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Convex combinations of adaptive algorithms for
blind equalization of QAM signals

Magno T. M. Silva and João Mendes Filho

Abstract— Based on concurrent algorithms and on the convex
combination of one slow and one fast CMA (Constant Modulus
Algorithm), we propose a convex combination of two blind equal-
izers adapted respectively by CMA and the modified SDD (Soft
Decision-Directed) algorithm for recovering of QAM (Quadrature
Amplitude Modulation) signals. For high signal-to-noise ratio,
the performance of the proposed scheme is, in the worst case, as
good as that of the best of its components, being better than both
of them in some situations. Since the considered algorithms are
derived from different criteria, the mixing parameter is updated
for minimizing the decision-directed cost function.

Keywords— Adaptive filtering, blind equalization, QAM sig-
nals, convex combination, Constant Modulus Algorithm.

I. INTRODUCTION

Blind equalizers are used in modern digital communica-
tion systems to remove intersymbol interference introduced
by dispersive channels. The Constant Modulus Algorithm
(CMA) [1] is the most popular for the adaptation of finite
impulse response (FIR) equalizers. It is widely employed
even for nonconstant modulus constellations as the M -QAM
(Quadrature Amplitude Modulation) signalling with M > 4
[2]-[4]. Although it presents an advantage of having simple
computational complexity, its main drawback is the possible
convergence to undesirable local minima. In this case, it may
achieve just a moderate level of Mean-Square Error (MSE)
after convergence [2]-[4]. To reduce the residual CMA steady-
state MSE, an alternative is to switch to the Decision-Directed
(DD) mode. However, to ensure a successful transfer from
CMA to DD algorithm, the CMA steady-state MSE should be
sufficiently low, which may not always be reached by CMA
[2]-[4].

Another blind algorithm for the adaptation of FIR equalizers
is the Soft Decision-Directed (SDD) algorithm [4]. It was
originally derived in [5] for 4-QAM constellation and extended
to M -QAM (M ≥ 4) in [6]. Using a multi-stage procedure
[6], its computational complexity is always equivalent to the
4-QAM case, which makes its implementation feasible even
for M � 4. As pointed out in [3], [4], its main drawback is
that the adaptation process requires L-stage switchings, where
L = log2(M)/2, and each adaptation stage needs a different
set of parameters.

In order to improve CMA performance, some attention
has been given to the concurrent adaptation. A concurrent
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Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil. João
Mendes Filho is with Programa de Pós-Graduação em Engenharia Elétrica,
Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil. E-mails:
magno@lps.usp.br, joao.mendes@uol.com.br.

algorithm formed by CMA and the DD algorithm for M -
QAM signaling was introduced in [2]. Later, considering
the last stage of the SDD algorithm, a modification in the
concurrent scheme of [2] was proposed in [3], [4]. The
resulting concurrent algorithm, denoted by SDD-CMA, has
lower computational complexity and faster convergence rate
than DD-CMA [4]. It does not require difficult tuning of
parameters, since only the last stage of SDD is considered (the
first L − 1 stages are replaced by simple comparisons) [3].

Although these algorithm combinations represent an im-
provement in the equalization performance, it depends on the
good behavior of each component algorithm. If, for example,
CMA presents a high level of steady-state MSE due to an
inadequate choice of step-size, the concurrent algorithm will
perform badly. Moreover, only the last stage of SDD does
not present an adequate individual performance for M -QAM
signalling with M > 16. In this case, the blind multi-stage
procedure of [6] should be used to ensure a correct clustering
separation. To improve the overall performance in such situa-
tions, each component filter could be individually adapted and
their outputs mixed together considering an adaptive convex
combination.

Adaptive convex combinations of algorithms have been
proposed in the literature. A convex combination of one fast
and one slow LMS (Least Mean-Square) filter was introduced
in [7] and analyzed in [8]. Furthermore, it was shown that this
structure presents a worst case performance as good as that
of the best of its components, and outperforms both of them
in some situations [8]. In this scheme, each component filter
is adapted separately and the mixing parameter is adjusted
online by means of a nonlinear rule [8]. It was also extended
for blind equalization purposes in [9] and [10], considering
respectively the combination of one fast and one slow CMA
(CCMA) and the combination of CMA with the Shalvi-
Weinstein Algorithm.

In order to avoid the difficult adjustment of the parameters
of the multi-stage SDD algorithm, we consider only its last
stage and replace the first L−1 stages by simple comparisons
as [3]-[4]. However, to improve its performance for M > 16,
we propose a modification in such algorithm, resulting in
the Modified SDD (MSDD) algorithm. Then, inspired in [7]-
[9], we propose a convex combination of one CMA and one
MSDD (C-MSDD-CMA). The proposed combination should
be able to perform as well as the best of its components,
outperforming both of them and the concurrent algorithm of
[3] in some situations.

The paper is organized as follows. In Section II, the problem
is formulated and CMA, SDD, SDD-CMA, and CCMA are
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revisited. The modification to use only the last stage of SDD
algorithm independently of M is also presented. In Section III,
the convex combination of one MSDD and one CMA is
introduced. Simulation results are presented in Section IV,
where the proposed scheme is compared to the concurrent
SDD-CMA and the convex combination of two CMAs. To
close the paper, conclusions are shown in Section V.

