Chain of finite rings and construction of BCH Codes

Antonio Aparecido de Andrade, Tariq Shah and Attiq Qamar

Abstract

For a non negative integer t, let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset$ $\subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ be a chain of unitary commutative rings, where each \mathcal{A}_{i} is constructed by the direct product of suitable Galois rings with multiplicative group \mathcal{A}_{i}^{*} of units, and $\mathcal{K}_{0} \subset$ $\mathcal{K}_{1} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}$ be the corresponding chain of unitary commutative rings, where each \mathcal{K}_{i} is constructed by the direct product of corresponding residue fields of given Galois rings, with multiplicative groups \mathcal{K}_{i}^{*} of units. This correspondence presents four different type of construction techniques of generator polynomials of sequences of BCH codes having entries from \mathcal{A}_{i}^{*} and \mathcal{K}_{i}^{*} for each i, where $0 \leq i \leq t$. The BCH codes constructed in [1] are limited to given code rate and error correction capability, however, proposed work offers a choice for picking a suitable BCH code concerning code rate and error correction capability.

Keywords- Units of local ring, BCH code, McCoy rank, direct product of local rings.

I. Introduction

Linear codes over finite rings have been discussed in a series of papers initiated by Blake [2], [3], Spiegel [4], [5] and Forney et al. [6]. The structure of the multiplicative group of unit elements of certain local finite commutative rings have recently raised a great interest for its wonderful application in algebraic coding theory. Using the multiplicative group of unit elements of a Galois ring extension of $\mathbb{Z}_{p^{m}}$, Shankar [7] has constructed BCH codes over $\mathbb{Z}_{p^{m}}$. Moreover, Andrade and Palazzo [1] have further extend these constructions of BCH codes over finite commutative rings with identity. Both construction techniques of [1] and [7] have been addressed from the approach of specifying a cyclic subgroup of the group of units of an extension ring of finite commutative rings. The complexity of study is to get the factorization of $x^{s}-1$ over the group of units of an appropriate extension ring of the given local ring.

Let \mathcal{A} be a finite commutative ring with identity. The ring \mathcal{A}^{n}, with $n \in \mathbb{Z}^{+}$, being a free \mathcal{A}-module preserve the concept of linear independence among its elements is similar to a vector space over a field. Though it is the constraint that an $r \times r$ submatrix of $r \times n$ generator matrix M over \mathcal{A} is non-singular, or equivalently, has determinant unit in \mathcal{A}. The existence of non-singular matrices having not obligatory the unit elements is, in fact the primary obstacle in working over a local ring instead of a field. The notion of elementary row

[^0]operations in a matrix, and its consequences, also carry over \mathcal{A} with the understanding that only multiplication of a row by a unit element in \mathcal{A} is allowed, which is in contrast to the multiplication by any nonzero element in the case of a field. The structure of the multiplicative group of units of \mathcal{A} is the main motivation to calculate the McCoy rank [8] of a matrix M, that is, the largest integer r such that $r \times r$ submatrix of M has determinant unit in the ring \mathcal{A}.

Andrade and Palazzo [9] describe a construction technique of a matrix

$$
M=\left[\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \tag{1}\\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{k} & \alpha_{2}^{k} & \cdots & \alpha_{n}^{k}
\end{array}\right]
$$

based on the vector $\eta=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ with α_{i}, for $1 \leq$ $i \leq n$, are distinct units in the unitary local ring \mathcal{A} such that $1-\alpha_{j}$, for $1 \leq j \leq l$, are units. By this, one can obtain the McCoy rank of the matrix M. Whereas the findings of these types of units is linked with the multiplicative group \mathcal{A}^{*} of units of the ring \mathcal{A}.

For $h=b^{t}$, where b is prime and t is a positive integer, there exist corresponding Galois ring extensions $\mathcal{R}_{i}=G R\left(p^{m}, h_{i}\right)$, where $0 \leq i \leq t$ and $h_{i}=b^{i}$ (respectively, there exist residue fields \mathbb{K}_{i}, where $0 \leq i \leq t$ and $h_{i}=b^{i}$) of unitary local ring $(\mathcal{R}, \mathcal{M})$ with p^{m} elements (respectively, p elements and residue field $\mathcal{R} / \mathcal{M}$). For each i, for $0 \leq i \leq t$, it follows that \mathcal{R}_{i}^{*} has one and only one cyclic subgroup $G_{n_{i}}$ of order n_{i} (divides $p^{h_{i}}-1$) relatively prime to p (an extension of [7, Theorem 2]). Furthermore, if $\overline{\beta^{i}}$ generates a cyclic subgroup of order n_{i} in \mathbb{K}_{i}^{*}, then β^{i} generates a cyclic subgroup of order $n_{i} d_{i}$ in \mathcal{R}_{i}^{*}, where d_{i} is an integer greater than or equal to 1 , and $\left(\beta^{i}\right)^{d_{i}}$ generates a cyclic subgroup $G_{n_{i}}$ in \mathcal{R}_{i}^{*} for each i [7, Lemma 1]. So by extending the given algorithm [7] for constructing a BCH-type codes with symbols from the local ring \mathcal{A} for each member in chains of Galois rings and residue fields, respectively. Consequently there are two situations: $s_{i}=$ b^{i} for $i=2$ or $s_{i}=b^{i}$ for $i \geq 2$. By these motivations in this paper for any $t \in \mathbb{Z}^{+}$, if $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ is a chain of unitary commutative rings, then for each i, such that $0 \leq i \leq t$, it follows that \mathcal{A}_{i} is a direct product of Galois
rings, i.e.,

