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On the Simulation and Correlation Properties of
Phase-Envelope Nakagami Fading Processes

José Candido Silveira Santos Filho and Michel Daoud Yhcou

Abstract— We propose a general method for simulating both of independent squared Rayleigh envelopes [1], [4]. Based
envelope and phase of Nakagami fading channels, allowingrfo on this model, the envelope second-order distribution and
arbitrary values of fading parameter and nonisotropic scerarios. autocorrelation function can be derived as in [1, Eq. (126)]

The method complies with the newly-derived Nakagami phase- . L
envelope distribution and Nakagami envelope autocorrelabn and [5, Eq. (1)], respectively. On the other hand, no retitina

function. In passing, we also address the unsettled problerof Model has been established yet for the Nakagami phase,
how to autocorrelate Nakagami phase samples appropriately neither by physical arguments nor by empirical evidencesa A

In the proposed scheme, Nakagami samples are first drawn result, the phase second-order distribution and autdedioe

and then suitably arranged to match the correlation properies function are unknown.

of the channel. The arrangement follows the rank statistics . A .

of a Rayleigh (complex Gaussian) reference sequence witheh Because of the 'O”QSta”d'F‘Q uncertainties regardlng the
desired autocorrelation. Relying on this scheme, we also dee Phase and the high-order statistics of Nakagami fadingt mos
simple, highly-precise, closed-form approximations to te enve- simulators have used particular assumptions in order to im-
lope autocorrelation and to the unknown phase autocorreldbn, plement the phase and the autocorrelation of the channel
guadrature component autocorrelation, and quadrature conpo- (cf. [2] and references therein). In this work, we propose a

nent crosscorrelation of the Nakagami channel. Sample rests | hod f imulating both th | d theeoh
are presented, and practically no distinction is observed étween general method for simulating both the envelope and theephas

the derived approximations and the simulation points. of Nakagami fading channels, allowing for arbitrary values
. . - of fading parameter and nonisotropic scenarios. The method
Keywords— Correlation, fading channels, Nakagami fading, . . . .
rank statistics. simulation. complies with the newly-derived Nakagami phase-envelope

distribution [3] and Nakagami envelope autocorrelationcfu

tion [5]. In passing, we also address the unsettled problem o

how to autocorrelate Nakagami phase samples appropriately
HEN proposed, the Nakagami fading model specifidth the proposed scheme, Nakagami samples are first drawn
the distribution of the channel envelope but not oind then suitably arranged to match the correlation prigsert

the channel phase [1]. Because of this, and knowing that thiethe channel. The arrangement follows the rank statistics

phase distribution of the Rayleigh channel—a special cageRayleigh (complex Gaussian) reference sequence with the

of Nakagami fading—is uniform, researchers have arbliyraridesired autocorrelation. Relying on this scheme, we also de

assigned a uniform distribution to the Nakagami phase [2]ve simple, highly-precise, closed-form approximatiémshe

Recently, a simple phase-envelope model was proposed €owvelope autocorrelation and to the unknown phase autcorr

Nakagami fading which accounts for the effects of the fadirgtion, quadrature component autocorrelation, and quacra

parameter on both the phase and the envelope of the chemmponent crosscorrelation of the Nakagami channel. Sampl

nel [3]. In this model, the channel envelope remains the-wetkesults are presented, and practically no distinction seoked

known Nakagami envelope, but the channel phase is no longetween the derived approximations and the simulationtpoin

uniform, except for the special Rayleigh case. The primary

motivation for the use of the Nakagami phase-envelope model T

proposed in [3] is that its phase distribution coincideshwit ] )

those of Rice and Hoyt for the limiting cases in which their Let the complex-valued Nakagami fading chantitlbe

envelope distributions are known to coincide. Furthermthre represented as

proposed Nakagami phase distribution bears similar shiapes Z =X +jY = Rexp(jO), (1)

those of Rice and Hoyt for the remaining cases, in which

their envelope distributions approach each other. In esntr where X, Y, R, and © are the in-phase component, the

the usual assumption of uniform phase for Nakagami fadigiadrature component, the envelope, and the phase, respec-

does not comply with these features. tively. In this section, we revisit some statistics of

Despite the surge of research in the last decades, it remain¥he probability density function (PDF) of the Nakagami

unclear what some Nakagami high-order statistics should B&ding envelopeR is given by [1]

On the one hand, there exists a well-established realizatio 9 mr2m—1 mr2

model for the channel envelope: the square root of the sum fr(r) = Tmjan P (T) , 0<r<oo, (2)

