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Particle Filtering Applied to Turbo Equalization
with Imperfect Channel Estimation
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Abstract— In this article we propose applying the particle
filtering technique to derive new turbo equalization schemes
under conditions of imperfect channel estimation. We develop
a Soft Input-Soft Output (SISO) equalizer that exploits the
soft information provided in the iterative process in order to
perform fixed-lag smoothing of the transmitted bits, on the
grounds of Sequential Importance Sampling (SIS). Preliminary
simulation results of performance evaluation and comparison
against another alternative recently proposed are provided, for
some scenarios of channel estimation errors. It is shown that the
scheme herein presented performs significantly better when the
estimation error is high.
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Resumo— Neste trabalho propõe-se aplicar a técnica de filtra-
gem de partı́culas para o desenvolvimento de novos esquemas
de turbo equalização, sob a condição de estimação imperfeita
da resposta do canal. Apresenta-se um equalizador SISO (Soft
Input-Soft Output), que explora a informação suave produzida
no processo iterativo para realizar o amaciamento de lag fixo
dos bits transmitidos. Resultados preliminares de simulação são
apresentados para avaliação do desempenho e comparação com
outra alternativa recentemente proposta, considerando diferentes
cenários de erro na estimação do canal. É mostrado que o es-
quema aqui desenvolvido apresenta resultados signficativamente
superiores quando o erro de estimação é alto.

Palavras-Chave— Equalização, Turbo Equalização, Filtragem
de Partı́culas, Amostragem por Importância Sequencial, Amaci-
amento de lag Fixo.

I. INTRODUCTION

Turbo equalization was proposed in [1] and it has been
shown to be an effective technique for combating intersymbol
interference (ISI). The original scheme of [1] employed a SISO
equalizer and a SISO decoder, both based on the maximization
of a posteriori probability (MAP) of symbols, exploiting the
whole sequence of received samples within a frame. It was
shown that the exchange of soft information between these
two processors, after some iterations, improves the transmitted
bits estimates, giving rise to a bit error rate (BER) close to
10−5 for a signal-to-noise ratio (SNR) of 3 dB and severe ISI.

However, the complexity of a MAP equalizer grows expo-
nentially with the modulation constellation size and with the
channel memory length. In order to circumvent this, a class of
linear SISO equalizers was proposed in [2] by replacing the
MAP equalizer with a transversal filter whose coefficients were
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adjusted at the baud rate, using the minimum mean square
error (MMSE) criterion. The proposal of [2] also includes
algorithms for mapping the transversal filters outputs on soft
outputs to be supplied to the decoder. In spite of presenting
a performance degradation typically on the order of 3 dB for
a BER of 10−5 in relation to the MAP equalizer, significant
complexity reduction was obtained.

The aforementioned SISO equalizers proposals were derived
on the basis of perfect channel estimation, which may be an
unrealistic assumption for several scenarious of application,
especially those characterized by time-varying channels. Ai-
ming at dealing with channel estimation errors, a new MMSE
scheme was presented in [3]. However, the proposed scheme
turns out to be similar to the original MMSE turbo equalizer,
the main difference being an artificial increasing in the overall
noise variance in order to take into account the effect of
channel estimation errors.

In order to obtain a better compromise between performance
and computational cost of turbo equalization under conditions
of channel estimation error, we propose in this work to exploit
the ability of particle filtering to address nontrivial problems
of Bayesian estimation (see [4] and the references therein) and
derive a new SISO equalizer to be used under such conditions.

In brief, the particle filtering method is based on appro-
ximating the posterior probability density function (pdf) of
interest by samples that are drawn from another conveniently
chosen pdf, usually called importance density (or importance
distribution). The samples, or “particles”, are weighted by pro-
perly computed importance weights, and the pdf so obtained
is employed for estimating the random parameters of interest.
This method, also called Sequential Importance Sampling
(SIS), propagates recursively the posterior pdf with the arrival
of a new observation data by using a Bayesian update rule .

Our guess is that a well designed particle filtering scheme
for SISO equalization with channel estimation errors may
efficiently take advantage of the soft information provided
by the SISO decoder and sequentially give back extrinsic
information to this decoder. Following this reasoning, we
derive in this work a fixed-lag smoothing of the transmitted
symbols taking into account the statistics of channel estimation
errors, on the grounds of SIS theory. In respect of the impor-
tance distribution, we derive for the problem of interest the
importance function proposed in [5], which was shown to be
optimum in the sense of minimizing the conditional variances
of the importance weights.