Moreover, $\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \cdots \subset \mathcal{R}_{t-1, j} \subset \mathcal{R}_{t, j}$, for each $1 \leq j \leq r$, is a chain of Galois rings. In type I , for each i, where $0 \leq i \leq t$, it follows that $\mathcal{R}_{i, j}=\mathcal{R}_{i, j+1}$, where $1 \leq j \leq r$, while in type II, we have different $\mathcal{R}_{i, j}$ with same characteristic p. In type III and IV, we take different $\mathcal{R}_{i, j}$ with different characteristic p_{j}, where $1 \leq j \leq r$.

Corresponding to the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$, $\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}$ there is a chain of rings constituted through the direct product of their residue fields, i.e.,

\mathcal{K}_{0}	$=$	$\mathbb{K}_{0,1}$	\times	$\mathbb{K}_{0,2}$	\times	\cdots	\times
\cap	\cap		$\mathbb{K}_{0, r}$				
\mathcal{K}_{1}	$=$	$\mathbb{K}_{1,1}$	\times	$\mathbb{K}_{1,2}$	\times	\cdots	\times
\cap		\cap		\cap			
$\mathbb{K}_{1, r}$							
\vdots	\vdots		\vdots		\ddots		\vdots
\cap		\cap		\cap			
\mathcal{K}_{t}	$=\mathbb{K}_{t, 1}$	\times	$\mathbb{K}_{t, 2}$	\times	\cdots	\times	$\mathbb{K}_{t, r}$.

Moreover, $\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{t, j}$, for each $1 \leq j \leq r$, is a chain of corresponding residue fields. In type I and II, we have $\mathbb{K}_{i, j}=\mathbb{K}_{i, j+1}$ and different in remaining types. Therefore, \mathcal{A}_{i}^{*} and \mathcal{K}_{i}^{*}, for each i, where $0 \leq i \leq t$, are multiplicative groups of units of \mathcal{A}_{i} and \mathcal{K}_{i}, respectively.

II. BASIC RESULTS

Assume that (R, M) is a finite unitary local commutative ring with residue field $\mathbb{K}=\frac{R}{M} \cong G F\left(p^{m}\right)$, where p is a prime integer, m a positive integer. The natural projection $\pi: R[x] \rightarrow \mathbb{K}[x]$ is defined by $\pi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} \overline{a_{i}} x^{i}$, where $\overline{a_{i}}=a_{i}+M$ for $i=0, \cdots, n$. Thus, the natural ring morphism $R \rightarrow \mathbb{K}$ is simply the restriction of π to the constant polynomials.

In the following, we recall some definitions and results from [8] for the sake of quick reference.

Definition 1: Let $a(x)$ be a polynomial in $R[x]$. We say that

1) $a(x)$ is a unit if there exist a polynomial $b(x) \in R[x]$ such that $a(x) b(x)=1$.
2) $a(x) \neq 0$ is a zero divisor if there exist a polynomial $b(x) \in R[x] \backslash\{0\}$ such that $a(x) b(x)=0$.
3) $a(x)$ is regular if $a(x)$ is not a zero divisor.
4) $a(x)$ is irreducible if $a(x)$ is not a unit and if $a(x)=$ $a_{1}(x) a_{2}(x)$, then either $a_{1}(x)$ is a unit or $a_{2}(x)$ is a unit.
Theorem 1: [8, Theorem XIII.2] Let (R, M) be a local ring and $a(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$. The following assertions are equivalent.
5) $a(x)$ is regular.
6) $<a_{1}, a_{2}, \cdots, a_{n}>=R$.
7) a_{i} is a unit for some i, for $0 \leq i \leq n$.
8) $\pi(a(x)) \neq 0$.

Theorem 2: [8, Theorem XV.1] Let (R, M) be a local ring and $a(x)$ be a regular polynomial in $R[x]$ such that $\pi(a(x))$ has a simple (i.e., non multiple) zero $\bar{\alpha}$ in \mathbb{K}. Then $a(x)$ has one and only one zero α with $\pi(\alpha)=\bar{\alpha}$.

Theorem 3: [8, Theorem XIII.7] Let (R, M) be a local ring and $a(x)$ is regular polynomial in $R[x]$ such that $\pi(a(x))$ is irreducible in $\mathbb{K}[x]$. Then $a(x)$ is irreducible in $R[x]$.

Let A_{j} be a finite local ring with characteristic p_{j}, for each j such that $1 \leq j \leq r$. Let \mathbb{K}_{j} be the residue fields of local rings $R_{j}=A_{j}[x] /\left(f_{j}(x)\right)$, where $f_{j}(x)$ is a basic irreducible polynomial over A_{j} of degree h, for each j such that $1 \leq j \leq$ r.

