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Chain of finite rings and construction
of BCH Codes

Antonio Aparecido de Andrade, Tariq Shah and Attiq Qamar

Abstract— For a non negative integer t, let A0 ⊂ A1 ⊂
· · · ⊂ At−1 ⊂ At be a chain of unitary commutative rings,
where each Ai is constructed by the direct product of suitable
Galois rings with multiplicative group A∗

i of units, and K0 ⊂
K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt be the corresponding chain of unitary
commutative rings, where each Ki is constructed by the direct
product of corresponding residue fields of given Galois rings, with
multiplicative groups K∗

i of units. This correspondence presents
four different type of construction techniques of generator poly-
nomials of sequences of BCH codes having entries from A∗

i and
K∗

i for each i, where 0 ≤ i ≤ t. The BCH codes constructed in
[1] are limited to given code rate and error correction capability,
however, proposed work offers a choice for picking a suitable
BCH code concerning code rate and error correction capability.

Keywords— Units of local ring, BCH code, McCoy rank, direct
product of local rings.

I. INTRODUCTION

Linear codes over finite rings have been discussed in a
series of papers initiated by Blake [2], [3], Spiegel [4], [5] and
Forney et al. [6]. The structure of the multiplicative group of
unit elements of certain local finite commutative rings have
recently raised a great interest for its wonderful application
in algebraic coding theory. Using the multiplicative group of
unit elements of a Galois ring extension of Zpm , Shankar [7]
has constructed BCH codes over Zpm . Moreover, Andrade
and Palazzo [1] have further extend these constructions of
BCH codes over finite commutative rings with identity. Both
construction techniques of [1] and [7] have been addressed
from the approach of specifying a cyclic subgroup of the group
of units of an extension ring of finite commutative rings. The
complexity of study is to get the factorization of xs − 1 over
the group of units of an appropriate extension ring of the given
local ring.

Let A be a finite commutative ring with identity. The ring
An, with n ∈ Z+, being a free A-module preserve the concept
of linear independence among its elements is similar to a
vector space over a field. Though it is the constraint that
an r × r submatrix of r × n generator matrix M over A is
non-singular, or equivalently, has determinant unit in A. The
existence of non-singular matrices having not obligatory the
unit elements is, in fact the primary obstacle in working over
a local ring instead of a field. The notion of elementary row

Antonio Aparecido de Andrade - Department of Mathematics, São Paulo
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operations in a matrix, and its consequences, also carry over
A with the understanding that only multiplication of a row by
a unit element in A is allowed, which is in contrast to the
multiplication by any nonzero element in the case of a field.
The structure of the multiplicative group of units of A is the
main motivation to calculate the McCoy rank [8] of a matrix
M , that is, the largest integer r such that r × r submatrix of
M has determinant unit in the ring A.

Andrade and Palazzo [9] describe a construction technique
of a matrix

M =


α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αk
1 αk

2 · · · αk
n

 (1)

based on the vector η = (α1, α2, · · · , αn) with αi, for 1 ≤
i ≤ n, are distinct units in the unitary local ring A such that
1 − αj , for 1 ≤ j ≤ l, are units. By this, one can obtain the
McCoy rank of the matrix M . Whereas the findings of these
types of units is linked with the multiplicative group A∗ of
units of the ring A.

For h = bt, where b is prime and t is a positive integer, there
exist corresponding Galois ring extensions Ri = GR(pm, hi),
where 0 ≤ i ≤ t and hi = bi (respectively, there exist residue
fields Ki, where 0 ≤ i ≤ t and hi = bi) of unitary local
ring (R,M) with pm elements (respectively, p elements and
residue field R/M). For each i, for 0 ≤ i ≤ t, it follows
that R∗i has one and only one cyclic subgroup Gni

of order
ni (divides phi − 1) relatively prime to p (an extension of [7,
Theorem 2]). Furthermore, if βi generates a cyclic subgroup
of order ni in K∗i , then βi generates a cyclic subgroup of order
nidi in R∗i , where di is an integer greater than or equal to 1,
and (βi)di generates a cyclic subgroup Gni in R∗i for each
i [7, Lemma 1]. So by extending the given algorithm [7] for
constructing a BCH-type codes with symbols from the local
ring A for each member in chains of Galois rings and residue
fields, respectively. Consequently there are two situations: si =
bi for i = 2 or si = bi for i ≥ 2. By these motivations in this
paper for any t ∈ Z+, if A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At is a
chain of unitary commutative rings, then for each i, such that
0 ≤ i ≤ t, it follows that Ai is a direct product of Galois
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rings, i.e.,

