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Matching Euclidean Signal Sets to Extensions of
Cyclic Groups and Quotient Groups

Jorge Pedraza Arpasi and Bartolomeu F. Uchôa-Filho

Resumo— Apresentamos uma t́ecnica para construç̃ao de ex-
tens̃oes de grupos cı́cilicos. Ent̃ao, fazendo uso destas extensões,
encontramos novos exemplos de mapeamentos casados entre
grupos e conjuntos de sinais. Como contribuiç̃ao final, propomos
uma nova t́ecnica de casamento quée baseada na decomposição
de um grupo em um produto Cartesiano de grupos quociente
menores, cada um casado a um conjunto de sinais pequeno.

Palavras-Chave— Códigos para o espaço Euclidiano, ćodigos
de grupo, conjuntos de sinais casados a grupos.

Abstract— We present a technique to construct extensions of
cyclic groups. Then, by using the parameters of these extensions,
we find new examples of matched mappings between groups and
signal sets. As a final contribution, we propose a new technique
of matching that is based on the decomposition of a group in a
Cartesian product of quotient and small groups, each of them
matched to a small signal set.

Keywords— Euclidean space codes, group codes, signal sets
matched to groups.

I. I NTRODUCTION

Matching signal sets to abstract groups is a coding tech-
nique that has received a great deal of attention since the
pioneering work of Ungerboeck [1], wherein the outputs of
binary convolutional encoders with encoding rater/(r + 1)
were matched to(r + 1)-ary PSK or QAM signal sets by a
method calledmapping by set partitioning. He noticed that the
outputs of a(n, k, m) binary convolutional encoder, i.e., with
encoding ratek/n and memorym can be viewed as a group
Zn

2 , whereZ2 = {0, 1} is the binary group with the modulo-2
addition operation andZn

2 = {(x1, x2, . . . , xn) : xi ∈ Z2, i =
1, 2, . . . , n}, for n ≥ 2, is the direct product group with the
modulo-2 addition operation induced componentwise.

Ungerboeck’s technique, also known as Trellis Coded Mo-
dulation (TCM), is very important for bandlimited channels.
Theoretically, any constellation of signal setsS has its group
of symmetriesΓ(S), which is a group of isometrical mappings
leaving S invariant, that is,γ(S) = S, for all γ ∈ Γ(S) [2],
[3], [4], [5]. Any constellationS can be naturally matched to
Γ(S), and this would give a good generalization of TCM. But
the problem is that for the majority of constellationsS there
are no practical methods to find their groups of symmetries
Γ(S). Thus, for a given signal setS, a generalized definition of
matching, which is not restricted toΓ(S), is given by Loeliger
in [4].
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Definition 1: Let S be a set of points (signals) of an
Euclidean space with a metricd. Let G be a group with a
unit elemente. It is said thatS is matched toG if there exists
a mappingµ : G → S such that

d(µ(g), µ(h)) = d(µ(g−1h), µ(e)), (1)

for all g, h ∈ G.
For the case of the finite dimensional Euclidean spaceRn,

n ∈ N, where R is the set of real numbers andN the
set of natural numbers,d is usually the canonical metric
d(x, y) = ‖x − y‖ =

√
< x − y, x − y >, where< u, v >

is the inner product< u, v >= Σp
i=1uivi. Note that if

‖ µ(g)‖ = c, for all g ∈ G, then the left side of (1)
becomes

√

2c2 − 2 < µ(g), µ(h) >, whereas the right side
becomes

√

2c2 − 2 < µ(g−1h), µ(e) >. Therefore, for this
case, in which all the pointsµ(g) are on the same sphere
of radiusc, the matching map (1) holds if

< µ(g), µ(h) >=< µ(g−1h), µ(e) > . (2)

The sphere withc = 1, which is the unitary sphere ofRn,
is denoted bySn−1. For instance, the unitary sphere ofR

3 is
S2 = {(x, y, z) : x2 + y2 + z2 = 1} and the unitary circle is
S1 = {(x, y) : x2 + y2 = 1} ⊂ R2.

The most known matching, over 2-dimensionaln-PSK
signal sets, satisfying (2), is the group homomorphism between
the cyclic group Z

nZ
= Zn = {0, 1, . . . , n − 1}, n ≥ 2, which

is then-ary group with the modulo-n addition operation, and
the group ofn-roots of the unityUn = {e 2πj

n
k}n−1

k=0 ⊂ S1,
j =

√
−1, with the complex product operation.