Theorem 4: [1, Theorem 3.3] If $\mathcal{R}=R_{1} \times R_{2} \times R_{3} \times \cdots \times$ R_{r}, where each R_{j} is a local finite commutative Galois ring with characteristic p_{j}, then $\mathcal{R}^{*}=R_{1}^{*} \times R_{2}^{*} \times R_{3}^{*} \times \cdots \times R_{r}^{*}$.

Following theorem indicates the condition under which $x^{s}-$ 1 can be factored over \mathcal{R}^{*}.

Theorem 5: [1, Theorem 3.4] The polynomials $x^{s}-1$ can be factored over the multiplicative group \mathcal{R}^{*} as $x^{s}-1=$ $(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{s}\right)$ if, and only if, $\overline{\beta_{j}}$ has order s in \mathbb{K}_{j}^{*}, where $\operatorname{gcd}\left(s, p_{j}\right)=1$ and α corresponds to $\beta=$ $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{r}\right)$, where $j=1,2,3, \cdots, r$.

Theorem 6: [1, Theorem 3.5] For any positive integer l, let $M_{l}(x)$ be the minimal polynomial of α^{l} over \mathcal{R}, where α generates $H_{\alpha, n}$. Then $M_{l}(x)=\prod_{\xi \in B_{l}}(x-\xi)$, where B_{l} are all distinct elements of the sequence $\left\{\left(\alpha^{l}\right)^{m}: m=\right.$ $\left.\prod_{j=1}^{r} q_{j}^{s_{j}}, q_{j}=p_{j}^{m_{j}}, 0 \leq s_{j} \leq h-1\right\}$.

Theorem 7: [1, Theorem 2.5] If $g(x)$ is a generator polynomial of a BCH code over A with length $n=s$ such that $\alpha^{e_{1}}, \alpha^{e_{2}}, \cdots, \alpha^{e_{n-k}}$ are the roots of $g(x)$ in $H_{\alpha, n}$, where α has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in $E=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n-k}\right\}$.

III. Codes over chain of direct product of finite GALOIS RINGS I

Let (A, M) be a unitary finite local commutative ring with residue field $\mathbb{K}=\frac{A}{M}$ having p^{m} elements. The natural projection $\pi: A[x] \rightarrow \mathbb{K}[x]$ is defined by $\pi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=$ $\sum_{i=0}^{n} \overline{a_{k}} x^{i}$, where $\overline{a_{i}}=a_{i}+M$ for $i=0,1, \cdots, n$. Thus the natural ring morphism $A \rightarrow \mathbb{K}$ is simply the restriction of π to the constant polynomials. Now, if $f(x) \in A[x]$ is a basic irreducible polynomial with degree $h=b^{t}$, where b is a prime and t is a positive integer, then $\mathcal{R}=\frac{A[x]}{(f(x))}=$ $G R\left(p^{m}, h\right)$ is the Galois ring extension of A and $\mathbb{K}=\frac{\mathcal{R}}{\mathcal{M}}=$ $\frac{A[x] /(f(x))}{(M, f(x)) /(f(x))}=\frac{A[x]}{(M, f(x))}=\frac{(A / M)[x]}{(\pi(f(x)))}=G F\left(p^{m h}\right)$ is residue field of \mathcal{R}, where $\mathcal{M}=(M, f(x)) /(f(x))$ is the maximal ideal of \mathcal{R}.

For the construction of a chain of Galois rings, the following lemma is of central importance.

Lemma 1: [8, Lemma VII] Every subring of $G R\left(p^{k}, s\right)$ is a Galois ring of the form $G R\left(p^{k}, s^{\prime}\right)$, where s^{\prime} divides s. Conversely, if s^{\prime} divides s, then $G R\left(p^{k}, s\right)$ contains a unique copy of $G R\left(p^{k}, s^{\prime}\right)$.

The elements $1, b, b^{2}, \cdots, b^{t-1}, b^{t}$ are divisors of h, and so taking $h_{0}=1, h_{1}=b, h_{2}=b^{2}, \cdots, h_{t}=b^{t}=h$, it follows, by [8, Lemma XVI.7], that there exist basic irreducible polynomials $f_{1}(x), f_{2}(x), \cdots, f_{t}(x) \in A[x]$ with degrees $h_{1}, h_{2}, \cdots, h_{t}$, respectively, such that we can constitute the Galois subrings $\mathcal{R}_{i}=\frac{A[x]}{\left(f_{i}(x)\right)}=G R\left(p^{m}, h_{i}\right)$, for each i, where $1 \leq i \leq t$, of \mathcal{R} with the maximal ideals $\mathcal{M}_{i}=\left(M, f_{i}(x)\right) /\left(f_{i}(x)\right)$, for $1 \leq i \leq t$. Thus, the residue fields of each \mathcal{R}_{i} becomes

$$
\begin{aligned}
\mathbb{K}_{i} & =\frac{\mathcal{R}_{i}}{\mathcal{M}_{i}}=\frac{A[x] /\left(f_{i}(x)\right)}{\left(M, f_{i}(x)\right) /\left(f_{i}(x)\right)}=\frac{A[x]}{\left(M, f_{i}(x)\right)} \\
& =\frac{(A / M)[x]}{\left(\pi\left(f_{i}(x)\right)\right)}=\frac{K[x]}{\left(\bar{f}_{i}(x)\right)}=G F\left(p^{h_{i}}\right) .
\end{aligned}
$$