A0 = R0,1 × R0,2 × · · · × R0,r

∩ ∩ ∩ ∩
A1 = R1,1 × R1,2 × · · · × R1,r

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩
At = Rt,1 × Rt,2 × · · · × Rt,r.

Moreover, R0,j ⊂ R1,j ⊂ · · · ⊂ Rt−1,j ⊂ Rt,j , for each
1 ≤ j ≤ r, is a chain of Galois rings. In type I, for each
i, where 0 ≤ i ≤ t, it follows that Ri,j = Ri,j+1, where
1 ≤ j ≤ r, while in type II, we have different Ri,j with same
characteristic p. In type III and IV, we take different Ri,j with
different characteristic pj , where 1 ≤ j ≤ r.

Corresponding to the chain A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At,
K0 ⊂ K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt there is a chain of rings
constituted through the direct product of their residue fields,
i.e.,

K0 = K0,1 × K0,2 × · · · × K0,r

∩ ∩ ∩ ∩
K1 = K1,1 × K1,2 × · · · × K1,r

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩
Kt = Kt,1 × Kt,2 × · · · × Kt,r.

Moreover, K0,j ⊂ K1,j ⊂ · · · ⊂ Kt−1,j ⊂ Kt,j , for each
1 ≤ j ≤ r, is a chain of corresponding residue fields. In type
I and II, we have Ki,j = Ki,j+1 and different in remaining
types. Therefore, A∗i and K∗i , for each i, where 0 ≤ i ≤ t, are
multiplicative groups of units of Ai and Ki, respectively.

II. BASIC RESULTS

Assume that (R,M) is a finite unitary local commutative
ring with residue field K = R

M
∼= GF (pm), where p is a

prime integer, m a positive integer. The natural projection
π : R[x] → K[x] is defined by π(

∑n
i=0 aix

i) =
∑n

i=0 aix
i,

where ai = ai + M for i = 0, · · · , n. Thus, the natural ring
morphism R → K is simply the restriction of π to the constant
polynomials.

In the following, we recall some definitions and results from
[8] for the sake of quick reference.

Definition 1: Let a(x) be a polynomial in R[x]. We say that
1) a(x) is a unit if there exist a polynomial b(x) ∈ R[x]

such that a(x)b(x) = 1.
2) a(x) 6= 0 is a zero divisor if there exist a polynomial

b(x) ∈ R[x]\{0} such that a(x)b(x) = 0.
3) a(x) is regular if a(x) is not a zero divisor.
4) a(x) is irreducible if a(x) is not a unit and if a(x) =

a1(x)a2(x), then either a1(x) is a unit or a2(x) is a
unit.

Theorem 1: [8, Theorem XIII.2] Let (R,M) be a local ring
and a(x) =

∑n
i=0 aix

i ∈ R[x]. The following assertions are
equivalent.

1) a(x) is regular.

2) < a1, a2, · · · , an >= R.
3) ai is a unit for some i, for 0 ≤ i ≤ n.
4) π(a(x)) 6= 0.
Theorem 2: [8, Theorem XV.1] Let (R,M) be a local ring

and a(x) be a regular polynomial in R[x] such that π(a(x))
has a simple (i.e., non multiple) zero ᾱ in K. Then a(x) has
one and only one zero α with π(α) = ᾱ.

Theorem 3: [8, Theorem XIII.7] Let (R,M) be a local ring
and a(x) is regular polynomial in R[x] such that π(a(x)) is
irreducible in K[x]. Then a(x) is irreducible in R[x].

