, employ a maximum likelihood (ML) estimator, that ) ,

requires the SNR as a parameter. Thus, an error in the SRR Viterbi & Viterbi Feedforward Phase Recovery
estimation affects the accuracy of the ML estimator, warsgn  The block diagram for the V&V algorithm is shown in
the system performance. We investigate the impact of SNy, 2.

estimation errors on the system performance.

The rest of the paper is structured as follows: Section H. =N S
overviews the system model; Section Il describes the phas o
recovery and the SNR estimation algorithms used in thisl B WL i
paper; Section IV presents the experimental results; @ecti (7 ™ Fiter [P Merst) B PUO B e

V summarizes the results and draws conclusions.
Fig. 2. Viterbi & Viterbi feedforward phase recovery scheme
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Firstly, the V&V algorithm removes data dependency of the

sampled sequence by raising it to théth power [7]: PUC) = () + <F N Or—1 — (.)J) 21 12)
2 27 /M M’
1—1 M
Tl = {Ski exp |j(0k + Z Am) +wk1} ’ The estimated phase deviation for the k-th syméplis,
mi(i therefore:
~ sl exp le(Hk +Y A |+ () (k] = PU {i arg (1T ct. r)} . (13)
m=0

wherezj,_; is a Gaussian random variable with zero mean andWe define ML filter as:
varianceo? = M?E}~'o7, and B, = [s;,[>. Assuming low W=c1.1T (14)
phase noise we approximate eé(Ej;:lo Am) by the first two

. L The ML filter shape depends on the SNR and the Wiener
terms of its Taylor series:

noise process parameter. Fig. 3 shows the normalized coeffi-
o s , , i—1 cients of a 41 tap ML filte_r for a fixed\vT, = 10_‘3. We
rily ~ BN exp(iM6y) | 14 jM Z Ap | + 2k observe that an increase in SNR narrows the filters shape,
m=0 making it more selective to the phase noise.
Thus, for a givend,, the conditional probability density
function (pdf) of a 2N+1 size vector of past and future L ' “

samples, raised tbl-th power: SN IE
0.9f CACTER R SRS SR
y Y y y E /N =6dB
r = [T;]cu,N, ---7T££17T£1,7%17 ,..,TﬁiN] (4) 0sl zEZINZ:lodB 9
is given by a multi-variable Gaussian distribution funotio 07t ' ' '
1 0.6f
r |0k = X 5 %3’
fr|0[k]( | [ ]) (271')(2N+1)/2 |C|1/2 ( ) "éo[—_‘,
1 s
xexp |—5(r — mr)H Cil(r —m)|,(6) o4
2 0.3F
where P R
m, = E{r} = B2 /MO, @) of
In the previous equatior], = [1 1 ... 1]{2N+1), andC is a

covariance matrix:

C=EMM?6iK + EM ' M?52)] @eN+x@eN+1),  (8)

Fig. 3. ML filter coefficients forAvTs = 10~3 for past and future samples.

with
N - 2 1.0 0 0 --- 0] B. Decision-Directed Phase Recovery
: R The block diagram for the DD algorithm is shown in Fig. 4.
2 21 000 0 — -
1 1 1.0 0 0 0 I_i:[skw Si .80
K= 0 0000 0 0 (9) seon [ () i
e
0 00 0 1 1 1 r:[rk—N’ R P rk—l] F’?ftlér Decision =+
0 000 1 2 2 s . [ Bufter S
| Size N
o -~ 00012 -+ N

- - Fig. 4. Decision-directed phase recovery scheme.

The logarithmic ML function is defined as:
The DD algorithm usesNV previous output symbols of

't = afgemax In (frja, (r |0x)) - (10) ' the minimum distance decision block to remove the data
* dependency of the input samples [2]. This is accomplished
It can be shown that by multiplying the received past samples._; by the complex
, 1 _ conjugate of the estimated symbdls ,, resulting in the data
ML _ Tr—1 i
Ok - M arg (1 C r) ‘ (11) independent sampleg_;:
Finally, a phase unwrapping (PU) block is applied, allowing Froes = (Skiiej(@kJrZi;ioAm) +wp_i)35_,,
0y, to vary from—oo to +o0, instead of being limited between O ALY . ’
—m/M and+n /M [2]. Eq. 12 shows the operation performed ~ Ese m=0 T Wi Sk (15)

by the PU algorithm: -
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whereo? = Es02. T

As in case of V&V, an ML filter is used. However, only

the past samples are considered, because of the decisipn |, pependencel o | smLPa Phase 40
requirement.