As h_{i} divides h_{i+1} for all $0 \leq i \leq t$, it follows, by [8, Lemma XVI.7], that there is a chain

$$
A=\mathcal{R}_{0} \subset \mathcal{R}_{1} \subset \mathcal{R}_{2} \subset \cdots \subset \mathcal{R}_{t-1} \subset \mathcal{R}_{t}=\mathcal{R}
$$

of Galois rings with corresponding chain of residue fields

$$
\mathbb{Z}_{p}=\mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K}
$$

If $\mathcal{A}_{i}=\mathcal{R}_{i}^{r}$, for $0 \leq i \leq t$, then we obtain a chain of another unitary commutative rings, i.e.,

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with a corresponding chain of rings

$$
\mathcal{K}_{0} \subseteq \mathcal{K}_{1} \subseteq \mathcal{K}_{2} \subseteq \cdots \subseteq \mathcal{K}_{t-1} \subseteq \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$ for $0 \leq i \leq t$.
Let \mathcal{A}_{i}^{*} and \mathbb{K}_{i}^{*} be the multiplicative group of units of \mathcal{A}_{i} and \mathbb{K}_{i}, respectively, for $0 \leq i \leq t$. The next theorem, extends [8, Theorem XVIII.1] and plays fundamental role in the decomposition of the polynomial $x^{s_{i}}-1$ into linear factors over the rings \mathcal{A}_{i}^{*}. This theorem asserts that for each element $\alpha_{i} \in \mathcal{A}_{i}^{*}$ there exist unique elements $\beta_{i} \in \mathcal{R}_{i}^{*}$, for $0 \leq i \leq t$, such that $\alpha_{i}=\left(\beta_{i}, \beta_{i}, \cdots, \beta_{i}\right)$ is an ordered r-tuples.

Theorem 8: If $\mathcal{A}_{i}=\mathcal{R}_{i}^{r}$, for $0 \leq i \leq t$, where each \mathcal{R}_{i} is a local finite commutative ring, then $\mathcal{A}_{i}^{*}=\left(\mathcal{R}_{i}^{*}\right)^{r}$.

Following theorem indicates the condition under which $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*}, for $0 \leq i \leq t$.

Theorem 9: For $0 \leq i \leq t$, the polynomials $x^{s_{i}}-1$ can be factored over the multiplicative groups \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=(x-$ $\left.\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ if and only if $\overline{\beta_{i}}$ has order $s_{i}=p^{h_{i}}-1$ in \mathbb{K}_{i}^{*}, where $\operatorname{gcd}\left(s_{i}, p\right)=1$ and $\alpha_{i}=\left(\beta_{i}, \beta_{i}, \cdots, \beta_{i}\right)$.
Proof. Suppose that the polynomials $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$. Then $x^{s_{i}}-1$ can be factored over \mathcal{R}_{i}^{*} as $x^{s_{i}}-1=\left(x-\beta_{i}\right)(x-$ $\left.\beta_{i}^{2}\right) \cdots\left(x-\beta_{i}^{s_{i}}\right)$, for $0 \leq i \leq t$. Now, it follows from the extension of [7, Theorem 3] that $\bar{\beta}_{i}$ has order s_{i} in \mathbb{K}_{i}^{*}, for $0 \leq i \leq t$. Conversely, suppose that $\bar{\beta}_{i}$ has order s_{i} in \mathbb{K}_{i}^{*}, for $0 \leq i \leq t$. Again, it follows from the extension of [7, Theorem 3] that the polynomials $x^{s_{i}}-1$ can be factored over \mathcal{R}_{i}^{*} as $x^{s_{i}}-1=\left(x-\beta_{i}\right)\left(x-\beta_{i}^{2}\right) \cdots\left(x-\beta_{i}^{s_{i}}\right)$, for $0 \leq i \leq t$. Since $\alpha_{i}=\left(\beta_{i}, \beta_{i}, \cdots, \beta_{i}\right)$, for $0 \leq i \leq t$, it follows that $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ over \mathcal{A}_{i}^{*}, for $0 \leq i \leq t$.

Corollary 1: [1, Theorem 3.4] The polynomials $x^{s}-1$ can be factored over the multiplicative group \mathcal{R}^{*} as $x^{s}-1=$ $(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{s}\right)$ if and only if $\overline{\beta_{j}}$ has order
s in \mathbb{K}_{j}^{*}, where $\operatorname{gcd}\left(s, p_{j}\right)=1$ and α corresponds to $\beta=$ $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{r}\right)$, where $j=1,2,3, \cdots, r$.