While the groups(Zn, +) and (Un, ∗) are the same thing,
the matching map being the group isomorphismµ : Zn → Un

given by

µ(k) = e
2πj

n
k = (cos(2πk/n), sin(2πk/n)), (3)

a generalization of this matching, which by itself is another
outstanding example of matched signal sets, satisfying (2),
over n-dimensional real signal sets, is thegroup codeS =
{si}M

i=1 ⊂ Sn−1 ⊂ Rn, such that eachsi = Oi(s1), where
Oi is ann × n orthogonal matrix ands1 ∈ Sn−1 is called a
initial point of the group code [6].

For any adequate initial choice ofs1, the signal setS is
matched to a finite multiplicative group,G = {Oi}M

i=1, by the
following matching map:

µ(Oi) = Oi(s1). (4)

Indeed, by using the properties of orthogonal matrices, we
have that< µ(Oi), µ(Oj) > = < Oi(x1),Oj(x1) >= <



O−1
j Oi(x1), x1 >= < µ(O−1

j Oi), µ(I) >, where I is the
identity matrix.

The Squared Euclidean Distance (SED) for this signal set
is < xi − xj , xi − xj > = 2 − 2 cos(θij) =4 sin2(

θij

2 ), where
θij is the angle betweenxi and xj , and the minimum SED
for this case takes place whenθij is minimum and different
from zero [7].

The groupG = {Oi}M
i=1 is a finite subgroup ofSO(n, R),

the group of real orthogonal matrices of dimensionn, which is
an infinite group. For dimension two all the finite subgroups
of SO(2, R) are the dihedral groupsD2n, n ≥ 2, and the
cyclic groupsZn [8]. Of course, there may exist matchings
of D2n and Zn for which these two classes of groups are
not considered as subgroups ofSO(2, R). For instance, in
[9], Bali and Rajan give a method to match two-dimensional
2n − APSK Euclidean signal setsS ⊂ R2 by using a
especial function of an asymmetric initial angle. Other family
of important finite groups, that can be matched to an Euclidean
signal set, is the generalized quaternions groupsQ2n , n ≥ 3.
As matrices, all the members of the family of quaternions are
subgroups ofSO(4, R) ∼= SO(2, C), whereC is the complex
numbers field. In [10], a method is given to match anyQ2n

to a 4-dimensional real Euclidean constellationS ⊂ R4.
In this work, we use the theory of extension of groups to

show that the groupD2n is a particular case of the semidirect
productZn by Zm with m even. Analogously, we show that
the groupQ2n is a particular case of the extensionZn by
Zm with n, m even. The semidirect product is a particular
case of extension, in the sense that any semidirect product
is an extension but there exist many extensions that are not
semidirect products. We will see that semidirect products of
Zn by Z2 generate dihedral groups, and extensionsZn by
Z2, that are not semidirect products, generate the quaternions
groups. We will match semidirect productsZn by Zm, with
m even, to 4-dimensional real signal sets, and we will match
generalized extensionsZn by Zm, with both n and m even,
to 2m-dimensional real signal sets.

We also propose a new technique to matching groups to
signal sets. This technique uses the decomposition of a group
G into minor quotient groupsG

N , where N is a normal
subgroup. The smallerGN the easier it is to find a signal set
matched to it.

This work is organized as follows. In Section II, we present
some properties of extension of cyclic groups, which are
necessary for the matchings we develop in the next sections.
In Section III, we match cyclic extensions of groups to signal
sets. The new technique to matching groups to signal sets,
announced in the previous paragraph, is presented in Section
IV. Finally, in Section V, we conclude the paper.

II. EXTENSIONS OFCYCLIC GROUPS

A formal definition of extension of groups is the following.
Definition 2: Given two abstract groupsH and K, the

extension ofH by K is a groupG having a normal subgroup
N such thatN is isomorphic toH and G

N is isomorphic to
K [11], [8].

We will give in the next section a method to construct
extension of cyclic groupsH = Zn by K = Zm in such

a way that it depends on two elementsa, b ∈ Zn satisfying
an n-modular system. This method allows us to construct a
matching of the extensionZn by Zm based on the compound
natural matchings based upon (3) ofZn and Zm. For the
construction of this extension, we need to considerZn as a
ring, the ring of integers modulon.