The authors are with the Department of Communications, &clwd \yhere() = E[RQ] is the mean powery, = QQ/V[RQ] is the
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13083-852 Campinas, SP, Brazil (Tel: +55 (19) 3788 5106, Fa6 (19) Nakagami fading parameter, aid:) is the gamma function.
3289 1395, E-maifcandido,michél@wisstek.org). (E[-] denotes expectatiori/[-] variance.) Based on physical
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Fig. 1. The Nakagami fading channel simulator.

ray

arguments, the PDFs dd, X, andY have been recently m, andp},;' (7). The problem is that no realization model for

derived in [3] as 7 exists, except for its envelope, whose square value equals
T'(m)|sin 20~ the sum ofm i.i.d. squared Rayleigh envelopes [1], [4], [5].
fo(0) = —onrr(m) —r<f<7 (3) Furthermore, the use of the envelope model as a simulation
2

scheme is limited to integer values of.

Fe(u)=f (U)ZmZIUI’"’1 (m_uz) , —00 < u < 0. _We c_ircumvent the a_bove prc_)blem by choosing a different
Q>I(%F) Q simulation approach: (i) draw firsV samples following the
(4) distribution of Z and (i) then suitably arrange these samples
Form = 1, (3) and (4) specialize to the uniform phase PDfy match the desired autocorrelation properties. Stepofi)-c
and Gaussian quadrature component PDF of the Rayleigifes with the static properties (distribution) of the pess,
Channel, reSpeCtiVer. HOWeVer, fon 7é ]., the Nakagami described in (4) or, equiva|ent|y, in (2) and (3), Step (m)'m:_
phase is non-uniform and the Nakagami quadrature compfes with the dynamic properties (autocorrelation), diésd
nents are non-Gaussian. in (5). This approach was introduced in [8] for simulating th

The autocorrelation function (ACF) of the Nakagami enyakagami envelope process. Here, we shall extend it to the
velope has been derived in [5] based on the physical mogglase-envelope simulation.

of the squared Nakagami envelope as the summof.i.d. N .
. : Step (i) is simple. In order to address it, one may decompose
squared Rayleigh envelopes [1], [4]. The Nakagami enveIoR]ee cgng[)JlexZ Eamples in terms of X, Y) or (Ry@)- wep

ACF s [5] choose(X,Y). Note in (4) thatX and Y are identically
Qr?(m+1) 11 ray distributed. Thus, a unique set 8f samples matching (4) can
Ap(T) = ——=5—" 2F1 | =5, —5im5 0 (7)), (B)
mI'2(m) 27 2 be used to compose both the andY sequences. As shown
where 7 is a time lag,2F(-,-;-;-) is the hypergeometric in [3], the modulus ofX andY follows a Nakagami envelope

ray

function, andp ;5 (7) is the autocorrelation coefficient (ACC)dlsmbunon with halved mean powd/2 and halved fading

of each underlying squared Rayleigh envelope process. Tg}arameterm/z In addition, positive and negative values of

e oy : .
statistical properties of Rayleigh (complex Gaussian)jnigd amle fo c;:(ur Wgr;,'dentli)al pLObab”c'jt); [3]. ThherefO(;e, thef
processes and expressions f4) (1) have been extensivelyS'\;”lrlrgp es for aln can Ie ° t.ar']nﬁ | rodm the proos;ct °
reported in the literature for a myriad of fading scenarmesg( akagami envelope samples (with halved mean paér

: and halved fading parameten/2) and Bernoulli samples
[6] and [7])..In contrast, to the beSt.Of the authors' knovged +1, equiprobable), as sketched in the leftmost side of Fig. 1.
no expressions have been established yet for the phase gnd

. . ines for generating Nakagami envel mpl r
guadrature component ACFs of Nakagami fading channels, outines for generating Na agami envelope samples (root
squared gamma) and Bernoulli samples are available in most

standard computing packages such as MATHEMATICA and
I11. NAKAGAMI SIMULATOR MATLAB.