Let $H_{\alpha_{i}, s_{i}}$ denotes the cyclic subgroup of \mathcal{A}_{i}^{*} generated by α_{i}, for each i, where $0 \leq i \leq t$, i.e., $H_{\alpha_{i}, s_{i}}$ contains all the roots of $x^{s_{i}}-1$ provided the condition of Theorem 9 are met. The $\mathrm{BCH} \operatorname{codes} \mathcal{C}_{i}$ over \mathcal{A}_{i}^{*} can be obtained as the direct product of BCH codes over \mathcal{R}_{i}^{*}. To construct a cyclic BCH codes over \mathcal{A}_{i}^{*}, we need to choose certain elements of $H_{\alpha_{i}, n_{i}}$, where $n_{i}=s_{i}$, as the roots of generator polynomials $g_{i}(x)$ of the codes. So that, $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ are all the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$. We construct $g_{i}(x)$ as

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}}-k_{i}}(x)\right\}
$$

where $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=\left(\beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \cdots, \beta_{i}^{e_{l_{i}}}\right)$. The following theorem extended [7, Lemma 3] and provides a method for construction of $M_{i}^{e_{l_{i}}}(x)$, the minimal polynomials, of $\alpha_{i}^{e_{l}}$ over the ring \mathcal{A}_{i}.

Theorem 10: For each i, where $0 \leq i \leq t$, let $M_{i}^{e_{l_{i}}}(x)$ be the minimal polynomials of $\alpha_{i}^{e_{l}}$ over \mathcal{A}_{i}, where $\alpha_{i}^{e_{l_{i}}}$ generates $H_{\alpha_{i}, n_{i}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$. Then $M_{i}^{e_{l_{i}}}(x)=$ $\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$, where $B_{i}^{l_{i}}=\left\{\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{q_{i}}}: 1 \leq l_{i} \leq\right.$ $\left.n_{i}-k_{i}, 0 \leq q_{i} \leq h_{i}-1\right\}$.
Proof. Let $\bar{M}_{i}^{e_{l_{i}}}(x)$ be the projection of $M_{i}^{e_{l_{i}}}(x)$ over the fields \mathbb{K}_{i} and $\bar{M}_{i}^{e_{l_{i}}}(x)$ be the minimal polynomial of $\bar{\alpha}_{i}^{e_{l_{i}}}$ over \mathbb{K}_{i}^{*}, for each i such that $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. We can verify that each $\bar{M}_{i}^{e_{l_{i}}}(\bar{x})$ (minimal polynomials of $\bar{\alpha}_{i}^{e_{l_{i}}}$) is divisible by $\bar{M}_{i}^{e_{l_{i}}}(x)$ (minimal polynomials of $\bar{\beta}_{i}^{e_{l_{i}}}$), for each i such that $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. So among its roots, it has distinct elements of the sequence $\bar{\alpha}_{i}^{e_{l_{i}}},\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p},\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p^{2}}, \cdots,\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p^{h_{i}-1}}$, for each i such that $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Consequently, the polynomial $M_{i}^{e l_{i}}(x)$ has, among its roots, distinct elements of the sequence $\alpha_{i}^{e_{l_{i}}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{2}}, \cdots,\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{\left(h_{i}-1\right)}}$, for $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus, any element $\xi_{i}=\left(\alpha_{i}^{e_{l_{i}}}\right)^{q_{i}}$ of the above sequence is a root of $M_{i}^{e_{l_{i}}}(x)$, for $0 \leq i \leq t$, such that $0 \leq q_{i} \leq h_{i}-1$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Hence, $M_{i}^{\bar{e}_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$.

Remark 1: For each i such that $0 \leq i \leq t$, it follows that the minimal polynomial $\bar{M}_{i}^{e_{l_{i}}}(x)$ of $\bar{\alpha}_{i}^{e_{l_{i}}}$ is the projection of $M_{i}^{e_{l_{i}}}(x)$ (minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$) over the rings \mathcal{K}_{i}. So $\bar{M}_{i}^{e_{i}}(x)$ generates the sequence of codes over the special chain of rings $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following theorem generalizes [1, Theorem 2.5].

Theorem 11: Let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ be the chain. For each i such that $0 \leq i \leq t$, if $g_{i}(x)$ is the generator polynomial of BCH code \mathcal{C}_{i} over \mathcal{A}_{i} with length $n_{i}=s_{i}$ such that $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ are the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, where α_{i} has order n_{i}, then the minimum Hamming distance of \mathcal{C}_{i} is greater than the largest number of consecutive integers modulo n_{i} in $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$.
Proof. For each i, where $0 \leq i \leq t$, let $\left\{k_{i}, k_{i}+1, k_{i}+\right.$ $\left.2, \cdots, k_{i}+d_{i}-2\right\}$ be the largest set of consecutive integers
modulo n_{i} in the set E_{i}. A sequence of cyclic code with roots $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}}-k_{i}}$ is the null space of the matrix

$$
M_{i}=\left[\begin{array}{ccccc}
1 & \alpha_{i}^{e_{1}} & \left(\alpha_{i}^{e_{1}}\right)^{2} & \cdots & \left(\alpha_{i}^{e_{1}}\right)^{n_{i}-1} \\
1 & \alpha_{i}^{e_{2}} & \left(\alpha_{i}^{e_{2}}\right)^{2} & \cdots & \left(\alpha_{i}^{e_{2}}\right)^{n_{i}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{i}^{e_{n_{i}-k_{i}}} & \left(\alpha_{i}^{e_{n_{i}-k_{i}}}\right)^{2} & \cdots & \left(\alpha_{i}^{e_{n_{i}-k_{i}}}\right)^{n_{i}-1}
\end{array}\right]
$$