Lemma 1:Consider the ringsZn and Zm, anda, b ∈ Zn,
such thatab = b ∈ Zn. Then the mappingξ : Zm×Zm → Zn

defined by

ξ(j, k) =

{

0 if j + k < m

b if j + k ≥ m
, (5)

satisfies theZn-equation;

aiξ(j, k) + ξ(i, j + k) = ξ(i, j) + ξ(i + j, k), (6)

for all i, j, k ∈ Zm

Proof: First, note thata2b ≡ a(ab) ≡ ab ≡ b mod n.
Thus, by induction,apb ≡ b mod n, for all p ∈ N. Now we
analyze equation (6) for the following three cases:
Case 1(i+j+k ≥ 2m): For this case we have thati+j ≥ m,
i + k ≥ m, and j + k ≥ m. Letting s < m be such that
s = j + k − m, thenξ(i, j + k) = ξ(i, s). If i + s < m then
i + j + k − m < m, a contradiction. Hence,i + s ≥ m. On
the other hand, lettingr < m be such thatr = i + j − m,
thenξ(i + j, k) = ξ(r, k). If r + k < m theni + j + k < 2m,
again a contradiction. Hence,r + k ≥ m. Therefore, in this
case, (6) holds true as it becomesaib + b = b + b.
Case 2(m ≤ i + j + k < 2m): For this case consider the
following four subcases: 2.a)i + j ≥ m andj + k ≥ m, 2.b)
i + j < m and j + k ≥ m, 2.c) i + j ≥ m and j + k < m,
and 2.d)i + j < m and j + k < m. For subcase 2.a), let
s < m be such thats = j +k−m. Thenξ(i, j +k) = ξ(i, s).
If i + s ≥ m then i + j + k ≥ 2m, a contradiction. Hence,
i + s < m. Now let r < m be such thatr = i + j −m. Then
ξ(i + j, k) = ξ(r, k). If r + k ≥ m then i + j + k ≥ 2m,
again a contradiction. Hence,r + k < m. Therefore, for this
subcase (6) holds true as it becomesaib + 0 = b + 0. For the
subcase 2.b), lets < m be such thats = j + k − m. Then
ξ(i, j + k) = ξ(i, s). If i + s ≥ m then i + j + k ≥ 2m, a
contradiction. Hence,i + s < m. Now let r < m be such that
r = i + j − m. Then ξ(i + j, k) = ξ(r, k). If r + k < m
theni+ j + k < m, another contradiction. Hence,r + k ≥ m.
Therefore, for this subcase too, (6) holds true as it becomes
aib + 0 = 0 + b. The proofs for the remaining two subcases
follow the same lines.
Case 3(0 ≤ i + j + k < m): For this case (6) becomes
ai0 + 0 = 0 + 0, which is clearly true.

Proposition 1: Consider the rings of integersZn and Zm,
anda, b ∈ Zn satisfying (6) as well as

am = 1 ∈ Zn

ab = b ∈ Zn
(7)

Then the CartesianG = Zn × Zm with the operation

(i, j) ∗ (h, k) = (i + haj + ξ(j, k), j + k) (8)

is an extension ofZn by Zm, whereξ is defined in (5).
Proof: The operation (8) is closed. The associative

equation ((i, j)(h, k))(u, v) = (i, j)((h, k)(u, v)) holds by



applying the property ofξ given in equation (6 ). The unique
inverse of (i, 0) is (−i, 0). For j 6= 0, considerx = (i, j)
and y = (−(b + iam−j), m − j). Since am ≡ 1 mod n
and ab ≡ b mod n, thenxy = (i, j)(−(b + iam−j), m − j)
= (i − (b + i)am−jaj + b), j + m − j) =(0, 0). Analogously,
yx = (0, 0), thus y is the unique inverse ofx. Therefore,
Zn × Zm is a group with the operation in (8). Now consider
N = Zn × {0} = {(u, 0) : u = 0, 1, 2, . . . , n − 1} ⊂
Zn × Zm. For each pair(i, j) ∈ Zn × Zm, we have that
(i, j)(u, 0)(i, j)−1 = (uaj , 0) ∈ N . Thus, N is a normal
subgroup ofZn × Zm, with Zn

∼= N . On the other hand,
considering the canonical projectionπ : Zn×Zm

N → Zm,
defined byπ((i, j)) = j, we conclude thatZn×Zm

N
∼= Zm

and thereforeZn ×Zm is an extension ofZn by Zm with the
group operation defined in (8).

Remarks:

• When b = 0 andam ≡ 1 mod n, we have a semidirect
product that often is denoted byZn ⋊Zm. Indeed, define
φ : Zm → Aut(Zn) such thatφ(j)(i) = iaj. Thenφ is a
group homomorphism and the group operation onZn ⋊

Zm given in (8) becomes(i, j)(h, k) = (i + haj , j + k).
• The inverse of any pair(i, j), for this semidirect product,

is (−ia−j ,−j). And if the homomorphismφ is not the
trivial one, that is,a 6= 1, then Zn ⋊ Zm is always a
non-abelian group.

• If a = 1 andb = 0, then we have a direct productZn ×
Zm.

Since each pair(a, b) satisfying (7) determines a unique
extensionZn by Zm, we will henceforth denote it byZn ×a,b

Zm. Note thatZn×a,0Zm will always be a semidirect product
andZn ×1,0 Zm = Zn × Zm.