Let Aj be a finite local ring with characteristic pj , for each
j such that 1 ≤ j ≤ r. Let Kj be the residue fields of local
rings Rj = Aj [x]/(fj(x)), where fj(x) is a basic irreducible
polynomial over Aj of degree h, for each j such that 1 ≤ j ≤
r.

Theorem 4: [1, Theorem 3.3] If R = R1×R2×R3×· · ·×
Rr, where each Rj is a local finite commutative Galois ring
with characteristic pj , then R∗ = R∗1 ×R∗2 ×R∗3 × · · · ×R∗r .

Following theorem indicates the condition under which xs−
1 can be factored over R∗.

Theorem 5: [1, Theorem 3.4] The polynomials xs − 1 can
be factored over the multiplicative group R∗ as xs − 1 =
(x − α)(x − α2) · · · (x − αs) if, and only if, βj has order
s in K∗j , where gcd(s, pj) = 1 and α corresponds to β =
(β1, β2, · · · , βr), where j = 1, 2, 3, · · · , r.

Theorem 6: [1, Theorem 3.5] For any positive integer l,
let Ml(x) be the minimal polynomial of αl over R, where
α generates Hα,n. Then Ml(x) =

∏
ξ∈Bl

(x − ξ), where Bl

are all distinct elements of the sequence {(αl)m : m =∏r
j=1 q

sj

j , qj = p
mj

j , 0 ≤ sj ≤ h− 1}.
Theorem 7: [1, Theorem 2.5] If g(x) is a generator poly-

nomial of a BCH code over A with length n = s such that
αe1 , αe2 , · · · , αen−k are the roots of g(x) in Hα,n, where α
has order n, then minimum Hamming distance of the code is
greater than the largest number of consecutive integers modulo
n in E = {e1, e2, e3, · · · , en−k}.

III. CODES OVER CHAIN OF DIRECT PRODUCT OF FINITE
GALOIS RINGS I

Let (A,M) be a unitary finite local commutative ring
with residue field K = A

M having pm elements. The natural
projection π : A[x] → K[x] is defined by π(

∑n
i=0 aix

i) =∑n
i=0 akxi, where ai = ai + M for i = 0, 1, · · · , n. Thus

the natural ring morphism A → K is simply the restriction
of π to the constant polynomials. Now, if f(x) ∈ A[x] is
a basic irreducible polynomial with degree h = bt, where b
is a prime and t is a positive integer, then R = A[x]

(f(x)) =
GR(pm, h) is the Galois ring extension of A and K = R

M =
A[x]/(f(x))

(M,f(x))/(f(x)) = A[x]
(M,f(x)) = (A/M)[x]

(π(f(x))) = GF (pmh) is residue
field of R, where M = (M,f(x))/(f(x)) is the maximal
ideal of R.

For the construction of a chain of Galois rings, the following
lemma is of central importance.

Lemma 1: [8, Lemma VII] Every subring of GR(pk, s) is
a Galois ring of the form GR(pk, s′), where s′ divides s.
Conversely, if s′ divides s, then GR(pk, s) contains a unique
copy of GR(pk, s′).
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The elements 1, b, b2, · · · , bt−1, bt are divisors of h, and
so taking h0 = 1, h1 = b, h2 = b2, · · · , ht = bt = h,
it follows, by [8, Lemma XVI.7], that there exist basic
irreducible polynomials f1(x), f2(x), · · · , ft(x) ∈ A[x] with
degrees h1, h2, · · · , ht, respectively, such that we can consti-
tute the Galois subrings Ri = A[x]

(fi(x)) = GR(pm, hi), for
each i, where 1 ≤ i ≤ t, of R with the maximal ideals
Mi = (M,fi(x))/(fi(x)), for 1 ≤ i ≤ t. Thus, the residue
fields of each Ri becomes

Ki = Ri

Mi
= A[x]/(fi(x))

(M,fi(x))/(fi(x)) = A[x]
(M,fi(x))

= (A/M)[x]
(π(fi(x))) = K[x]

(f̄i(x))
= GF (phi).