Now, if no linear combination of $d_{i}-1$ columns of the matrix

$$
M_{i}^{*}=\left[\begin{array}{ccccc}
1 & \alpha_{i}^{k_{i}} & \left(\alpha_{i}^{k_{i}}\right)^{2} & \cdots & \left(\alpha_{i}^{k_{i}}\right)^{n_{i}-1} \\
1 & \alpha_{i}^{k_{i}+1} & \left(\alpha_{i}^{k_{i}+1}\right)^{2} & \cdots & \left(\alpha_{i}^{k_{i}+1}\right)^{n_{i}-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{i}^{k_{i}+d_{i}-2} & \left(\alpha_{i}^{k_{i}+d_{i}-2}\right)^{2} & \cdots & \left(\alpha_{i}^{k_{i}+d_{i}-2}\right)^{n_{i}-1}
\end{array}\right]
$$

is zero, then clearly no linear combination of $d_{i}-1$ columns of each M_{i} is zero and by the extended form of [10, Corollary 3.1], it follows that each code has minimum distance d_{i} or greater. This can be seen by examining the determinants of any $d_{i}-1$ columns of matrices M_{i}^{*}. Let following matrix is the collection of any set of $d_{i}-1$ columns of matrix M_{i}^{*}. Thus
$M_{i}^{* *}=\left[\begin{array}{cccc}\left(\alpha_{i}^{k_{i}}\right)^{j_{1}} & \left(\alpha_{i}^{k_{i}}\right)^{j_{2}} & \cdots & \left(\alpha_{i}^{k_{i}}\right)^{j_{d_{i}-1}} \\ \left(\alpha_{i}^{k_{i}+1}\right)^{j_{1}} & \left(\alpha_{i}^{k_{i}+1}\right)^{j_{2}} & \cdots & \left(\alpha_{i}^{k_{i}+1}\right)^{j_{d_{i}-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \left(\alpha_{i}^{k_{i}+d_{i}-2}\right)^{j_{1}} & \left(\alpha_{i}^{k_{i}+d_{i}-2}\right)^{j_{2}} & \cdots & \left(\alpha_{i}^{k_{i}+d_{i}-2}\right)^{j_{d_{i}-1}}\end{array}\right]$
Now, we want to show that the determinants of matrices $M_{i}^{* *}$ are non-singular, i.e., it is unit in each \mathcal{A}_{i}. Note that the determinant of each matrix $M_{i}^{* *}$ is given by

$$
\operatorname{det}\left(M_{i}^{* *}\right)=\alpha_{i}^{k_{i}\left(j_{1}+j_{2}+\cdots+j_{d_{i}-1}\right)} \operatorname{det}\left(M_{i}^{* * *}\right),
$$

where the matrix $M_{i}^{* * *}$ is given by

$$
M_{i}^{* * *}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{i}{ }^{j_{1}} & \alpha_{i}{ }^{j_{2}} & \cdots & \alpha_{i}{ }^{{ }^{j} d_{i}-1} \\
\left(\alpha_{i}{ }^{j_{1}}\right)^{2} & \left(\alpha_{i}{ }^{j_{2}}\right)^{2} & \cdots & \left(\alpha_{i}{ }^{j_{d_{i}-1}}\right)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\alpha_{i}{ }^{j_{1}}\right)^{d_{i}-2} & \left(\alpha_{i}{ }^{j_{2}}\right)^{d_{i}-2} & \cdots & \left(\alpha_{i}{ }^{j_{d_{i}-1}}\right)^{d_{i}-2}
\end{array}\right] .
$$

The determinant of each $M_{i}^{* * *}$ is Vandermonde and each having unit determinant in each \mathcal{A}_{i}. Hence, no combination of $d_{i}-1$ or fewer columns of each M_{i} is linearly dependent. So, by [10, Corollary 3.1], it follows that each code has minimum distance d_{i} or greater.

Corollary 2: [1, Theorem 2.5] If $g(x)$ is a generator polynomial of a BCH code over A with length $n=s$ such that $\alpha^{e_{1}}, \alpha^{e_{2}}, \cdots, \alpha^{e_{n-k}}$ are the roots of $g(x)$ in $H_{\alpha, n}$, where α has order n, then the minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in $E=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n-k}\right\}$.

We can also use the extension of [7, Theorem 4] for the BCH bound of these codes.

A. Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of rings $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \cdots \subseteq \mathcal{A}_{t-1} \subseteq$ $\mathcal{A}_{t}=\mathcal{A}$ is then as follows.