Example 1:Consider the cyclic groupsZn and Zm such
that m is even, witha = n − 1 and b = 0. Sincem is even,
then am = (n − 1)m ≡ (−1)m ≡ 1 mod n. Hence{a =
n − 1, b = 0} is a solution of the modular equations (7). In
this case we have the semidirect productZn ×(n−1),0 Zm. Its
group operation is

(i, j)(h, k) = (i + haj, j + k)

= (i + h(n − 1)j , j + k)

=

{

(i + h, j + k), if j is even
(i − h, j + k), if j is odd,

and for any pair(i, j) the inverse is given by(i, j)−1 =
(i(−1)j+1,−j). For m = 2, we have the dihedral group
D2n = Zn ×(n−1),0 Z2, and the mappingφ : Z2 → Aut(Zn)
is given byφ(j)(i) = i(n − 1)j .

Example 2:Consider the cyclic groupsZn and Zm such
that bothn and m are even, anda = n − 1, b = n

2 . Since
m is even, thenam = (n − 1)m ≡ (−1)m ≡ 1 mod n. On
the other hand,n even impliesn

2 ≡ −n
2 mod n. Hence,(n−

1)n
2 = nn

2 − n
2 ≡ −n

2 mod n. Therefore,{a = n−1, b = n
2 }

is solution of (7), and we have an extension,Zn×(n−1),n/2Zm,
which is not a semidirect product. The group operation on the
pairs of this extension is(i, j)(h, k) = (i + haj + ξ(j, k), j +

k) = (i + h(n − 1)j + ξ(j, k), j + k). Hence,

(i, j)(h, k) =















(i + h, j + k), if j + k < m, j even
(i − h, j + k), if j + k < m, j odd
(i + h + n

2 , j + k), if j + k ≥ m, j even
(i − h + n

2 , j + k), if j + k ≥ m, j odd.

From the above, the inverse(i, j)−1 is given by

(i, j)−1 =

{

(−i, 0), if j = 0
(n

2 + i(−1)j+1,−j), if j 6= 0.

For the particular case wheren = 2p−1, m = 2, a = 2p−1−1,
and b = 2p−2, we have the generalized quaternions groups
Q2p = Z2p−1 ×(2p−1−1),2p−2 Z2. The group operation for this
family of groups is(i, j)(h, k) = (i + haj + ξ(j, k), j + k) =
(i+h(2p−1−1)j + ξ(j, k), j +k). Hence, the inverse(i, j)−1

is given by

(i, j)−1 =

{

(−i, 0), if j = 0
(i + 2p−2,−j), if j = 1.

It is clear that whennm = n′m′ and when there are pairs
(a, b) and(a′, b′) satisfying the condition in (7), thenZn ×a,b

Zm = Zn′ ×a′,b′ Zm′ . For instance,Z3 ×2,0 Z8 = Z12 ×2,9 Z2,
as shown in [12].

III. M ATCHING CYCLIC EXTENSIONS OFGROUPS TO

SIGNAL SETS

Consider the semidirect productZn ×a,0 Zm and the map
µ : Zn ×a,0 Zm → S3 ⊂ R4, induced by (3), given as

µ(i, j) = (µ(i), µ(j)) =
1√
2

(

e
2π

√
−1

n
i, e

2π
√

−1

m
j
)

(9)

If a−j = ±1 then the matching (9) satisfies the condition
in (2). Indeed, given the pairs(i, j), (h, k) ∈ Zn ×a,0 Zm

we have (i, j)−1(h, k)= ((h − i)(a)−j , k − j). From this,
< µ((i, j)−1(h, k)), µ(0, 0) > = < µ((h − i)a−1, k −
j), µ(0, 0) > = 1

2

(

cos
(

2π(h−i)a−j

n

)

+ cos
(

2π(k−j)
m

))

. On

the other hand, by using the trigonometric relationcos(a−b) =
cos(a) cos(b)+sin(a) sin(b), we have that< µ(i, j), µ(h, k) >
becomes

1

2

(

cos

(

2π(i − h)

n

)

+ cos

(

2π(k − j)

m

))

,

which shows that (9) is a matching map ifa−j = ±1, for all
1 ≤ j ≤ m. That is right for the casea = n − 1 in Example
1. For the particular casem = 2, which implies the dihedral
groupD2n = Zn ×(n−1),0 Z2, the matching (9) becomes

µ(i, j) =
1√
2

(

cos

(

2πi

n

)

, sin

(

2πi

n

)

, cos(πj), 0

)

=

{

1√
2

(

cos
(

2πi
n

)

, sin
(

2πi
n

)

, 1, 0
)

, if j = 0
1√
2

(

cos
(

2πi
n

)

, sin
(

2πi
n

)

,−1, 0
)

, if j = 1.

