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Abstract — Zero-knowledge proof system is an important protocol that 

can be used as a basic block for construction of other more complex 

cryptographic protocols. An intrinsic characteristic of a zero-

knowledge systems is the assumption that is impossible for the verifier 

to show to a third part that he has interacted with the prover. 

However, it has been shown that using quantum correlations the 

impossibility of transferring proofs can be successfully attacked. In 

this work we show two new protocols for proof transference, being the 

first one based on teleportation and the second one without using 

entangled states.1   
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I. INTRODUCTION 

A zero-knowledge system is a protocol between two 
partners where one of them is the prover, P, and the other is 
the Verifier, V. The idea zero-knowledge proof system is 
introduced by Goldreich, Micali and Rackoff (GMR) in 
1985 [1]. Basically, P has a secret (for example, he knows 
how to solve an specific problem) and V wants to be sure 
about that. Thus, V challenges P (asking him to solve the 
problem) and P has to take actions that proof to V that he 
really has the secret without allowing V to discover it. 
Besides the zero-knowledge characteristic, the protocol 
requires an additional property known as impossibility of 
transferring the proof. This property states that, at the end 
of the protocol, V can not prove to a third part that he had 
interacted with P. One important result about zero-
knowledge proof systems shown that there is a zero-
knowledge proof system for any language in NP provided 
that there is a non-uniform and indistinguishable cipher 
scheme. Thus, all the zero-knowledge proof systems for NP 
problems are reducible to the protocol  with the structure 
proposed by Goldreich, Micali and Wigderson (GMW) in 
[2]. It can be shortly described as follows: P and V know 
two graphs G0 and G1 with n nodes. P has as secret the 
isomorphism σ: G1→G0. In order to P proofing to V that he 
really knows σ, the following protocol is used: 
 

1. P generates a random isomorphism λ:G0→H and 
he sends H to V. 

2. V generates a random bit b and sends it to P. 
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3. P sends the isomorphism ξ=λ◦σb to V. 
4. V checks if ξ(Gb)=H. (λ◦σ

b
Gb : if b=0 ⇒λG0=H 

and if b=1 ⇒λ◦σG1=λG0=H) 
The steps are repeated n times and V will only believe in P 
if step 4 is always satisfied. The probability of P to deceive 
V with success decreases fast when n grows.   
The impossibility of transferring the proof of the GMW 

system is known to be resistant against classical attacks, 
however, it was shown in [3] that it is not resistant against 
quantum attacks, according to the following protocol: 
Firstly, a third part, hereafter known as Eve, is colluded with 
V. They share in advance n2 pairs of the quantum state 
(|00〉VE+|11〉VE)/2

1/2 and they agree in a Hash function h that 
maps all existents graphs with n nodes in a n bit sequence. 
The steps of the protocol are:     
 

1. P generates a random isomorphism λ:G0→H and 
he sends H to V. 

2. V calculates h(H) obtaining a n bit sequence 
B={B1,B2,…,Bn}. V then takes n qubits (from the n

2 
pairs that he shares with Eve) and performs 
measurements in them. For the i-th qubit (i=1,..,n) 
if Bi is ‘0’ then the measurement is performed in 
the rectangular basis {|0〉,|1〉} otherwise, the basis 
used is the diagonal {(|0〉+|1〉)/21/2,(|0〉-|1〉)/21/2}. 
The states |0〉 and (|0〉+|1〉)/21/2 code bit ‘0’ while 
the states |1〉 and (|0〉-|1〉)/21/2 code bit ‘1’. Thus, the 
results of the measurements form another n-bit 
sequence, R={ R1,R2,…,Rn }. At last, the bit b that 
V sends to P is the parity of R, R1⊕R2⊕R3⊕…⊕Rn. 

3. P sends the isomorphism ξ=λ◦σb to V. 
4. V checks if ξ(Gb)=H. 
5. Steps 1-4 are repeated n times and it is supposed 

that V really verifies that P has the secret. After 
that, V sends to Eve all graphs H (in the right order 
H1,…,Hn) and all isomorphisms ξ (in the right 
order ξ1,…,ξn) received from P, and all bits b (in 
the right order b1,…,bn) sent to P.  