1) Choose irreducible polynomials $f_{i}(x)$ over $\mathbb{Z}_{p^{m}}$, of degree $h_{i}=b^{i}$, for $1 \leq i \leq t$, which are also irreducible over $G F(p)$, and form the chain of Galois rings

$$
\begin{aligned}
\mathbb{Z}_{p^{m}}= & G R\left(p^{m}, h_{0}\right) \subset G R\left(p^{m}, h_{1}\right) \subset \cdots \\
& \cdots \subset G R\left(p^{m}, h_{t-1}\right) \subset G R\left(p^{m}, h_{t}\right) \text { or } \\
A= & \mathcal{R}_{0} \subseteq \mathcal{R}_{1} \subseteq \mathcal{R}_{2} \subseteq \cdots \subseteq \mathcal{R}_{t-1} \subseteq \mathcal{R}_{t}=\mathcal{R}
\end{aligned}
$$

and its corresponding chain of residue fields is

$$
\begin{aligned}
\mathbb{Z}_{p}= & G F(p) \subset G F\left(p^{h_{1}}\right) \subset \cdots \\
& \cdots \subset G F\left(p^{h_{t-1}}\right) \subset G F\left(p^{h}\right) \text { or } \\
= & \mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K}
\end{aligned}
$$

where each $G F\left(p^{h_{i}}\right) \simeq \frac{\mathbb{K}[x]}{\left(\pi\left(f_{i}(x)\right)\right)}$, for $1 \leq i \leq t$.
2) Now put $\mathcal{A}_{i}=\mathcal{R}_{i}^{r}$, for $0 \leq i \leq t$ and get a chain of rings

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$, for $0 \leq i \leq t$.
3) Let $\bar{\eta}_{i}$ be the primitive element in \mathbb{K}_{i}^{*}, for $0 \leq i \leq$ t. Then η_{i} has order $d_{i} n_{i}$ in \mathcal{R}_{i}^{*} for some integers d_{i}, and put $\beta_{i}=\left(\eta_{i}\right)^{d_{i}}$. Thus, $\alpha_{i}=\left(\beta_{i}, \beta_{i}, \beta_{i}, \cdots, \beta_{i}\right)$ has order n_{i} in \mathcal{R}_{i}^{*} and generates $H_{\alpha_{i}, n_{i}}$. Assume for each i, where $0 \leq i \leq t, \alpha_{i}$ be any element of $H_{\alpha_{i}, n_{i}}$.
4) If $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}}-k_{i}}$ are chosen to be the roots of $g_{i}(X)$, then find $M_{i}^{e_{l_{i}}}(x)$ the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=$ $\left(\beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \cdots, \beta_{i}^{e_{l_{i}}}\right)$. Thus, $g_{i}(X)$ are given by

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}-k_{i}}}(x)\right\}
$$

The length of each code in the chain is the least common multiple of the orders of $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$, and the minimum distance of the code is greater than the largest number of consecutive integers modulo n_{i} in the set $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$ for each i, where $0 \leq$ $i \leq t$.
Example 1: We initiate by constructing a chain of codes of lengths 1,3 and 15 over the ring $A=\mathbb{Z}_{4}$. Since $M=$ $\{0,2\}$, it follows that $\mathbb{K}=\frac{A}{M} \simeq \mathbb{Z}_{2}$. The regular polynomial $f(x)=x^{4}+x+1 \in \mathbb{Z}_{4}[x]$ is such that $\pi(f(x))=x^{4}+x+1$ is irreducible polynomial with degree $h=2^{2}$ over \mathbb{Z}_{2}. By Theorem 3, it follows that $f(x)=x^{4}+x+1$ is irreducible over A. Let $\mathcal{R}=\frac{\mathbb{Z}_{2^{2}}[x]}{(f(x))}=G R\left(2^{2}, 4\right)$ be the Galois ring and $\mathbb{K}=$ $\frac{\mathbb{Z}_{2}[x]}{(\pi(f(x)))}=G F\left(2^{4}\right)$ be the corresponding Galois field. The numbers 1,2 and 2^{2} are the only divisors of 4 and therefore, say $h_{1}=1, h_{2}=2, h_{3}=2^{2}$. Thus there exist irreducible polynomials $f_{1}(x)=x^{2}-x+1, f_{2}(x)=f(x)$ in $\mathbb{Z}_{4}[x]$ with degrees $h_{2}=2$ and $h_{3}=4$ such that we can constitute the Galois rings $\mathcal{R}_{i}=\frac{\mathbb{Z}_{22}[x]}{\left(f_{i}(x)\right)}=G R\left(2^{2}, h_{i}\right)$, where $1 \leq i \leq 2$. So $A=\mathcal{R}_{0} \subset \mathcal{R}_{1} \subset \mathcal{R}_{2}=\mathcal{R}$. Again by the same argument it follows that $\mathbb{K}_{i}=\frac{\mathbb{Z}_{2}[x]}{\left(\pi\left(f_{i}(x)\right)\right)}=G F\left(2^{h_{i}}\right)$, where $1 \leq i \leq 2$. That is, $\mathbb{K}_{0}=\mathbb{Z}_{2}, \mathbb{K}_{1}=G F\left(2^{2}\right), \mathbb{K}_{2}=\mathbb{K}=G F\left(2^{4}\right)$, with $\mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \mathbb{K}$. If $r=2$, then $\mathcal{A}_{i}=\mathcal{R}_{i} \times \mathcal{R}_{i}$ such that
$\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2}$. Let $u=\{x\}$ in \mathcal{R}_{i} such that $\bar{u}=\{x\}$ in \mathbb{K}_{i}. Then $\bar{u}+1$ has order 15 in \mathbb{K}_{2}, and so $\bar{\beta}_{2}=\bar{u}+1$. But $u+1$ has order 30 in \mathcal{R}_{2}, and so put $\beta_{2}=(u+1)^{2}$ and get $\alpha_{2}=\left(\beta_{2}, \beta_{2}\right)$ which generates $H_{\alpha_{2}, 15}$. Also, \bar{u} has order 3 in \mathbb{K}_{1}, and so $\bar{\beta}_{1}=\bar{u}$. But u has order 6 in \mathcal{R}_{1}, and so $\beta_{1}=u^{2}$ and get $\alpha_{1}=\left(\beta_{1}, \beta_{1}\right)$ which generates $H_{\alpha_{1}, 3}$. Put $\beta_{0}=\beta_{0}=1$ and get $\alpha_{0}=\left(\beta_{0}, \beta_{0}\right)$ which generates $H_{\alpha_{0}, 1}$. Choose α_{i} and α_{i}^{3} to be roots of the generator polynomials $g_{i}(x)$ of the BCH codes \mathcal{C}_{i} over the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2}$. Then $M_{0}^{1}(x)$, $M_{1}^{1}(x)$ and $M_{2}^{1}(x)$ has as roots all distinct elements in the sets $B_{0}^{1}=\left\{\alpha_{0}\right\} \subset H_{\alpha_{0}, 1}, B_{1}^{1}=\left\{\alpha_{1}, \alpha_{1}^{2}\right\} \subset H_{\alpha_{1}, 3}$ and $B_{2}^{1}=\left\{\alpha_{2}, \alpha_{2}^{2}, \alpha_{2}^{4}, \alpha_{2}^{8}\right\} \subset H_{\alpha_{2}, 15}$, respectively. So