Some preliminary results of bit error rate (BER) perfor-
mance evaluation of the propoed turbo equalizer are presented,
using Kalman filtering for channel estimation, under different
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conditions of signal-to-noise ratio and duration of the esti-
mation period. These results show that the proposed SISO
equalizer is an effective tool for dealing wih imperfect channel
estimation within turbo equalizers. It is also shown that the
scheme herein proposed outperforms the MMSE equalizer
proposed in [3], when the channel estimation errors get more
significant.

The remaining of the paper is organized as follows. The
communication system model adopted in this work is pre-
sented in Section II. A description of the proposed SISO
equalizer is given in Section III. A performance evaluation and
comparison with the MMSE turbo equalizer of [6] is provided
in Section IV. Finally, concluding remarks are given in section
V.

II. SYSTEM MODEL

We consider the following baseband transmission system
model. The binary data sequence to be transmitted is encoded
using a Forward Error Correction (FEC) code and randomly
interleaved before being mapped to a Q-ary signal constel-
lation. The resulting data sequence is partitioned into blocks
(frames) of length P and known symbols (training sequence)
are added to the encoded sequence in order to enable the
receiver to estimate the channel impulse response.

The symbol frames are transmitted over a channel which
introduces additive noise and ISI. The relationship between
the receiver input yn and the transmitted symbols can then be
given by

yn = xT
nh + ωn, (1)

where h = [h1, . . . , hL]T represents the baseband channel
impulse response which is assumed to be of finite length L and
with a fading rate sufficiently slow so that h may be considered
as time-invariant during the frame duration. The vector xn =
[xn, xn−1, . . . , xn−L+1]T contains the transmitted symbols
from time instant n up to n − L + 1, and ωn is a zero-
mean circularly complex white Gaussian noise, independent
of {xn}, with variance denoted by σ2

ω. We assume that the
probability mass function (pmf) p(xn) of each transmitted data
symbol is known to the equalizer, corresponding to the soft
information provided by the decoder. Moreover, assuming that
an ideal interleaver is used, the transmitted symbols xn are
considered to be mutually independent.

At the receiver, the channel impulse response is not available
and a channel estimation technique, using the received training
sequence, is employed to provide to the equalizer an estimate
ĥ of the channel response and the error covariance matrix of
the estimation given by Qh = E[(h− ĥ)(h− ĥ)T ].

III. SIS FIXED-LAG SMOOTHING FOR TURBO
EQUALIZATION WITH ESTIMATED CHANNEL IMPULSE

RESPONSE

In this section our aim is to develop a novel SISO equa-
lization scheme based on a particle filtering algorithm. We
consider as inputs the set of observations {yn}P

0 , the a priori
probability of symbols p(xn), the estimated channel response
ĥ and its corresponding error covariance matrix Qh. As
output, the equalizer forwards to the decoder the extrinsic

information by computing the a posteriori pmf (APP) of each
symbol given the estimated channel impulse response. That
is, provided that the true channel impulse response is not
available to the receiver, our approach is to compute the APP
conditioned to the estimate of h obtained from the training
period.

We adopt here a SIS fixed-lag smoothing methodology, i.e.,
we compute recursively p(xn|y1:n+M , ĥ), where M > 0 is
some fixed delay, by assuming that the a posteriori joint pmf
of symbols x1:n = {x1, . . . , xn}1 can be approximated by

p(x1:n|y1:n+M , ĥ) ≈
N∑

i=1

λi
nδ(x1:n − xi

1:n) , (2)

where λi
n, i = 1, . . . , N (N >> 1), is the importance weight

associated to the i-th particle trajectory xi
1:n generated by

importance sampling, and δ(.) is the Kronecker delta. Each
weight at time instant n is computed from [4]

λi
n ∝

p(xi
1:n|y1:n+M , ĥ)

q(xi
1:n|y1:n+M , ĥ)

, (3)

where q(.) is the importance distribution. Further, if we assume
that this density can be factored as

q(x1:n|y1:n+M , ĥ) =

q(xn|x1:n−1, y1:n+M , ĥ)q(x1:n−1|y1:n+M−1, ĥ) , (4)

and observing that the posterior pmf of symbols can be
decomposed into

p(x1:n|y1:n+M , ĥ) =

= p(xn|x1:n−1, y1:n+M , ĥ)p(x1:n−1|y1:n+M , ĥ)