Removal Window > Unwrapping KA
The sample vectar = [r;_n, ..., 7x—1] IS used as the input
for the ML filter W, described as: Fig. 5. Hardware efficient phase recovery scheme.

w=ct.1", (16) The estimation process is based on a sliding window with
2N +1 inputs for each estimatej or 2N + M for an M size

where the covariance matri is defined by: block output, performing selective operations to appratan

C = E?03K + Es02 | nxw, (17) the ML filter. The window uses intermediate cells multiple
) _ _ _ times in parallel, increasing computational efficiency.isTh
andK is an NxN matrix for a filter size ofN taps: process is named SMLPA (selective maximum likelihood
000 --- 0 phase _approximation) [3]. _
o1 1 --- 1 In this paper we use the SLMPA algorithm féf = 4 and
01 2 -- ) N =2 (SML2), shown in Fig. 6, with the basic cell operation
K= . (18) . )
e . defined as:
T : = 1/4(arg(e?*® + e748Y), 23
019 N1 p=1/4(arg( ) (23)

. wherea and s are the cell inputs angd is the sell output.
The filter output is the estimated complex phaséf—!

used to compensate for thieth symbol phase offset. Thie  9(k—2) 9(k—1) 9(k) 9(k+1) 9(k+2) 9(k+3) 9(k+4) 9(k+5)

th estimated symboky, is then: \ A /\ 1\ /\ 1\ /\
Sk =Tk (ﬁ: f‘k—iWi> ; (19)

whereW; is the:-th coefficient of the ML filter.
The DD ML filter exhibits a similar behavior as those in
Fig. 3. However, only the past samples are considered in this

case. Since this algorithm relies on decided symbols, eoas 0(k) O(k+1) 0(k+2) 0(k+3)

decisions may lead to poor phase estimation. Therefors, it i

only accurate for sufficiently high SNRs. Fig. 6. Sliding window scheme faN = 2 and M = 4.

C. SNR Estimation Each outputd(k+i), is computed by submitting the samples

. . . ) I(k+1), ¥(k+i+1) andy(k+i=£2) to the mesh of the basic
Implementation of an ML filter requires the signal SNR¢g| gperations. Nevertheless, the sample weight digtabus

We used the scheme proposed in [8] to estimate the Sy'_“'aﬂt:-zqual, with the samplé(k + i) being the most significant,
energy,E;, and the noise variancéjp, of the AWGN process: gnq (k4 ; + 2), the least significant ones. Grafically (see

) \/ﬁ Fig. 6), this weight distribution is represented by the nenf
Eg=vV2[r[® —|r[", (20)  cells in the path from each sample to the corresponding butpu
The structure can be modeled by a pyramid-like filter, with th

highest peak value at the middle, decreasing in discreps ste

wherer is the received signal. In this work, the SNR estimd® both sides.
tion was performed over a set 6fx 10° symbols.

No = |r? - E., (21)

IV. SIMULATION AND EXPERIMENTAL RESULTS

D. Hardware Efficient Feedforward Recovery This section starts with the analysis of the impact of

The V&V and the DD algorithms involve high complexityimperfeCt SNR estimation on the_ sys_tem perfor_mance. For
operations, such as complex multiplications, feedbackmsen that purpose, we forced SNR estimation errors in the V&V

and serial processing, inefficient for hardware implemionia 2/90rithm, while observing the BER penalization. Figs. dan
in high rate real-time systems. 8 show SNR versus BER curves for rates of 10 Gbaud and

One alternative is a multiplier-free angle-based alganith 2° Gbalﬂ and 1 MHz laser Iin?gvidth, resulting &v T =
proposed in [3]. This algorithm, whose block diagram is show?-0 x 1077 and AvT, = 8.0 x 107, respectively.

in Fig. 5, in addition to dispensing complex multiplicat&n The figures also show the theoretical limit curve for diffe-
does not require feedback and allows parallel processing. €ntial coherent QPSK (DCQPSK) systems that is given by

The phase deviation termiy, is calculated by the following [9I:

operation: BER — erfc 2
Or = 1/4(arg(r})). (22) No )’
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4 x 109 bits was used in each case. In Figs. 9 and 10 we
plotted penalty curves for a fixed BER o3, restricting the
phase noise conditions and observing the SNR penalties.