The SEDs between the pointsµ(i, j) and the pointµ(0, 0) are
given by‖µ(i, j) − µ(0, 0)‖2 = 2(1− < µ(i, j), µ(0, 0) >).
For m = 2, and denoting by SED9 the SED associated with
the matching (9), we have that

SED9 = 2 − cos(πj) − cos(
2πi

n
)

=

{

1 − cos(2πi
n ), if j = 0

3 − cos(2πi
n ), if j = 1.



Clearly, SED9 will be minimal if j = 0 and for the minimal
value of the set{1 − cos(2πi

n ) : i = 1, 2, . . . , n − 1}. The
functionf(x) = 1−cos(2πx

n ) is crescent in the interval(0, n
2 ).

Also, f(n
2 − 1) = f(n

2 + 1) for n even, andf(n−1
2 − 1) =

f(n+1
2 + 1) for n odd. From this, among the pointsx =

1, 2, . . . , n − 1, f(x) is minimal for x = 1, and SED9,min =
1 − cos(2π

n ).
Let us now consider the matching of Bali and Rajan [9],

which is the following two dimensional mapping for dihedral
groupsD2n over signal sets2n-APSK⊂ S1 ⊂ R2:

µ(i, j) = (cos(ϕ(i, j)), sin(ϕ(i, j))), (10)

whereϕ is the angleϕ(i, j) = j
(

(2u+1)π
n + φ

)

+ i 2πl
n , with

u ∈ {0, 1, . . . , n− 1}, andl is such thatgcd(l, n) = 1, andφ
is the asymmetry phase with− π

2n < φ < π
2n .

Let SED10 be the SED for (10). ThenSED10 =
4 sin2(ϕ(i,j)

2 ). In particular, forφ = 0, we have that

SED10 =

{

4 sin2
(

πil
n

)

, if j = 0

4 sin2
(

2π(u+il)+1
2n

)

, if j = 1.

Hence, the minimal SED10 is reached forj = 1 and2(u+il)+
1 ≡ ±1 mod n. Thus, the minimal SED10 is SED10,min =
4 sin2( π

2n ). Since

1 + cos
(

2π
n

)

2
= cos2

(π

n

)

< cos
(π

n

)

, for all n ≥ 3,

we have that

1 − cos

(

2π

n

)

> 2 − 2 cos
(π

n

)

= 4 sin2
( π

2n

)

.

Therefore, SED9 > SED10 for all Dihedral groupsD2n, with
n ≥ 3.

Example 3:Consider the group extensionZn ×(n−1),n/2

Zm of Example 2. Consider the Euclidean spaceR2m and,
for i = 0, 1, 2, . . . , n − 1, the points ofEij ∈ R2m given by

Ei0 =
(

cos(2πi
n ), sin(2πi

n ), 0, 0, . . . , 0
)

Ei1 =
(

0, 0, cos(2πi
n ), sin(2πi

n ), 0, 0, . . . , 0
)

Ei2 =
(

0, 0, 0, 0, cos(2πi
n ), sin(2πi

n ), 0, 0, . . . , 0
)

...
...

...
Ei(m−1) =

(

0, 0, 0, 0, . . . , cos(2πi
n ), sin(2πi

n )
)

Clearly,‖Eij‖ = 1 for all 0 ≤ j ≤ m−1, and< Eij , Eik >=
0 if j 6= k. We match injectively these points to the group by
defining the matching map as

µ(i, j) = Eij (11)

Hence,

< µ(i, j), µ(h, k) >=

{

0, if j 6= k

cos
(

2π(i−h)
n

)

, if j = k.

On the other hand,(i, j)−1(h, k) equals
{

(h − i, k), if j = 0
((h − i)a−j − n

2 + ξ(m − j, k), k − j), if j 6= 0.

Then,

< µ((i, j)−1(h, k)), µ(0, 0) >=

{

0, if j 6= k

cos
(

2π(i−h)
n

)

, if j = k.

For the case of the quaternionsQ2p = Z2p−1 ×(2p−1−1),2p−2

Z2, the above matching becomes

µ(i, j) =

{ (

cos
(

2πi
n

)

, sin
(

2πi
n

)

, 0, 0
)

, if j = 0
(

0, 0, cos
(

2πi
n

)

, sin
(

2πi
n

))

, if j = 1,

which is exactly as the one proposed in [10].