6. For the k-th H received, Hk, k=1,2,…,n, Eve 
calculates h(Hk) obtaining a n bit sequence 

{ }1 2, , ,k k k nkB B B B′ ′ ′ ′= …
. Now, Eve takes the k-th 

set of n qubits (from the same pairs used by V 
when P sent Hk to him) and she performs 
measurements in them. For the i-th measurement, if 

'0 'ikB′ =  then the rectangular basis is used 

otherwise, the diagonal basis is used. The results of 
Eve’s measurements form another n-bit sequence, 
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R′ . Eve then calculates the parity of R′ , b′ , and 
checks if ξk(Gb’)=Hk. If this last condition is 
satisfied for all n H received, then Eve believes that 
V has interacted with P. 

 
For each time that V challenges P n states 
(|00〉VE+|11〉VE)/2

1/2 are used, because the function hash maps 
the graphs in a n-bit sequence. If V challenges P n times, 
then n2 states are required. If all random variables used are 
uniformly distributed, then the probability of V to deceive 
Eve is 1/2n. 
The efficiency of the just described protocol is strongly 

based on the difficulty of inverting the Hash function. 
However, it has been shown that hash functions can be 
efficiently inverted if a quantum computer is used [4,5]. In 
fact, it seems that the protocol proposed in [3] that permits V 
to transfer the proof to Eve is not secure against a quantum 
attack. More precisely, if V uses a quantum computer, he 
can increase the possibility of deceive Eve, making her to 
believe that he has interacted with P without having done it. 
Let us suppose that V did not interact with P but he wants to 
make Eve believe that he has interacted. For this, we assume 
that V knows all collisions of the agreed Hash function. In 
order to V deceiving Eve, he must provide to her n tuples 

( )
1

, ,
n

H bξ  with an appropriated probability distribution of 

the components, and the components Hi, ξi and bi must 

satisfy 
ii b iG Hξ = for all i=1,…,n. In order to get this, V 

follows the following steps: 
 

1. V chooses randomly, with uniform distribution, a 
bit c. 

2. V chooses, with uniform distribution, a random 
isomorphism ξ:Gc→H. 

3. V calculates h(H) and uses its bits to choose the 
bases of the measurements, whose results form the 
bit sequence R.  

4. V calculates the parity of R and compares to c. If 
they are equal, what happens with probability ½, V 
sends (H, ξ, c) to Eve. If they are not equal, V takes 
a collision H’, h(H’)=h(H), calculates ξ’ such that 

cG Hξ ′ ′= and sends (H’, ξ’, c ) to Eve.  

 
As can be seen from step 4, in order to have success in 

cheating Eve, V must know n pairs of collisions (H, H’) of 
the Hash function h and n pairs of isomorphism (ξ, ξ’) such 
that ξ:G0→H and ξ’:G1→H’. Now, the important question 
is: what is the difficult of V finding the collisions of h? If V 
is supposed to have only classical computers, then the task 
will be really hard and one can say that the protocol 
proposed in [3] is secure. On the other hand, if V has a 
quantum computer he can find the collisions in an efficient 

way. It has been shown that using a quantum computer with 
Grover’s quantum search algorithm, one is capable of find a 
collision with an upper bound of O(N1/3) [4] and a lower 
bound of O(N1/5) [5] on the number of queries needed. Thus, 
if V has a quantum computer able to run Grover’s search 
algorithm and he knows n pairs of isomorphism (ξ, ξ’) such 
that ξ:G0→H and ξ’:G1→H’ where H and H’ are collision 
of h, then V can cheat Eve. The graph with n nodes is non-
polynomial, N=O(2n), therefore a quantum computer  is 
capable of find a collision between O(2n/3) and O(2n/5) 
reducing  the efficiency to the attack the zero-knowledge 
proof systems proposed in [3]. Thus, we proposed two 
protocols. The first protocol uses the hash function and the 
teleportation aiming to reduce the number of quantum 
states. The second protocol does not use entanglement states 
and neither hash function making it independent of the 
difficulty of inverting the hash. 