As hi divides hi+1 for all 0 ≤ i ≤ t, it follows, by [8, Lemma
XVI.7], that there is a chain

A = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rt−1 ⊂ Rt = R

of Galois rings with corresponding chain of residue fields

Zp = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ K.

If Ai = Rr
i , for 0 ≤ i ≤ t, then we obtain a chain of another

unitary commutative rings, i.e.,

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with a corresponding chain of rings

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kt−1 ⊆ Kt = K,

where each Ki = Kr
i for 0 ≤ i ≤ t.

Let A∗i and K∗i be the multiplicative group of units of
Ai and Ki, respectively, for 0 ≤ i ≤ t. The next theorem,
extends [8, Theorem XVIII.1] and plays fundamental role in
the decomposition of the polynomial xsi−1 into linear factors
over the rings A∗i . This theorem asserts that for each element
αi ∈ A∗i there exist unique elements βi ∈ R∗i , for 0 ≤ i ≤ t,
such that αi = (βi, βi, · · · , βi) is an ordered r-tuples.

Theorem 8: If Ai = Rr
i , for 0 ≤ i ≤ t, where each Ri is

a local finite commutative ring, then A∗i = (R∗i )r.
Following theorem indicates the condition under which

xsi − 1 can be factored over A∗i , for 0 ≤ i ≤ t.
Theorem 9: For 0 ≤ i ≤ t, the polynomials xsi − 1 can be

factored over the multiplicative groups A∗i as xsi − 1 = (x−
αi)(x−α2

i ) · · · (x−αsi
i ) if and only if βi has order si = phi−1

in K∗i , where gcd(si, p) = 1 and αi = (βi, βi, · · · , βi).
Proof. Suppose that the polynomials xsi − 1 can be factored
over A∗i as xsi − 1 = (x − αi)(x − α2

i ) · · · (x − αsi
i ). Then

xsi − 1 can be factored over R∗i as xsi − 1 = (x − βi)(x −
β2

i ) · · · (x − βsi
i ), for 0 ≤ i ≤ t. Now, it follows from the

extension of [7, Theorem 3] that βi has order si in K∗i , for
0 ≤ i ≤ t. Conversely, suppose that βi has order si in K∗i ,
for 0 ≤ i ≤ t. Again, it follows from the extension of [7,
Theorem 3] that the polynomials xsi − 1 can be factored over
R∗i as xsi −1 = (x−βi)(x−β2

i ) · · · (x−βsi
i ), for 0 ≤ i ≤ t.

Since αi = (βi, βi, · · · , βi), for 0 ≤ i ≤ t, it follows that
xsi−1 = (x−αi)(x−α2

i ) · · · (x−αsi
i ) over A∗i , for 0 ≤ i ≤ t.

Corollary 1: [1, Theorem 3.4] The polynomials xs− 1 can
be factored over the multiplicative group R∗ as xs − 1 =
(x − α)(x − α2) · · · (x − αs) if and only if βj has order

s in K∗j , where gcd(s, pj) = 1 and α corresponds to β =
(β1, β2, · · · , βr), where j = 1, 2, 3, · · · , r.

Let Hαi,si
denotes the cyclic subgroup of A∗i generated

by αi, for each i, where 0 ≤ i ≤ t, i.e., Hαi,si
contains all

the roots of xsi − 1 provided the condition of Theorem 9 are
met. The BCH codes Ci over A∗i can be obtained as the direct
product of BCH codes over R∗i . To construct a cyclic BCH
codes over A∗i , we need to choose certain elements of Hαi,ni ,
where ni = si, as the roots of generator polynomials gi(x) of
the codes. So that, αe1

i , αe2
i , αe3

i , · · · , αeni−ki
i are all the roots

of gi(x) in Hαi,ni
. We construct gi(x) as

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)},

where M
eli
i (x) are the minimal polynomials of α

eli
i , for

li = 1, 2, · · · , ni−ki, where each α
eli
i = (β

eli
i , β

eli
i , · · · , βeli

i ).
The following theorem extended [7, Lemma 3] and provides a
method for construction of M

eli
i (x), the minimal polynomials,

of α
eli
i over the ring Ai.