Our aim is to generate alV-sample (V being an arbitrary  In contrast, step (ii) is intricate. One out &f! x N! in-
positive integer) sequence fd&f that matches (4)—or, equiv- phase and quadrature sample arrangements must be found
alently, (2) and (3)—and (5), for any desired values{nf that render a good fit to the analytical envelope ACF in (5).
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Of course, the brute-force approach—comparing all possilitactive, for these can be closely approximated in termfef t
arrangements—is not practicable. Instead, we shall usa-anwell-known correlation properties of the Rayleigh chansl
sightful and fundamental result from [8]: the rank statistof detailed next.
the Nakagami envelope are closely approximated by those of
each underlying Rayleigh envelope, irrespective of thénfad
parametern. This has been used in [8] to generate Nakagami
envelope sequences that match the analytical envelope ACFThe simulation method proposed here inherently complies
by arranging the Nakagami envelope samples according to iigh the exact PDFs (phase, envelope, and quadrature com-
rank statistics of a Rayleigh envelope reference sequeitbe wonents) of the Nakagami fading model and, as shall be seen
the desired autocorrelatigs};y (7). The operation was called from sample examples, precisely approximates the analytic
rank matching and can be easily accomplished through builiNakagami envelope ACF. As for the phase and quadrature
in routines of standard computing packages [8]. In short, §omponent ACFs, although not established a priori, thege ca
an N-sample sequencd is rank-matched to anV-sample be now examined based on the designed simulation scheme
sequence3, then each sample id is arranged in the sameitself. In the following, we derive simple, precise, closiedm
position of the sample i3 with the same statistical rahlof  approximations to these statistics.
that sample inA. For any stationary random process, the ACC of the samples
Here we have to arrange in-phase and quadrature sampdegnown to be approximated by the ACC of their statistical
instead of just envelope samples. Probably there exist@eveanks [9]. Then, by rank-matching the Nakagami sequence to a
ways to arrange the in-phase and quadrature samples so Hfleigh sequence, we indeed produce a Nakagami sequence
the resulting envelope sequence fits the analytical eneelaphose ACC approximates that of the Rayleigh sequence. This
ACF. However, one useful requisite is to maintain the soluti is a central result: in the proposed simulation scheme, rigr a
as simple as possible. Then, knowing from [8] that the resuifalue of the fading parametar, the ACC of a given Nakagami
ing Nakagami envelope sequence should approach the rapknponent—e.g. the phase, the envelope, the quadrature com
statistics of a Rayleigh envelope sequence, a simple saligi ponent or any function of them—approximates the ACC
to rank-match the Nakagami in-phase sequence to a Rayleighthe corresponding component in the reference Rayleigh
in-phase sequence, and the Nakagami quadrature sequenggdoess. Accordingly, denoting yik(7), piak(r), piek(r),
a Rayleigh quadrature sequence. The simulation schemeafigl p22k(7) the envelope, phase, in-phase component, and
shown in Fig. 1. As for the Rayleigh (complex Gaussiamjuadrature component ACCs of the Nakagami channel, and
reference sequence with the desired autocorrelation,nt asy p32¥(7), pe” (1), p5 (1), and py () the corresponding
be generated by any method available in the literature. N&€Cs of the Rayleigh channel, it follows that for any value
that both isotropic as well as nonisotropic Rayleigh refeee of m

IV. OUTPUT STATISTICS

sequences can be used, leading to isotropic or nonisotropic PRE(T) = pi¥ (1) (6a)
Nakagami sequences correspondingly. nak .

A last remark is noteworthy. Although in the above discus- P (1) = pe” (7) (6b)
sion we have not explicitly addressed the Nakagami phase au- PREE(T) = pRR(1) = pY (1) = pi¥ (7). (6¢)

tocorrelation (which is indeed unknown), the proposed sehe ) ) )
embeds an assumption on this issue, as follows. By choosing e same rationale can be applied to GLOSSCOFF(?'at'OH co-
to rank-match both the in-phase and quadrature compongnt§@cients (CCCs). For instance, the CGE?Yy (r) between
the Nakagami sequence to the corresponding componentdhgf Nakagami in-phase and quadrature components can be
a Rayleigh sequence, we are equivalently rank-matching gProximated by the Rayleigh one, i.e.
only the resulting Nakagami envelope sequence to a ngle|gh ana?;/(T) ~ pE;yY(T>' @)
envelope sequence but also the resulting Nakagami phase
sequence to a Rayleigh phase sequence. On the one h&hajlar results can be formulated for auto- and crosscairel
the envelope rank-matching is desired, since this is knawntions involving any function of the fading components Y,
comply with the realization model for the Nakagami envelopB, and©.
and its associated envelope ACF [8]. On the other, the phasérom the above approximations and using the standard
rank-matching is indeed an arbitrary assumption, since definition for auto- and crosscorrelation coefficients,reer
realization model for the Nakagami phase has been estatilisaponding approximations to the auto- and crosscorrelation
yet, rendering the phase ACF unknown. In other words, it wéisnctions of the Nakagami fading components can be derived
shown in [8] that the rank statistics of the Nakagami envelo@s
approach those of the Rayleigh envelope; here, for sintplici ray 9 _ ray 2
we reproduce the envelope behavior in the phase by assuming Ar(r) = pp” (T)BIRT] + (1 = pp (7)) BT[] (8a)
tf}a}[thth(; ralnk s;;tatiﬁtics (Xl;[rr]]e Nﬁktagami phastg approack thr(])st Ao(7) = pg” (T)E[0%] + (1 — p&¥ (7)) E*[©] (8b)
of the Rayleigh phase. ough this assumption is somewha _  ray 9 ray 9
arbitrary, it renders the Nakagami correlation properties Ax(7) = Ay (1) = p" (N EXT] + (1 = px" (7)) B [)((2]30)
~ Ta, Ta;