45 X 5 Taps V&V j j
11 Taps V&V Ny

¥ 21 Taps V&V A

41 Taps V&V [
---SML2 '
-+ SML2 Pol X N
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whereerfc is the complementary error function. 10
Since the SNR defines the optimal shape of the ML filter, i

erroneous estimation causes performance penalties. SNR g§l o, Filter length effect for V&V and SML2 algorithms.

derestimation broadens the filter, making distant samplagm

significant, reducing filter phase noise selectivity. Ondtteer

hand, SNR overestimation narrows the filter, increasingsphe 45 XSTapS DD *
noise selectivity, but penalizing additive noise mitigati Fig. A% 19 Taps 0D V]
. . . aps
7 shows, however, that the degradation in the last casess | s V%0 Tass DD a.
severe, because the narrowed filter is still sufficienthgéar ’ +§mt§ bol x }"‘:
and robust for additive noise effects. For the 41 taps MLrfilte 3 4 5 Taps DD Pol X g": 1
used, SNR estimation errors up to +6 dB are insignificant g, 5| T 10Taps DD PolX N
. . . = - 20 Taps DD Pol X ¥ .
the phase estimation, while errors of -3 dB and -6 dB degra £ ,| -1 40 Taps DD Pol x &
s i 5 SML2 Pol Y »
the performance significantly. & 5 Taps DD Pol Y R
1.5/ ¢ 10 Taps DD Pol Y R
20 Taps DD Pol Y _‘ﬁ“
10° 1] () 40 Taps DD Pol Y |- o cwma===="" N W
D Q Q QA f
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Fig. 10. Filter length effect for DD and SML2 algorithms.

We observe that the increment in the filter length improves
both the V&V and the DD algorithms performance only

104'?_?6‘3;”““' DCQPSK for low phase noise conditions. For a higher phase noise,
R larger filter increases the complexity without improvingg th

10 *2‘3’38 performance. A 5 tap case of SMLPA is also shown for
100 +ea8 comparison.

105 2 2 6 5 10 12 In a 5 tap case, forAvT, smaller than3 x 10—, all

BNy (4B) algorithms show penalties smaller than 1 dB, with a good

approximation of the feedforward filter by the SMLPA, that
presents almost equal performance for any tested’;. The
For the baud rate of 25 Gbaud, the V&V algorithm with 4DD algorithm shows a slightly better performance T
taps ML filter does not show penalties for the SNR estimatiomlues smaller thag x 10~. With increased phase noise their
errors from -6 dB to +6 dB (see Fig. 8). Shorter symbol perigaerformances rapidly degrade.
makes the phase noise less significant and the estimatiom morConsidering the best case scenario (41 taps V&V, 40 taps
tolerant to changes of the ML filter shape. DD, 5 taps SMLPA), in the low phase noise region, the V&V
We also simulated systems that employ the V&V, the DRand the DD achieve a similar, close to the theoretical limit
and the SMLPA phase recovery algorithms, varying the filtgerformance, while SMLPA shows a penalty of almost 1 dB.
lengths and comparing their performances in terms of phaSkearly, the filter size is of a great importance in that regio
noise tolerance. A computer simulated input sequence ldbwever, because of the erroneous decisions and because the

Fig. 8. Eb/NO x BER curves for 25 Gbaud, 1 MHz lasers and 41 6§¢.
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Fig. 11. DP-QPSK experimental setup.

DD filter employs only the past signal samples, in the higihcreased by adding taps. Therefore, there is a trade afioel
phase noise region it is the least successful. between the computational advantage and the performance
We validated the simulations using experimental data genghen choosing the algorithm. We have also shown that the