Theorem 10: For each i, where 0 ≤ i ≤ t, let M
eli
i (x)

be the minimal polynomials of α
eli
i over Ai, where α

eli
i

generates Hαi,ni , for li = 1, 2, · · · , ni − ki. Then M
eli
i (x) =∏

ξi∈B
li
i

(x − ξi), where Bli
i = {(αeli

i )pqi : 1 ≤ li ≤
ni − ki, 0 ≤ qi ≤ hi − 1}.
Proof. Let M

eli
i (x) be the projection of M

eli
i (x) over the

fields Ki and M
eli
i (x) be the minimal polynomial of α

eli
i over

K∗i , for each i such that 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki.
We can verify that each M

eli
i (x) (minimal polynomials of

α
eli
i ) is divisible by M

eli
i (x) (minimal polynomials of β

eli

i ),
for each i such that 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki.
So among its roots, it has distinct elements of the sequence
α

eli
i , (α

eli
i )p, (α

eli
i )p2

, · · · , (αeli
i )phi−1

, for each i such that
0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. Consequently, the
polynomial M

eli
i (x) has, among its roots, distinct elements

of the sequence α
eli
i , (α

eli
i )p, (α

eli
i )p2

, · · · , (αeli
i )p(hi−1)

, for
0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. Thus, any element
ξi = (α

eli
i )pqi of the above sequence is a root of M

eli
i (x),

for 0 ≤ i ≤ t, such that 0 ≤ qi ≤ hi−1 and 1 ≤ li ≤ ni−ki.
Hence, M

eli
i (x) =

∏
ξi∈B

li
i

(x− ξi).
Remark 1: For each i such that 0 ≤ i ≤ t, it follows

that the minimal polynomial M
eli
i (x) of α

eli
i is the projection

of M
eli
i (x) (minimal polynomial of α

eli
i ) over the rings Ki.

So M
eli
i (x) generates the sequence of codes over the special

chain of rings Ki = Kr
i .

The lower bound on the minimum distances derived in the
following theorem applies to any cyclic code. The BCH codes
are a class of cyclic codes whose generator polynomials are
chosen so that the minimum distances are guaranteed by this
bound. In this sense, the following theorem generalizes [1,
Theorem 2.5].

Theorem 11: Let A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At

be the chain. For each i such that 0 ≤ i ≤ t, if gi(x) is the
generator polynomial of BCH code Ci over Ai with length
ni = si such that αe1

i , αe2
i , · · · , αeni−ki

i are the roots of gi(x)
in Hαi,ni , where αi has order ni, then the minimum Hamming
distance of Ci is greater than the largest number of consecutive
integers modulo ni in Ei = {e1, e2, e3, · · · , eni−ki

}.
Proof. For each i, where 0 ≤ i ≤ t, let {ki, ki + 1, ki +
2, · · · , ki + di − 2} be the largest set of consecutive integers
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modulo ni in the set Ei. A sequence of cyclic code with roots
αe1

i , αe2
i , αe3

i , · · · , αeni−ki
i is the null space of the matrix

Mi =


1 αe1

i (αe1
i )2 · · · (αe1

i )ni−1

1 αe2
i (αe2

i )2 · · · (αe2
i )ni−1

...
...

...
. . .

...
1 α

eni−ki
i (α

eni−ki
i )2 · · · (α

eni−ki
i )ni−1

 .

Now, if no linear combination of di−1 columns of the matrix

M∗
i =

2
6664

1 αki
i (αki

i )2 · · · (αki
i )ni−1

1 αki+1
i (αki+1

i )2 · · · (αki+1
i )ni−1

...
...

...
. . .