$$
\begin{aligned}
& M_{0}^{1}(x)=\left(x-\alpha_{0}\right) \\
& M_{1}^{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right) \text { and } \\
& M_{2}^{1}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{4}\right)\left(x-\alpha_{2}^{8}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& M_{0}^{1}(x)=M_{0}^{3}(x)=\left(x-\alpha_{0}\right) \\
& M_{1}^{3}(x)=(x-1) \text { and } \\
& M_{2}^{3}(x)=\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{12}\right)\left(x-\alpha_{2}^{9}\right)
\end{aligned}
$$

Thus the polynomials $g_{i}(x)=\operatorname{lcm}\left(M_{i}^{1}(x), M_{i}^{3}(x)\right)$ are given by

$$
\begin{aligned}
g_{0}(x)= & (x-1) \\
g_{1}(x)= & (x-1)\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right) \\
g_{2}(x)= & \left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{4}\right)\left(x-\alpha_{2}^{6}\right) \\
& \left(x-\alpha_{2}^{8}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{12}\right)
\end{aligned}
$$

which generates the cyclic $\mathrm{BCH} \operatorname{codes} \mathcal{C}_{0}, \mathcal{C}_{1}$ and \mathcal{C}_{2} of lengths 1,3 and 15 with minimum hamming distances at least 2,4 and 5 , respectively. Also, if we replace α_{i} with $\bar{\alpha}_{i}$, then we get codes over \mathcal{K}_{i}, for each i such that $0 \leq i \leq 2$. If we take β_{i} and $\bar{\beta}_{i}$ as a root of generator polynomial, then we get codes over \mathcal{R}_{i} and \mathbb{K}_{i}, respectively.

REFERENCES

[1] A.A. Andrade and R. Palazzo Jr., "Construction and decoding of BCH codes over finite rings," Linear Algebra Applic., Vol. 286, pp. 69-85, 1999.
[2] I.F. Blake, "Codes over certain rings," Inform. Contr., Vol. 20, pp. 396404, 1972.
[3] I.F. Blake, "Codes over integer residue rings," Inform. Contr., Vol. 29, pp. 295-300, 1975.
[4] E. Spiegel, "Codes over \mathbb{Z}_{m}," Inform. Control, Vol. 35, pp. 48-51, 1977.
[5] E. Spiegel, "Codes over \mathbb{Z}_{m}, Reviseted," Inform. Control, Vol. 37, pp. 100-104, 1978.
[6] G.D. Forney Jr., "On decoding BCH codes," IEEE Trans. Inform. Theory, Vol. IT-11(4), pp. 549-557, 1965.
[7] P. Shankar, "On BCH codes over arbitrary integer rings," IEEE Trans. Inform. Theory, Vol. IT-25(4), pp. 480-483, 1979.
[8] B.R. McDonald, Linear Algebra over commutative rings, Marcel Dekker, New York, 1984.
[9] A.A. Andrade and R. Palazzo Jr., "A note on units of finite local rings," Rev. Mat. Estat., Sao Pualo, Vol. 18(2), pp. 213-222, 2000.
[10] W.W. Peterson, E.J. Weldon Jr., Error Correcting Codes, 2nd ed., MIT Press, Cambridge, MA, 1972.

[^0]: Antonio Aparecido de Andrade - Department of Mathematics, São Paulo State University, São José do Rio Preto - SP, Brazil, andrade@ibilce.unesp.br. Tariq Shah and Attiq Qamar - Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan, stariqshah@gmail.com, qamar.maths@gmail.com. Acknowledgment to FAPESP by financial support, 2007/56052-8 and 2011/03441-2.