rated by the setup shown in Fig. 11 [6]. At the transmittesimulated scenarios offer a good representation of plctic
a pseudorandom binary sequence (PRBS) is generatedsystems, by direct comparison with experimental data.
28 Gb/s. The original sequence drives the in-phase componen
of an 1/Q Mach-Zehnder modulator (nested structure), while VI. ACKNOWLEDGMENT
a 51-bits Qelayet_:i version Qr|ves the quadrature componentyhis work has been supported by Ericsson.
The resulting optical signal is subsequently RZ-moduldtegd
a pulse carver. Lastly, the polarization multiplexed sigisa
generated by splitting the optical signal into two orthoglon
polarization orientations (using a poIarization beamtmrﬁ [1] J. Salz, “Modulation and detection for coherent light@acommunicati-
. . L i ons,” Communications Magazine, |IEEEol. 24, no. 6, pp. 38 — 49, jun.
decorrelating the horizontal (X polarization) and the iert 1ggg
cal (Y polarization) components by a 2 meters polarizatide] E. Ip and J. M. Kahn, “Feedforward carrier recovery fohecent optical
i ini ; ini in communications,J. Lightwave Technqlvol. 25, no. 9, pp. 2675-2692,
malntalnmg_ fiber, and reco_mblnlng th.e two c_omponents n 2007. [Online]. Available: http://jlt.osa.org/abstradn?URI=JLT-25-9-
a polarization beam combiner. In this experimantMHz 2675
linewidth transmitter and local oscillator lasers weredise [3] S. Hoffmann, R. Peveling, T. Pfau, O. Adamczyk, R. Eicthand
i iy “n R. Noe, “Multiplier-free real-time phase tracking for cobet QPSK
In F.Igs' 9 and 104 anﬁd .O SymbOIS correspond to the receivers,”Photonics Technology Letters, IEERoOl. 21, no. 3, pp. 137
penalties calculated oven® bit sequences for X and Y pola-  _339 feb.1, 2009.
rizations, respectively. The experimental analysis dtdtiba [4] S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. WoodelR. Pe-

; ; ; it veling, M. Porrmann, and R. Noe, “Frequency and phase ettima
gOOd agreement with the simulations. However, it is obsrve for coherent QPSK transmission with unlocked DFB lasePhotonics

that the experimentally calculated SNR penalties are 8)igh  fechnology Letters, IEEBoI. 20, no. 18, pp. 1569 —1571, sept.15, 2008.
lower than the simulated points. This may be because ti3g F. A. Garcia, D. A. Mello, and H. Waldman, “Feedforward ricer

; i recovery for polarization demultiplexed signals with unalgsignal to
experimental SNR cannot be directly measured, and has to noise ratios” Opt. Express vol. 17, no. 10, pp. 79587969, 2009.

be estimated from noisy samples. In our case, we believe that|onjing]. Available: http:/www.opticsexpress. org/ttast.cfm?URI=oe-

the experimental SNR was underestimated. 17-10-7958
[6] T. Portela, D. Souto, V. Rozental, H. Ferreira, H. Graegsand D. Mello,

“Analysis of digital polarization demultiplexing technigs for optical 112
V. CONCLUSION Gb/s DP-QPSK receivers with experimental dafafirnal of Microwaves,
Optoelectronics and Electromagnetic Applications (JMQe). 10-1, pp.

We analyzed the performance of three phase recovery 155-164, 2011.

algorithms a|0ng with the impact of SNR estimation on thg] A. Viterbi, “Nonlinear estimation of PSK-modulated car phase with
’ . . application to burst digital transmissionfhformation Theory, IEEE

overall system performance, using computer simulated. data Transactions onvol. 29, no. 4, pp. 543-551, 1983. [Online]. Available:

Our analysis showed that even large SNR estimation errors of hitp:/fieeexplore.ieee.org/xpls/albdl.jsp?arnumber=1056713

46 dB lead to no significant penalty for a 100 Gb/s DP-QPSR] T. Benedict and T. Soong, “The joint estimation of sigaad noise from
. . . . the sum envelope,Information Theory, IEEE Transactions ,owol. 13,

system with distributed feedback lasers of 1 MHz linewidth. no 3 pp. 447 — 454, jul 1967.

However, for a 40 Gb/s system, in the worst case, 1 dB penaly S. Haykin, Communication Systemdth ed. USA: Wiley, 2001.

occurs for a given BER of0~3. The simulations also showed

that both, DD and V&V algorithms with 10 tap filters, have a

satisfactory performance, and that a further incrementter fi

size does not present noteworthy improvements. The SMLPA

has shown a good approximation to the V&V for the same

filter length. However, to match the performance of the V&V

best case scenario, the complexity of SMLPA would have to be
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