...
1 αki+di−2

i (αki+di−2
i )2 · · · (αki+di−2

i )ni−1

3
7775

is zero, then clearly no linear combination of di−1 columns of
each Mi is zero and by the extended form of [10, Corollary
3.1], it follows that each code has minimum distance di or
greater. This can be seen by examining the determinants of
any di − 1 columns of matrices M∗

i . Let following matrix is
the collection of any set of di − 1 columns of matrix M∗

i .
Thus

M∗∗
i =

2
6664

(αki
i )j1 (αki

i )j2 · · · (αki
i )jdi−1

(αki+1
i )j1 (αki+1

i )j2 · · · (αki+1
i )jdi−1

...
...

. . .
...

(αki+di−2
i )j1 (αki+di−2

i )j2 · · · (αki+di−2
i )jdi−1

3
7775 .

Now, we want to show that the determinants of matrices
M∗∗

i are non-singular, i.e., it is unit in each Ai. Note that
the determinant of each matrix M∗∗

i is given by

det(M∗∗
i ) = α

ki(j1+j2+···+jdi−1)

i det(M∗∗∗
i ),

where the matrix M∗∗∗
i is given by

M∗∗∗
i =

2
666664

1 1 · · · 1
αi

j1 αi
j2 · · · αi

jdi−1

(αi
j1)2 (αi

j2)2 · · · (αi
jdi−1)2

...
...

. . .
...

(αi
j1)di−2 (αi

j2)di−2 · · · (αi
jdi−1)di−2

3
777775

.

The determinant of each M∗∗∗
i is Vandermonde and each

having unit determinant in each Ai. Hence, no combination of
di−1 or fewer columns of each Mi is linearly dependent. So,
by [10, Corollary 3.1], it follows that each code has minimum
distance di or greater.

Corollary 2: [1, Theorem 2.5] If g(x) is a generator poly-
nomial of a BCH code over A with length n = s such that
αe1 , αe2 , · · · , αen−k are the roots of g(x) in Hα,n, where α has
order n, then the minimum Hamming distance of the code is
greater than the largest number of consecutive integers modulo
n in E = {e1, e2, e3, · · · , en−k}.

We can also use the extension of [7, Theorem 4] for the
BCH bound of these codes.

A. Algorithm

The algorithm for constructing a BCH type cyclic codes
over the chain of rings A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ At−1 ⊆
At = A is then as follows.

1) Choose irreducible polynomials fi(x) over Zpm , of
degree hi = bi, for 1 ≤ i ≤ t, which are also irreducible
over GF (p), and form the chain of Galois rings

Zpm = GR(pm, h0) ⊂ GR(pm, h1) ⊂ · · ·
· · · ⊂ GR(pm, ht−1) ⊂ GR(pm, ht) or

A = R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ Rt−1 ⊆ Rt = R

and its corresponding chain of residue fields is

Zp = GF (p) ⊂ GF (ph1) ⊂ · · ·
· · · ⊂ GF (pht−1) ⊂ GF (ph) or

= K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ K,

where each GF (phi) ' K[x]
(π(fi(x))) , for 1 ≤ i ≤ t.

2) Now put Ai = Rr
i , for 0 ≤ i ≤ t and get a chain of

rings

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with an other chain of rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K

where each Ki = Kr
i , for 0 ≤ i ≤ t.

3) Let ηi be the primitive element in K∗i , for 0 ≤ i ≤
t. Then ηi has order dini in R∗i for some integers di,
and put βi = (ηi)di . Thus, αi = (βi, βi, βi, · · · , βi) has
order ni in R∗i and generates Hαi,ni

. Assume for each
i, where 0 ≤ i ≤ t, αi be any element of Hαi,ni

.
4) If αe1

i , αe2
i , αe3

i , · · · , αeni−ki
i are chosen to be the roots

of gi(X), then find M
eli
i (x) the minimal polynomials

of α
eli
i , for li = 1, 2, · · · , ni − ki, where each α

eli
i =

(β
eli
i , β

eli
i , β

eli
i , · · · , βeli

i ). Thus, gi(X) are given by

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)}.