IV. M ATCHING QUOTIENT GROUPS TOSIGNAL SETS

In this section we introduce a method based on the splitting
of a given group into small quotient groups. Given a groupG,
instead of matching it directly to a signal setS, our method
takes into account normal subgroupsN1, N2, . . . , Nn, of G,
in such a way that the quotient groupsGN1

, G
N2

, . . . , G
Nn

are
matched to small signal setsS1, S2, . . . , Sn. Then under a
couple of additional conditions this method allows us to match
G to the cartesian productS1 × S2 × . . . × Sn.

Theorem 1:Let G be a group with non-trivial normal
subgroupsN1, N2, . . . , Nn. Let S1, S2, . . . , Sn be signal sets
injectively matched to the quotient groupsGN1

, G
N2

, . . . , G
Nn

.
Then,
1) the Cartesian productS1 ×S2 × . . .×Sn is matched toG;
2)

⋂n
i=1 Ni = {e}, with n > 1, if and only if the matching is

injective.
Proof: In order to prove 1), letµi : G

Ni
→ Si be

the i-matching mapping, fori = 1, 2, . . . , n. This means
that if di is the metric overSi thendi(µi(gNi), µi(hNi)) =
di(µi(gh−1Ni), µi(Ni)). Define the mappingµ : G → S1 ×
S2 × . . . × Sn as

µ(g) = (µ1(gN1), µ2(gN2), . . . , µn(gNn)) (12)

Then, considering the induced metric overS1×S2× . . .×Sn,
namely,d(s, t) = Σn

i=1di(si, ti), wheres = (s1, s2, . . . , sn)
and t = (t1, t2, . . . , tn), we have that

d(µ(g), µ(h)) = Σn
i=1di(µi(gNi), µi(hNi))

= Σn
i=1di(µi(gh−1Ni), µi(Ni))

= d(µ(gh−1), µ(e)),

which shows thatµ is a matching mapping.
To prove 2), suppose thatµ(g) = µ(h). Thenµi(gNi) =

µi(hNi), for all i = 1, 2, . . . , n. Since eachµi is injective,
we have thatgNi = hNi, which means thatgh−1 ∈
⋂n

i=1 Ni = {e}. Hence,g = h. Therefore,µ is injective.
On the other hand, suppose the matching is injective and
n0 6= e ∈ ⋂n

i=1 Ni. Thenµ(e) must be different fromµ(n0).
But µ(e) = (µ1(N1), . . . , µn(Nn)) = µ(n0), and we have a
contradiction.

Suppose that eachSi is a unitary sphere ofRmi , that is,
‖si‖ = 1 for eachsi ∈ Si and d2

i (si, ti) =< si − ti, si −
ti >. Thend2(s, t) =

∑n
i=1 < si − ti, si − ti > =

∑n
i=1 2 −

2 cos(θsiti
) and (12) can be adapted for the unitary sphere of

Rm1 × Rm2 × . . . Rmn× by

µ(g) =
1√
n

(µ1(gN1), µ2(gN2), . . . , µn(gNn)). (13)

If any one of the matching maps (12) or (13) is injective, then
we must have that|G| ≤ |S1| · |S2| · · · · · |Sn−1| · |Sn| =



| G
N1

| · | G
N2

| · · · · · | G
Nn−1

| · | G
Nn

|. From this,Πn
i=1|Ni| ≤ |G|n−1.

In particular, forn = 2, |N1||N2| ≤ |G|.
On the other hand, it is known that the groupZ2 is

the only one that is matched to 1-dimensional signal sets
such as{−1, 1} ⊂ R. All the other cyclic groupsZn =
{0, 1, 2, . . . , n − 1}, n > 1, can not be matched to 1-
dimensional signal sets in the sense of the equation (1). The
minimal dimension of the sets that they are matched to is two,
and the canonical matching mapµ for Zn, n ≥ 3, is given by
(3), i.e.,µ(i) = e

2π
√

−1

n
i, i = 0, 1, . . . , n − 1.

In equation (9) we proposed the matching of groups which
are semidirect productsZn ×a,0 Zm, for a−j = 1, with four
dimensional signal sets. The dihedral groupsD2n, being parti-
cular cases of these groups, can be matched to 3-dimensional
signal sets. On the other hand, Bali and Rajan in [9] have pro-
posed the matching of these dihedral groups to 2-dimensional
signal sets. Nevertheless, we have shown that the SED for the
3-dimensional case is better than the one for the 2-dimensional
case. Now, for extensions that are not semidirect products,
Zn ×(n−1),n/2 Zm, we proposed a matching with signal sets
in 2m dimensional Euclidean spaces. For the particular case
of quaternions groupsQ2p = Z2p−1 ×(2p−1−1),2p−2 Z2, n ≥ 3,
our proposed matched constellation becomes a subset of a 4-
dimensional Euclidean space like the one proposed in [10]. For
other particular cases of groups generated by two elements,
some matching maps are proposed in [12] by the method of
extension of cyclic groups. The above discussion yields the
following corollary of Theorem 1.