  
II.  A NEW QUANTUM ATTACK FOR TRANSFERENCE OF 

PROOF OF ZERO-KNOWLEDGE SYSTEMS  

 In this section it is described a different quantum attack, 
based on teleportation, for the transference of proof of zero-
knowledge systems. Firstly, let us consider a classically 
controllable quantum operator that act as U|θ〉=|ϕ〉 where |θ〉 
is one of the single-qubits states |0〉, |1〉, |+〉 and |-〉 
(|±〉=(|0〉±|1〉)/21/2). Thus, the operator U for a particular bit 
sequence C, Uc, can be described by the set of pairs input-
output S={(|0〉,Uc|0〉),(|1〉,Uc|1〉),(|+〉,Uc|+〉),(|-〉,Uc|-〉)}. A 
collision happens when two different bit sequences leads to 
the same set S. In order to realize the new quantum attack, it 
is assumed that V and Eve share in advance n pairs of the 
Bell state (|00〉VE+|11〉VE)/2

1/2 and that Eve has sent to V n 
qubit states belonging to the set {|0〉,|1〉, |+〉,|-〉}. The new 
quantum attack for the transference of proofs of zero-
knowledge systems is as follows: 
 

1. P generates a random isomorphism λ:G0→H and 
he sends H to V. 

2. V calculates h(H) obtaining a n bit sequence 
C={C1,C2,…,Cn}. V then takes one qubit |θ〉 (from 
the n qubits that Eve sent to him) and performs a 
unitary transformation in it according to the bit 
sequence C. The output state Uc|θ〉=|ϕ〉 is teleported 
to Eve using one of the n Bell states that Eve and V 
share. At last, the bit b that V sends to P is the xor 
function between the bits D0 and D1 obtained in the 
Bell measurement during teleportation protocol. 

3. P sends the isomorphism ξ=λ◦σb to V. 
4. V checks if ξ(Gb)=H. 
5. Steps 1-4 are repeated n times and it is supposed 

that V really verifies that P has the secret. After 
that, V sends to Eve all graphs H (in the right order 
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H1,…,Hn) and all isomorphisms ξ (in the right 
order ξ1,…,ξn) received from P.  

6. For the k-th H received, Hk, k=1,2,…,n, Eve 
calculates h(Hk) obtaining a n bit sequence 

{ }1 2, , ,k k k nkC C C C′ ′ ′ ′= …
. Now, Eve applies the 

inverse of cU ′ in the teleported qubit that she 

received from V in order to recover the k-th single-
qubit that she sent to V. Once Eve knows exactly 
the qubit value that she sent, she can perform a 
measurement in the correct basis and she knows 
what result is expected to happen. At last, Eve uses 
the b value that she received during teleportation 
stage (the xor function between the two classical 
bits of the teleportation) and checks if ξk(Gb)=Hk. If 
this last condition is satisfied for all n H received, 
then Eve believes that V has interacted with P. 

 
Now, let us suppose that V did not interact with P but he 

wants to make Eve believe that he has interacted. For this, 
once more we assume that V knows all collisions of the 
agreed hash function h. In order to V deceiving Eve, he must 
provide to her n tuples ( )

1
, ,

n
H bξ  with an appropriated 

probability distribution of the components, and the 

components Hi, ξi and bi must satisfy 
ii b iG Hξ = for all 

i=1,…,n. In order to get this, V realizes the following steps: 
 

1. V chooses randomly, with uniform distribution, a 
bit d. 

2. V chooses, with uniform distribution, a random 
isomorphism ξ:Gd→H. 

3. V calculates h(H) and uses its bits to choose Uc and 
obtaining |ϕ〉=Uc|θ〉.  

4. V teleports |ϕ〉 to Eve and obtain the bit b. She 
compares b to d. If they are equal, what happens 
with probability ½, V sends (H, ξ, d) to Eve. If they 
are not equal, V takes a collision H’, h(H’)=h(H), 
calculates ξ’ such that 

d
G Hξ ′ ′= and she sends 

(H’, ξ’, d ) to Eve.  
 
As can be seen from step 4, once more in order to have 
success in cheating Eve, V must know n pairs of collisions 
(H, H’) of the Hash function h and n pairs of isomorphism 
(ξ, ξ’) such that ξ:G0→H and ξ’:G1→H’. At this moment it 
is important to stress some points. Firstly, if b is different of 
d in the protocol just described, then V can decide to send a 
different pair of classical bits to Eve. However, if this is the 
case, Eve will obtain a teleported quantum state different 
from the one that she sent to V, and she will note this in the 
measurement with probability ¾. Hence, it is better to Eve 
to send the correct b information and use a collision. In this 

case, since V does not know what state Eve has sent to her, a 
collision between two bit sequences C1 and C2 occurs only 
if S1=S2, where  

( ) ( ) ( ) ( ){ }1,2 1,2 1,2 1,21,2 0 , 0 , 1 , 1 , , , ,c c c cS U U U U= + + − − . 