The length of each code in the chain is the least common
multiple of the orders of αe1

i , αe2
i , αe3

i , · · · , αeni−ki
i , and

the minimum distance of the code is greater than the
largest number of consecutive integers modulo ni in the
set Ei = {e1, e2, e3, · · · , eni−ki

} for each i, where 0 ≤
i ≤ t.

Example 1: We initiate by constructing a chain of codes
of lengths 1, 3 and 15 over the ring A = Z4. Since M =
{0, 2}, it follows that K = A

M ' Z2. The regular polynomial
f(x) = x4 +x+1 ∈ Z4[x] is such that π(f(x)) = x4 +x+1
is irreducible polynomial with degree h = 22 over Z2. By
Theorem 3, it follows that f(x) = x4+x+1 is irreducible over
A. Let R = Z22 [x]

(f(x)) = GR(22, 4) be the Galois ring and K =
Z2[x]

(π(f(x))) = GF (24) be the corresponding Galois field. The
numbers 1, 2 and 22 are the only divisors of 4 and therefore,
say h1 = 1, h2 = 2, h3 = 22. Thus there exist irreducible
polynomials f1(x) = x2 − x + 1, f2(x) = f(x) in Z4[x] with
degrees h2 = 2 and h3 = 4 such that we can constitute the
Galois rings Ri = Z22 [x]

(fi(x)) = GR(22, hi), where 1 ≤ i ≤ 2.
So A = R0 ⊂ R1 ⊂ R2 = R. Again by the same argument
it follows that Ki = Z2[x]

(π(fi(x))) = GF (2hi), where 1 ≤ i ≤ 2.
That is, K0 = Z2, K1 = GF (22), K2 = K = GF (24), with
K1 ⊂ K2 ⊂ K. If r = 2, then Ai = Ri × Ri such that
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A0 ⊂ A1 ⊂ A2. Let u = {x} in Ri such that u = {x} in Ki.
Then u+1 has order 15 in K2, and so β2 = u+1. But u+1 has
order 30 inR2, and so put β2 = (u+1)2 and get α2 = (β2, β2)
which generates Hα2,15. Also, u has order 3 in K1, and so
β1 = u. But u has order 6 in R1, and so β1 = u2 and get
α1 = (β1, β1) which generates Hα1,3. Put β0 = β0 = 1
and get α0 = (β0, β0) which generates Hα0,1. Choose αi

and α3
i to be roots of the generator polynomials gi(x) of the

BCH codes Ci over the chain A0 ⊂ A1 ⊂ A2. Then M1
0 (x),

M1
1 (x) and M1

2 (x) has as roots all distinct elements in the
sets B1

0 = {α0} ⊂ Hα0,1, B1
1 = {α1, α

2
1} ⊂ Hα1,3 and

B1
2 = {α2, α

2
2, α

4
2, α

8
2} ⊂ Hα2,15, respectively. So

M1
0 (x) = (x− α0),

M1
1 (x) = (x− α1)(x− α2

1) and
M1

2 (x) = (x− α2)(x− α2
2)(x− α4

2)(x− α8
2).

Similarly,

M1
0 (x) = M3

0 (x) = (x− α0),
M3

1 (x) = (x− 1) and
M3

2 (x) = (x− α3
2)(x− α6

2)(x− α12
2 )(x− α9

2).

Thus the polynomials gi(x) = lcm(M1
i (x),M3

i (x)) are given
by

g0(x) = (x− 1),
g1(x) = (x− 1)(x− α1)(x− α2

1),
g2(x) = (x− α2)(x− α2

2)(x− α3
2)(x− α4

2)(x− α6
2)

(x− α8
2)(x− α9

2)(x− α12
2 ),

which generates the cyclic BCH codes C0, C1 and C2 of lengths
1, 3 and 15 with minimum hamming distances at least 2, 4
and 5, respectively. Also, if we replace αi with αi, then we
get codes over Ki, for each i such that 0 ≤ i ≤ 2. If we take
βi and βi as a root of generator polynomial, then we get codes
over Ri and Ki, respectively.
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