Corollary 1: Let G be a group with two non-trivial normal
subgroupsN1 and N2 such thatN1 ∩ N2 = {e}, and the
quotient groupsG

N1

and G
N2

are isomorphic to either cyclic or
dihedral groups. ThenG is injectively matched to a signal set
of dimension less than or equal to 4.

We now discuss the case whereG is abelian and finite, for
which any subgroupN ⊂ G is normal and each quotient group
G
N is abelian. By the fundamental theorem of finite abelian
groups [8],G is a finite direct product of cyclic groups, that is,
G = (Zn1

)m1 ×(Zn2
)m2×. . .×(Znk

)mk . If N1 = (Zn1
)m1×

(Zn2
)m2×. . .×(Znk

)mk−1 andN2 = (Zn1
)m1−1×(Zn2

)m2×
. . . × (Znk

)mk , then we have thatN1 and N2 are normal
subgroups ofG with N1∩N2 = e, G

N1

∼= Znk
, and G

N2

∼= Zn1
.

We then have another corollary.
Corollary 2: Let G be a finite and abelian group. IfG is

not cyclic then it is matched to a 4-dimensional signal set. If
G is cyclic then it is matched to a 2-dimensional signal set.

Example 4:Consider the abstract groupG whose Cayley
table is shown in Table I. This group together with the
dihedral groupD12 and the Alternant groupA4 are the three
non-abelian groups of order 12 [13]. The groupG has three
non-trivial normal subgroups, namely,N1 = {0, 3}, N2 =
{0, 1, 2}, andN3 = {0, 1, 2, 3, 4, 5}. The quotient group

G

N1
= {{0, 3}, {1, 4}, {2, 5}, {6, 9}, {7, 10}, {8, 11}}

is isomorphic to the dihedral groupD6 = Z3×2,0Z2, which is
best known as the group of symmetries of the triangle. For this
example, we will use the 2-dimensional matchingµ1 by using
(10), with φ = 0, l = 1, u = 1, and by settingα = sin(π

3 ).

0 1 2 3 4 5 6 7 8 9 10 11
1 2 0 4 5 3 8 6 7 11 9 10
2 0 1 5 3 4 7 8 6 10 11 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 3 1 2 0 11 9 10 8 6 7
5 3 4 2 0 1 10 11 9 7 8 6
6 7 8 9 10 11 3 4 5 0 1 2
7 8 6 10 11 9 5 3 4 2 0 1
8 6 7 11 9 10 4 5 3 1 2 0
9 10 11 6 7 8 0 1 2 3 4 5
10 11 9 7 8 6 2 0 1 5 3 4
11 9 10 8 6 7 1 2 0 4 5 3

TABELA I

CAYLEY TABLE FOR THE GROUPG

cos(π/3)
sin(π/3 )

sin(π/3 )
cos(π/3)

sin(π/3 )sin(π/3 )cos(π/3) cos(π/3)

(− ),
( , )

( ), −,  − )(−

(1,0)(−1,0)

Fig. 1. Signal set matched to the groupS3

The matched signal set is shown in the Figure 1. The matching
µ1 is given in the following chart:

Coset ofN1 D6 = Z3 ×2,0 Z2 Matched signal

{0, 3} 7→ (0, 0)
µ17→ (1, 0)

{1, 4} 7→ (1, 0)
µ17→ (−0.5, α)

{2, 5} 7→ (2, 0)
µ17→ (−0.5,−α)

{6, 9} 7→ (0, 1)
µ17→ (−1, 0)

{8, 11} 7→ (1, 1)
µ17→ (0.5,−α)

{7, 10} 7→ (2, 1)
µ17→ (0.5, α).

The quotient group

G

N2
= {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}}

is isomorphic to the cyclic groupZ4 = {0, 1, 2, 3}. The signal
set S2 = {(1, 0), (0, 1), (−1, 0), (0,−1)} ⊂ R2, shown in
Figure 2, is injectively matched toGN2

∼= Z4 via the following
chart:

Coset ofN2 Z4 Matched signal

{0, 1, 2} 7→ e
µ27→ (1, 0)

{3, 4, 5} 7→ 2
µ27→ (−1, 0)

{6, 7, 8} 7→ 1
µ27→ (0, 1)

{9, 10, 11} 7→ 3
µ27→ (0,−1)

Finally, the quotient group

G

N3
= {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}

is isomorphic to the binary, and cyclic, groupZ2 = {0, 1},
and it is matched to the set{1,−1}.