=
p(xn|x1:n−1, y1:n+M , ĥ)p(yn+M |x1:n−1, y1:n+M−1, ĥ)

p(yn+M |y1:n+M−1, ĥ)
× p(x1:n−1|y1:n+M−1, ĥ)

(5)

we may recursively obtain the weight λi
n according to

λi
n ∝

∝ p(xi
n|xi

1:n−1, y1:n+M , ĥ)p(yn+M |xi
1:n−1, y1:n+M−1, ĥ)

q(xi
n|xi

1:n−1, y1:n+M , ĥ)

× p(xi
1:n−1|y1:n+M−1, ĥ)

q(xi
1:n−1|y1:n+M−1, ĥ)︸ ︷︷ ︸

λi
n−1

(6)

In order to minimize the conditional variance of the im-
portance weights (as shown in [5]), we choose the following
importance distribution

q(xn|xi
1:n−1, y1:n+M , ĥ) = p(xn|xi

1:n−1, y1:n+M , ĥ) . (7)

So the importance weight is evaluated by

λi
n ∝ p(yn+M |xi

1:n−1, y1:n+M−1, ĥ)λi
n−1 . (8)

1A similar notation will be further used for other variables, e.g., y1:n =
{y1, . . . , yn}.
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We now address the computation of (7) and (8), and next
we present the LLR evaluation from the posterior distribution
of symbols.

A. Evaluation of Importance pmf
Following the principle of SIS, at each time instant n and

for each trajectory xi
1:n−1, we must draw a new particle xi

n

according to (7). This pmf can be evaluated by

p(xn|xi
1:n−1, y1:n+M , ĥ) =

=
p(yn:n+M |xn, xi

1:n−1, y1:n−1, ĥ)p(xn|xi
1:n−1, y1:n−1, ĥ)

p(yn:n+M |xi
1:n−1, y1:n−1, ĥ)

∝ p(yn:n+M |xn, xi
1:n−1, y1:n−1, ĥ)p(xn) .

(9)

The pmf p(xn) is known, whereas the computation of the
function p(yn:n+M |xn, xi

1:n−1, y1:n−1) requires some alge-
braic manipulations. To perform it we initially write

p(yn:n+M |xn,xi
1:n−1, y1:n−1, ĥ) =

∑
xn+1

. . .
∑

xn+M

[
M∏

k=1

p(xn+k)

]
× p(yn:n+M |ĥ,θi

n) (10)

where we have denoted θi
n , {xn:n+M , xi

1:n−1, y1:n−1}. We
assume that p(h|ĥ,θi

n) = p(h|ĥ) and this density is Gaussian
with parameters (ĥ,Qh) provided by the channel estimation
algorithm. Therefore, given eq. (1), we may readily see that2

p(yn:n+M |ĥ, θi
n) =

= N(yn:n+M ;Xi
n+M ĥ,Xi

n+MQh(Xi
n+M )H + Λy), (11)

where

Xi
n+M =




(xi
n+M )T

(xi
n+M−1)

T

...
(xi

n)T


 (12)

being xi
n+j = [xi

n+j , x
i
n+j−1, . . . , x

i
n+j−L+1] and Λy =

σ2
ωIM+1. The matrix IM+1 is the (M + 1) × (M + 1)

identity matrix. When defining Xi
n+M , we have set xi

m ,
[x̃m, x̃m−1, . . . , x̃m−M+1]T , for n + M ≤ m ≤ n, where
x̃k = xi

k if k ≤ n− 1 and x̃k = xk if n ≤ k ≤ n + M .
Combining the expressions (9), (10) and (11), we finally

arrive at the importance distribution

p(xn|xi
1:n−1, y1:n+M , ĥ) =

p(xn)
∑
xn+1

. . .
∑

xn+M

[
M∏

k=1

p(xn+k)

]
N(yn+M :n; µi

y,Σi
y)

∑
xn

p(xn)
∑
xn+1

. . .
∑

xn+M

[
M∏

k=1

p(xn+k)

]
N(yn+M :n;µi

y,Σi
y)

,

(13)

where µi
y , Xi

n+M ĥ and Σi
y , Xi

n+MQh(Xi
n+M )H + Λy.

2N(α, µ,Σ) denotes a Gaussian pdf with argument α and parameters
(µ,Σ).