Istatistical rank is the ordinal number of a value in a liseaged in a Axy (1) = py (T E[XY] + (1 - pX?]Y(T)) EIX]E[Y].

specified (decreasing or increasing) order. (8d)

%

1
1
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Finally, assuming that[R?|, E[©?], E[X?], E[Y?], and folr) 2 6 Lip(\*(r ))7 (14d)
E[XY] are unity, we obtain the normalized auto- and cross- w2
correlation functions as in whichLiz(+) is the dilogarithm function. Finally, the squared
~ T2 (m+ 1) Rayleigh envelope ACGY3 (7) is given by [6]
ARr(m) m (1) + (L= pg” (7 ))W(mi (9a) )
) Iy (\/HJQ (27 fpT)? + jdrm fpT cos u)
ra: ray —
( )~Np@y( T) (9b) pR2( T) =M\ (1) = Io(k)
Ax (1) = Ay (1) = p (1) (9¢) (15)
. Following the Von Mises/Tikhonov model, Figs. 2 and 3
Axy (1) = o5 (7). (9d) g 9

present the approximate and simulated normalized Nakagami
In (9), we have used®[®] = E[X] = E[Y] = 0 and auto- and crosscorrelation functions for isotropic £ 0)
E[R] = (I'(m + 1/2)/(I'(m)y/m))E[R?]. Note that only the and nonisotropic £ = 1) scenarios, respectively. For the
approximate normalized envelope ACF depends on the fadicligannel envelope, the exact analytical ACF is also showa. Th
parametern. required Rayleigh reference sequences were generategl usin
The approximations derived in (6)—(9) for Nakagami fadinthe autoregressive method in [10]. In the examples= 0,
rely on expressions for the correlation properties of Rgyle N = 22°, and the fading parameten, assumes different
fading processesp’s” (1), po” (1), P> (), p5(7), and values. Note, in all of the cases, the excellent match to the
- (7). These expressions are extensively reported in tRgact envelope autocorrelation, and how the approximstion

Pxy
literature for a myriad of fading scenarios (e.g. [6] and)[7]to the envelope, phase, and quadrature autocorrelatiahtoan

A sample case is presented next. the quadrature crosscorrelation are highly precise anctipra
cally indistinguishable from the simulation points. Alsota
V. SIMULATION RESULTS that, apart from the envelope autocorrelation, the remgini

orrelation functions are hardly dependent on the fading
rameterm, as predicted in the derived approximations.
mparisons involving first-order statistics have beentizuhj

or the proposed scheme inherently complies with them.

In this section, sample simulation results are presented
the general case of nonisotropic fading scenarios. In su
scenarios, the distribution of the angle of arrival (AOA) o
the multipath waves is nonuniform. A plausible model for
the directional AOA is the parametric Von Mises/Tikhonov VI. CONCLUSION
distribution, for which the Rayleigh quadrature component

ACC and CCC are given respectively by [7] A general simulation method was proposed for Nakagami

fading channels, allowing for arbitrary values of fading pa

[ 1, (\/KQ @rfor)? +j4meTcosu)' rameter and nonisotropic scenarios, and matching the Nak-
Y (1) = Re agami phase-envelope distribution and envelope autdeerre
Io() tion function. We also derived simple, highly-precise,seld-
) (10) form approximations to the envelope autocorrelation and to
(\/,i2 (27 fpT)? +j4meTcosu) the unknown phase autocorrelation, quadrature component
pE}yy( ) =1Im , autocorrelation, and quadrature component crosscdmelat
To(x) the Nakagami channel.
] (I1)
where Re[] denotes real parfm[] denotes imaginary part, REFERENCES
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