 
This new quantum attack has as advantage over the protocol 
described in Section 1, the fact that the number of Bell state 
needed is only n, instead of n2. The disadvantage of this new 
protocol is the present difficulty to implement a Bell state 
measurement used in the teleportation protocol. At last, 
once more if a permutation is used instead of a Hash 
function then attacks using collisions will not be possible. 
 

III. A QUANTUM ATTACK FOR TRANFERENCE OF 
PROOF OF ZERO-KNOWLEDGE SYSTEMS 
WITHOUT USING ENTANGLED STATES 

 
 
Now let us move to different problem. Let us suppose that 

Charlie has a secret, a sequence of n bits, SC. He divides the 
secret in two parts, SA and SB, such that SA⊕SB=SC. The new 
secret SA is delivered to Alice while SB is delivered to Bob. 
Furthermore, Charlie sends to Alice a sequence of m qubits 
Sq=|ψ1〉⊗|ψ2〉⊗…⊗|ψm〉 where |ψi〉 (i=1,2,…,m) belongs to 
the set {|0〉,|1〉,|+〉,|-〉}. At last, the i-th bits of SA and SB 
represent, respectively, the binary value that the qubit |ψi〉 
represents and the binary value that its basis represents. The 
states |0〉 and |+〉 represent a bit ‘0’ while |1〉 and |-〉 
represent a bit ‘1’. The rectangular basis represents the bit 
‘0’ and the diagonal basis represents a bit ‘1’. Now, the task 
of Alice is to identify Bob, to send to him SA and to prove to 
Charlie that she has in fact done it. On the other hand, the 
Bob’s task is to prove to Alice that he is really Bob, to 
receive SA from Alice and do not permit Alice discover SB. 
Hence, as can be realized, the problem just described 
requires transference of proof of a zero-knowledge system. 
The solution is the protocol described below: 
 

1. Alice, Bob and Charlie agree in a function f, a k-bit 
permutation.  

2. Alice splits her m qubit sequence in k smaller 
sequences having m/k qubits, s1,s2,…,sk. 

3. Alice sends a qubit sequence si to Bob and she asks 
him to calculate and to send her back the n/k bits of 

SA that si represents,
( )k
AiS , the parity of 

( ) ( )( )k k

Ai Bif S S⊕ , bi, and the qubit sequence si.  

4. The step 3 is repeated for all si (i=1,..,k) sequences 
and, at the end, if Bob provided all bits of SA 
correctly, Alice believes that he is really Bob.  

5. In order to prove that Alice has found the correct 
Bob, Alice sends back to Charlie the k bits of parity 
(b1,…,bk) received from Bob and the m qubit 
sequence. 
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6. Since Charlie knows SA, SB and Sq he can always 
check if the bit (b1,…,bk) is correct and if the qubit 
sequence that he received from Alice is the same 
that he sent to her at the beginning of the protocol. 
Hence, he will always know if Alice in fact has 
found the corrected Bob.  

 
The true Bob knows the bases that he has to use in order to 
measure correctly the bits that the states sent by Alice 
represent. For a polarization encoded qubit, Bob can 
measure the qubit value choosing correctly the polarization 
beam splitter and using single-photon detectors. In this case, 
the photons are destroyed and Bob has to produce new ones 
in the same quantum states that he received from Alice. 
Another possibility is Bob to use a quantum non-demolition 
measurement. In this case, since he knows what basis has to 
be used, he can identify the polarization (bit value) without 
collapsing the wavefunction and destroying the photon. 

 
 

IV. CONCLUSIONS 
 
Firstly, we proposed a quantum attack for transference of 

proofs of a zero-knowledge system using teleportation. The 
main advantage is the fact that only n pairs of Bell states are 
necessary and the disadvantage is the hardness to implement 
Bell state measurement with present technology. Following, 
it was proposed a quantum attack for transference of proof 
of a zero-knowledge system without using Bell states. This 
is possible because, in contrast with the other attacks 
described in this paper, Eve interacts with verifier and 
prover before their interaction. At last, this last attack can be 
implemented with today technology. The attacks are more 
efficient when they do not need the hash function. 
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