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Abstract — This work describes how to implement a non-local xor 

function with coherent-state qubit using only linear optics devices and 

having efficiency equal to 1/2. The key element that makes possible the 

realization of the non-local xor function is a tripartite GHZ-type 

entangled coherent state. Its generation is proposed using an ideal 

lossless setup.1   
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I. INTRODUCTION 

Optical systems is one of the most promising technologies 
that can bring closer the implementation and use of quantum 
communication protocols and quantum computing. Even 
inside of optical technologies, there are different 
possibilities for the qubit implementation, being the single-
photon polarization, phase and time-bin the most commonly 
qubit implementations used [1-5]. Their advantages are the 
facility to produce entangled states through parametric down 
conversion, construction of probabilistic CNOT with 
common optical devices and the easy implementation of 
single-qubit gates. The disadvantage of such qubit 
implementations is the fact that quantum information is 
carried by a single-photon, this makes the system very 
sensitive to losses and it requires good single-photon 
detectors. On the other hand the qubit implementation using 
superposition of coherent states has been proposed [6-9]. 
Such qubit implementation has as advantages the fact that it 
does not need single-photon detectors and the losses in the 
optical devices cause a quantum error (that can be corrected 
by a quantum code) but not destruction of the quantum 
information. Its disadvantages are the hard production of 
coherent state superposition [10-12] and the fact that the 
implementation of single-qubit gates requires the 
teleportation procedure and photon number resolution. In 
this work, we propose an optical setup for implementation 
of the non-local xor function for coherent state quantum 
information processing (CSQIP), including the optical setup 
for generation of the entangled state required by the 
protocol.  

Before starting the main work of this paper, we give a 
short review of CSQIP. Coherent states are eigenstates of 
the annihilation operator â, with complex eigenvalue α, i.e. 
â|α〉 =α|α〉. In CSQIP, the qubit is encoded as |0L〉 =|-α〉 and 

                                                 
11João Batista Rosa Silva and 2Rubens Viana Ramos are with 
1,2Department of Teleinformatic Engineering, Federal University of Ceara 
(UFC) and 1Center of Technological Sciences – Telecommunications 
Engineering University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil, e-
mails: joaobrs@[deti.ufc.br, unifor.br],  rubens@deti.ufc.br.  
 

|1L〉=|α〉 where α is assumed to be real. In this case, one has  
|〈0L|1L〉|

2=|〈-α|α〉|2=exp(-4|α|2). Most of gates in CSQIP 
requires α≥2, thus |〈α|-α〉|2≤1.11254⋅10-7, which gives a 
good approximation for the orthogonality. The main optical 
devices used in the implementation of CSQIP are the beam 
splitter (BS) and the phase modulator (PM). The unitary 

operator of a lossless BS is B=exp[π( † †
1 2 1 2ˆ ˆ ˆ ˆa a a a− )/4]. Thus, 

when two coherent states |α〉1 and |β〉2 enter at the input 
ports of a BS, the total state at the output ports is 
 

( ) ( )
1,2 1,2

, 2 , 2BSα β α β α β→ − + . 

 
From (1), if β=α (β=-α), the vacuum state appears at output 
mode 1(2). Hence, the setup for qubit measurement in the 
canonical basis consist of a BS, two common photodetectors 
(placed at the output ports of the BS) and a local oscillator 
in the state |α〉. The logical state of the measured qubit is 
defined according to in which detector photons were 
received. The PM, by its turn, adds a phase θ  to the signal 
that passes through it. Its unitary operator is 

( ) ( )†ˆ ˆ ˆexpU i a aθ θ=  and it acts like 

 

( )expPM iα θ α→ . 

 
Thus, if θ=π, and the light passing by the PM is a coherent 
state |α〉 (-|α〉), then the output state will be |-α〉 (|α〉), thus, 
the PM with θ=π is a NOT gate in CSQIP.  

The rest of this work is outlined as follows: Section II 
begins with a review of the teleportation of the xor function, 
after, the optical implementation of the non-local XOR 
function using only linear optical devices is presented; at 
last, the conclusions are presented in Section III.  

  
II. TELEPORTATION OF THE XOR FUNCTION BETWEEN 

TWO CLASSCIAL BITS 

 The quantum teleportation of the xor function between 
two classical bits was proposed firstly in [13] and it can be 
used in several protocols as quantum key distribution, error 
correction, control of channel access, among others. The 
main element of this protocol is tripartite GHZ-type state. 
Thus, we initially consider that there are three authorized 
parties of the communication, Alice, Bob and Charlie, 
sharing the following maximally entangled tripartite of qubit 
state: 
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Considering ρA, ρB and ρC as the individual parts of the total 
state |ψ〉, the teleportation of the xor function between two 
classical bits, represented by K (belonging to Alice) and R 
(belonging to Bob) can be achieved using the quantum 
circuit shown in Fig. 1. 
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Fig. 1. Quantum circuit for teleportation of the xor function between two 
classical bits. M1-3 are qubit measurers. 
 