(0,1)

(1,0)

(0,−1)

(−1,0)

Fig. 2. Signal set matched to the groupZ4

G N1, N2 SED
0 1

√

2
(1, 0, 1, 0) 0

1 1
√

2
(−0.5, 0.α, 1, 0) 1.5

2 1
√

2
(−0.5,−α, 1, 0) 1.5

3 1
√

2
(1, 0,−1, 0) 2.0

4 1
√

2
(−0.5, α,−1, 0) 3.5

5 1
√

2
(−0.5,−α,−1, 0) 3.5

6 1
√

2
(−1, 0, 0, 1) 3

7 1
√

2
(0.5, α, 0, 1) 1.5

8 1
√

2
(0.5,−α, 0, 1) 1.5

9 1
√

2
(−1, 0, 0,−1) 3

10 1
√

2
(0.5, α, 0,−1) 1.5

11 1
√

2
(0.5,−α, 0,−1) 1.5

TABELA II

MATCHING OF THE GROUPG TO AN EUCLIDEAN SET OFR
4

Since N1 ∩ N2 = {0}, then for these two subgroups we
obtain an injective matching (given in (13)) ofG to a 4-
dimensional signal set. It is the matchingµ : G → S1 ×S2 ⊂
R4 given in the Table II together with its SEDs. ForN1 andN3

we have thatN1 ∩ N3 = N1, which results in a non-injective
matching. ForN2 andN3 we have thatN2∩N3 = N3, which
does not give an injective matching either.

V. CONCLUSIONS

Matching signal sets and groups is a useful method for
encoding information in bandlimited channels. We studied
extensions of cyclic groups and showed that the semidirect
product is a particular case of the extension of groups. The
analysis of extension of cyclic groups gave us parameters
that allowed the construction of new examples of matching
signal sets and groups. For instance, we found groups that
are generalizations of the dihedralsD2n that are matched to
4-dimensional signal sets. Similar results were obtained for
the quaternionsQ2n . The reduction of the dimension of the
signal set, for these generalized groups, is left for futurework.
Finally, in the last section, we presented a new technique of
matching groups and signal sets. This technique is useful for
matching big and non-abelian groups other than the dihedral
and the quaternion groups. Particularly, we showed that, if
a group G has two normal subgroupsN1 and N2, with
N1 ∩ N2 = {e}, then, no matter how bigG is, it can be

injectively matched to a signal set with dimension less than
or equal to four.

REFERÊNCIAS

[1] G. Ungerboeck, “Channel coding with multilevel-phase signals,” IEEE
Transactions on Information Theory, vol. 28, pp. 55–67, 1982.

[2] A. Calderbank and N. Sloane, “New trellis codes based on lattices and
cosets,”IEEE Transactions on Information Theory, vol. 33, pp. 177–195,
1987.

[3] D. G. Forney, “Geometrically uniform codes,”IEEE Transactions on
Information Theory, vol. 37, no. 5, pp. 1241–1260, 1991.

[4] H. Loeliger, “Signal sets matched to groups,”IEEE Trans. Inform.
Theory, vol. 37, pp. 1675–1682, November 1991.

[5] G. Forney and M. Trott, “The dynamics of group codes; state spaces,
trellis diagrams and canonical encoders,” vol. IT 39(5), pp. 1491–1513,
1993.

[6] D. Slepian, “Group codes for the gaussian channels,”Bell Systems
Technical Journal, vol. 47, pp. 575–602, 1968.

[7] R. M. de Siqueira and S. R. Costa, “Upper bounds for commutative
group codes,” inProceedings of the 2006 International Telecommunica-
tions Symposium. Fortaleza, CE: IEEE, Setembro 2006.

[8] J. J. Rotman,An Introduction to the Theory of the Groups, 4th ed. New
York: Springer Verlag, 1995.

[9] J. Bali and S. Rajan, “Block coded psk modulation using two-level group
codes over dihedral groups,”IEEE Transactions on Information Theory,
vol. 44, pp. 1620–1631, July 1998.

[10] T. Selvakumaran and S. Rajan, “Block coded psk modulation using two-
level group codes over generalized quaternion groups,”IEEE Transac-
tions on Information Theory, vol. 45, pp. 365–372, january 1999.

[11] M. Hall, The Theory of Groups. New York: Mac Millan, 1959.
[12] J. P. Arpasi, “Matching signal sets and extension of cyclic groups,” in

Proceedings of the 2006 International TelecommunicationsSymposium.
Fortaleza, CE: IEEE, Setembro 2006.

[13] GAP – Groups, Algorithms, and Programming, Version 4.4, The
GAP Group, 2005,(http://www.gap-system.org).