B. Evaluation of Importance Weight

We may easily see that the incremental weight given by
λ̃i

n , p(yn+M |xi
1:n−1, y1:n+M−1, ĥ) may be computed from

λ̃i
n =

p(yn:n+M |xi
1:n−1, y1:n−1, ĥ)

p(yn:n+M−1|xi
1:n−1, y1:n−1, ĥ)

. (14)

It is worthy to note that the numerator of (14) is equal to the
denominator of (13), i.e.,

p(yn:n+M |xi
1:n−1, y1:n−1, ĥ) =

∑
xn

. . .
∑

xn+M

[
M∏

k=0

p(xn+k)

]
N(yn+M :n; µi

y,Σi
y) (15)

therefore the additional computation burden when evaluating
the weight by using (14) is due solely to the computation of
p(yn:n+M−1|xi

1:n−1, y1:n−1, ĥ), which may be done by

p(yn:n+M−1|xi
1:n−1, y1:n−1, ĥ) =

∑
xn

. . .
∑

xn+M−1

[
M−1∏

k=0

p(xn+k)

]
N(yn+M−1:n; µi

y−,Σi
y−) ,

(16)

in which µi
y− is the M × 1 subvector of µi

y with the first
element missing, and Σi

y− is the M × M submatrix of Σi
y

with the first row and first column missing.
Substituting (15) and (16) into (14) we then can write the

following expression to compute the incremental weights

λ̃i
n =

∑
xn

. . .
∑

xn+M

[
M∏

k=0

p(xn+k)

]
N(yn+M :n;µi

y,Σi
y)

∑
xn

. . .
∑

xn+M−1

[
M−1∏

k=0

p(xn+k)

]
N(yn+M−1:n;µi

y−,Σi
y−)

.

(17)
In order to lessen the computational complexity when

evaluating (17), we may compute both the inverse and the
determinant of Σi

y from the values found for Σi
y− [7].

C. LLR Evaluation

Once evaluated the symbol posterior pmf, the equalizer with
the help of the demapper [8] is able to forward to the decoder
the extrinsic information about each coded bit cn, i.e.,

LE(cn) = ln
p(cn = 1|y1:n+M , ĥ)

p(cn = 0|y1:n+M , ĥ)
− ln

p(cn = 1)
p(cn = 0)

, (18)

where the second term in the right-hand side of (18) is the a
priori LLR received from the decoder. Nevertheless, because
of the intrinsic randomness of the particle filtering method, it
is possible that at any moment all drawn particles representing
the support of the posterior pdf yield p(cn = 1|y1:n+M , ĥ) =
1 or p(cn = 0|y1:n+M , ĥ) = 1, leading to a LE(cn) of
infinity modulus. In fact, this is likely to happen when the
turbo process evolves and the a priori LLR received from the
decoder becomes high. The solution adopted here in order to
circumvent this problem, whenever it occurs, is to artificially
assign

LE(cn) = 4φ(cn) (19)
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where the function φ is defined as φ(1) = 1 and φ(0) =
−1. Assigning LE(cn) with such value, the corresponding a
priori probability of cn received by the decoder is P (cn =
φ−1(LE(cn)/4)) = e4/(1 + e4) ≈ 0.982. That is, this
information to the decoder somehow confirms its belief (ex-
pressed by the high LLR value sent to the equalizer) about the
likelihood of cn. We remark that (19) was set empirically and
further performance improvement can be attained by a careful
investigation of this issue, which will be carried out in the
continuation of this work.

IV. SIMULATION AND RESULTS

We present in this section the performance evaluation of the
SISO equalizer proposed in this paper, embedded in a turbo
equalization receiver which estimates the channel impulse
response through a preamble of known symbols. For the sake
of comparison, we implement as well a turbo receiver with
the MMSE SISO equalizer as proposed in [3], which also
incorporates channel estimation errors into the equalization
algorithm.