In Fig. 1, M1, M2 and M3 are measurers The initial and final 
states are, respectively, given by: 
 

( )1
000 011 110 101

2in DE ABC ABC ABC ABC
KRΨ = ⊗ + + +  

00 0 01 11

2 11 0 10 1

AB DE C AB CDE

out

AB C AB CDE DE

KR KR

KR KR

 + + 
Ψ =  

+  

 

 
In (5), when the qubits D, E and C are measured, by Alice, 
Bob and Charlie, respectively, the values {110, 101, 000, 
011}DEC are obtained only if bits K and R are equal. On the 
other hand, if K and R are not equal only the values {100, 
111, 010, 001}DEC can be obtained in the measurements. 
Hence, the protocol of quantum teleportation of the xor 
function between two classical bits can be described as 
follows:  
• Alice performs a measurement in the qubit D and she 

sends her result to Charlie using one classical bit. 
•  Bob performs a measurement in the qubit E and he 

sends his result to Charlie using another classical bit. 
• Charlie, by its turn, performs a measurement in his 

qubit. Knowing those three classical information, 
Charlie can know if K and R are equal or not. Hence, 
the xor function between the classical bits belonging to 
Alice and Bob is teleported to Charlie. 

 

The classical bits sent by Alice and Bob inform to Charlie 
not the values of K and R, but if K and R are equal or not to 
the individual states ρA and ρB, respectively.  

As seen before, in order to realize the teleportation of the 
xor function between two classical bits, the first task to be 
done is the generation of the tripartite entangled state (3). In 
CSQIP, the state (3) is rewritten as  

 
( )ααααααααααααψ −+−+−+−−−= ,,,,,,,,2 4

N , 

 

where N=[2(1+
22α−e )]-1/2 is the normalization constant. The 

state (6) can be obtained by application of a Hadamard gate 
in each individual state of the tripartite GHZ state               
(|-α,-α,-α〉+|α,α,α〉)/21/2. This last one can be generated by 
the optical setup proposed in [6,14] and shown in Fig. 2, 
where the beam splitters BS1 and BS2 have, respectively, 
reflectivity equal to 3-1/2 and 2-1/2. 
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Fig. 2. Entanglement generator circuit for GHZ state (|-α,-α,-
α〉+|α,α,α〉)/21/2. 

 
The Hadamard gate in coherent state encoding has to realize 
the transformations |-α〉→(|-α〉+|α〉)/21/2 and  |α〉→(|-α〉-
|α〉)/21/2. This operation takes non-orthogonal states to 
orthogonal states and, hence, it is not unitary. The 
implementation of a Hadamard gate in CSQIP requires the 
realization of a teleportation and it succeeds with probability 
(per turn) depending on α [6]. Thus, the efficiency of 
generation of the state given in (6) using the setup shown in 
Fig. 2 [14] and three Hadamard gates proposed in [6] is not 
very efficient. Thus, we propose the setup in Fig. 3 for 
generation of the state in (6). In Fig. 3, |ξ〉=N(|-α〉+|α〉)/21/2. 
After some trivial calculations, one can find the following 
output state |Ψo〉 before the homodyne detection 
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Fig. 3. Setup for generation of the tripartite entangled state given in (6). 

 
In (7), |Ψu〉 is the useless part that contains the situations 
where detection happen in both or none detectors, D1 and 
D2, in this case, the circuit fails (|∅〉 is the vacuum state). 
From (7) one can also note that when the homodyne 
detector measures |α〉, the output is |ψ〉  and the X gate (PM) 
is disabled. On the other hand, if the result of the 
measurement is |-α〉, then the X gate is activated in order to 
correct the output state, according to (9). The probability of 
success of the setup shown in Fig. 3 is about 1/2 for α ≥ 2. 

Once the required tripartite state was generated, one can 
use the setup in Fig. 4 to implement the quantum circuit 
presented in Fig. 1 and run the non-local xor function 
protocol.  
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Fig. 4. Optical setup for teleportation of the xor function of two classical 
bits. 
 

The input state is [2-1(|-α,-α,α〉+|-α,α,α〉+|α,-α,α〉+|α,α,-
α〉)135]⊗|K〉2⊗|R〉4, where K and R ∈ {-α,α}. The total 
quantum state just before the measurements is  
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The measurers M1 and M2 just detect the presence or 
absence of the light meaning, respectively, bit ‘1’ and bit 
‘0’. Charlie uses a measurer based in homodyne detection. 
Therefore, when the qubits A, B and C are measured, by 
Alice, Bob and Charlie, respectively, the values {110, 101, 
000, 011}ABC are obtained only if qubits K and R are equal. 
On the other hand, if K and R are not equal only the values 
{100, 111, 010, 001}ABC can be obtained by the 
measurement conform described by the quantum 
teleportation protocol of the xor function between two 
classical bits. 
 

III. CONCLUSIONS 

 
Firstly, we proposed a setup for probabilistic generation 

of the tripartite GHZ state (6) that it is used to realize the 
quantum teleportation protocol of the xor function between 
two classical bits. Its success probability is of 1/2. In the 
sequence, we presented a proposal of realization of the 
quantum teleportation protocol of the xor function using 
only linear optical devices with coherent-state qubit. The 
efficiency of the teleporter circuit of the xor function is 1. 
Thus, the total efficiency is 1/2.  
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