The following setup was used. A set of 256 data bits is ran-
domly generated and encoded using a 1/2-rate convolutional
encoder with generator (1+D2, 1+D +D2). Next the coded
bits are interleaved and mapped to ±1 symbols (BPSK). To
the sequence of 512 symbols (plus the coder overhead), we
add a preamble of known BPSK symbols. In order to evaluate
the receivers performances under different degrees of channel
estimation precision, we used 20 and 40-symbol preambles
in the simulation runs. The frame is then transmitted over
a time-invariant ISI channel of length 3, whose coefficients
are independent samples of a zero-mean Gaussian distribution
with unitary variance. Finally, zero-mean white Gaussian noise
with variance σ2

ω = N0/2 is added to the received symbols.
At the receiver, the channel impulse response is estimated by

using a Kalman algorithm where the considered process and
observation equations are respectively given by hn+1 = hn

and by eq. (1). The received preamble is used as the set of
observations to the estimation algorithm. Figure 1 depicts the
Mean Square Error (MSE) of channel estimation (MSE =
E[(h − ĥ)T (h − ĥ)]) when the preamble length is varied at
Eb/N0 =0, 2 and 3 dB. Since h is a priori Gaussian , and a
Kalman filter is used as the channel estimator with Gaussian
observation noise, we remark that p(h|ĥ) is Gaussian and the
analysis developed in III is well adjusted to the simulation
scenario.

Given the estimated channel response and the error cova-
riance matrix, the equalizer outputs soft information on each
unknown symbol, which are then deinterleaved and decoded
by using a BCJR algorithm. The fixed-lag particle smoothing
algorithm is implemented with M = 3, and N = 50 samples
are used to approximate the posterior symbol pmf. With the
aim of combatting the so-called degeneracy problem of particle
filtering, we used the method of resampling [4][9] whenever
the effective sample size (Neff ≈ (

∑N
i=1(λ

i
n)2)−1) falls

below N/3. This threshold was set empirically. By its turn,
the linear MMSE equalization is carried out using 9 noncausal
and 5 causal coefficients.

The BER performances of the turbo receiver with the
Particle Filter Fixed Lag (PF-FL) and MMSE equalizers are
shown in Figures 2 and 3, respectively for the cases where
the frame preamble contains 20 and 40 symbols. The BER
plots are made at various Eb/N0 ratios, corresponding to the
results obtained for the first and fourth iterations of the turbo
process, after the transmission of 500 blocks (i.e. 128,000
bits). For each transmitted block, the channel impulse response
is independently drawn as described before.
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Fig. 1. MSE of channel estimation.

From the Figure 2 it can be seen that the two schemes have
similar performance for the first iteration, but the receiver with
the PF-based equalizer presents superior performance after
four iterations of the turbo process. At a BER of 1.5× 10−3,
there is a difference of about 1 dB between the two plots, and
this gap tends to increase for higher signal-to-noise ratios.

When a preamble of 40 symbols is used to estimate the
channel impulse response, the MSE of channel estimation
decreases to approximately the half of the value obtained for
a 20-symbol preamble, as shown in Figure 1. In this case,
Figure 3 shows that after 4 iterations the turbo receiver using
the MMSE equalizer outperforms our proposal, with a perfor-
mance difference of about 0.5 dB at BER ≈ 6×10−5. That is,
when the channel error is less significant, the approximations
introduced in [3] have less impact on the overall performance
of MMSE equalizer.

From Figure 3 it is also interesting to note that the scheme
here proposed presents better results than the MMSE receiver
in the first iteration, except at low values of SNR. This beha-
vior may indicate that the LLR mapping defined in eq. (19) is
somehow degradating the soft information flow between the
equalizer and the decoder. As mentioned before, this point
requires a deeper investigation which will be done in future
works.

V. CONCLUSIONS

We have developed a novel technique for SISO equalization
with imperfect channel estimation, using the particle filtering
approach with fixed-lag smoothing. Provided that the channel
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estimation error is a Gaussian random vector with known
covariance matrix, the algorithm is able to incorporate the
estimation error in the the evaluation of the posterior sym-
bol pmf. By contrast, other proposals such as the MMSE-
based equalizer shown in [3], deal with the channel errors
considering some simplifying assumptions into the original
method. The simulation results showed that when the channel
estimation error is significant, the scheme presented here
outperforms the proposal of [3]. When the error decreases, our
approach looses performance when compared to the MMSE-
based receiver, possibly due to a misadjusted LLR mapping.
This is an initial work which have shown promising results,
and further developments and investigations will be soon
carried out in future submissions.
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Fig. 2. BER performance of turbo receivers with PF-FL and MMSE
equalizers when the training sequence has 20 symbols.
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[6] R. Otnes and M. Tüchler, “Low-complexity turbo equalization for time-
varying channels,” in Proc. IEEE Veh. Technol Conf (Spring), May 2002,
pp. 140–144.

[7] F. A. Graybill, Matrices with Applications in Statistics. USA:
Wadsworth, Inc., 1983.
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