II. BLIND ADAPTATION OF FIR EQUALIZERS

A simplified block diagram of a baseband communica-
tion system is depicted in Figure 1 [11]. The signal a(n)
is transmitted through an unknown channel, whose model
is constituted by an FIR filter H(z) and Additive White
Gaussian Noise (AWGN) η(n). The received signal u(n)
is a distorted version of a(n), corrupted by intersymbol
interference and noise. It passes through an FIR filter, whose
output is given by the inner product y(n) = u

T (n)w, where
u(n) = [u(n) u(n − 1) · · · u(n − M + 1) ]T and w =
[w0 w1 · · · wM−1 ]T are the input regressor vector and the
coefficient vector respectively, M is the filter length, and the
superscript T stands for the transpose of a vector. After a
phase correction, the signal enters to the decision device and
a delayed estimate of the transmitted sequence is obtained,
i.e., â(n − ∆), being ∆ a positive integer.
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Fig. 1. A simplified communication system with an FIR equalizer.

A. Constant Modulus and Phase Tracking algorithms

The constant modulus cost function is given by [1]

JCM = E
{

(|y(n)|2 − Ra
2)2

}

, (1)

where Ra
2 = E{|a(n)|4}/E{|a(n)|2} and E{ · } stands for the

expectation operator. Taking the instantaneous gradient of (1)
with respect to w, we obtain the CMA update rule, that is,

w(n) = w(n − 1) − µce(n)u∗(n) (2)

where
e(n) = y(n)(|y(n)|2 − Ra

2), (3)

y(n) = u
T (n)w(n−1), µc is the step-size, and the superscript

∗ stands for the conjugate.
Since CMA is insensible to a random phase rotation, it

is common to include a phase correction algorithm. After a
successful convergence, the output of the equalizer can be
modeled by

y(n) ≈ ejϕa(n − ∆) + ν(n), (4)

where ϕ ∈ [0, 2π[ represents the phase rotation and ν(n) is
a complex AWGN sample. The phase rotation must be com-
pensated before the decision device. The literature contains
several blind phase recovery algorithms (see e.g. [12], [13],

and the references therein), but for simplicity we assume in
this paper the Phase Tracking Algorithm (PTA) [11], [14],
which provides the following phase update equation

ϕ(n + 1) = ϕ(n) + µϕIm{ȳ(n)â∗(n − ∆)}, (5)

where ȳ(n) = y(n)e−jϕ(n), µϕ is the step-size, and Im{ · }
stands for the imaginary part of a complex number.

B. The Soft Decision Directed Algorithm

The SDD algorithm is a stochastic gradient-type algorithm
derived from the minimization of the cost function

JMAP = −E {ρ log [p̂i (y(n))]} , (6)

where ρ is a parameter which depends on the noise power, and
p̂i (y(n)) is a local approximation to the a posteriori proba-
bility density function (p.d.f.) of y(n). Since the p.d.f. of y(n)
depends on the difference among it and the QAM constellation
symbols, the random phase rotations (non-multiple of π/2) are
automatically corrected1 . Thus, a phase recovery algorithm
(like PTA) is not necessary, y(n) = ȳ(n), and y(n) can be
modeled by (4) with ϕ = 0.

Using such model, y(n) can be approximated by M Gaus-
sian clusters, where the complex AWGN ν(n) = νR(n) +
jνI(n) is such that E{νR(n)νI(n)} = 0 and E{ν2

R
(n)} =

E{ν2
I
(n)} = ρ, being νR and νI the real and imaginary parts

of ν, respectively. Hence, the a posteriori p.d.f. of y(n) can
be approximated by

p(y(n))≈
K

∑

k=1

K
∑

l=1

Pkl

2πρ
exp

[

−|y(n) − akl|2
2ρ

]

, (7)

where akl takes the value from the M -QAM symbol set
defined by

A={akl =(2k − K − 1) + j(2l − K − 1), 1 ≤ k, l ≤ K}

with K =
√

M and Pkl the a priori probability of akl. For
equiprobable symbol transmission Pkl = 1/M, 1 ≤ k, l ≤
K. The SDD algorithm was derived considering (7) and the
stochastic gradient method in conjunction with a multi-stage
procedure in the minimization of (6). Ideally, ρ is the power
of the real or imaginary part of ν(n). However, since the noise
power is not known in practice, ρ is a parameter which must
be chosen. The adjustment of ρ depends on each stage and
may be a difficult task [6], [3].

To minimize the computational complexity, the complex
plan was divided into M/4 regular regions as indicated in
Figure 2, with each region Ai containing four symbols, that
is, Ai = {aim, m = 1, 2, 3, 4}, being i = 1, 2, . . . ,M/4.
Defining εim(n) , y(n)−aim, if the equalizer output is within
the region Ai, a local approximation to the a posteriori p.d.f.
of y(n) is

p̂i(y(n)) ≈
4

∑

m=1

1

8πρ
exp

[

−|εim(n)|2
2ρ

]

, (8)

1Phase rotation multiple of π/2 can be avoided by using differential
modulation [11].



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

being that the a priori probability has been set to 1/4. Then,
using (8) and replacing the L−1 stages by simple comparisons,
a simplified version of the SDD algorithm was derived in [3]
and its update equation is given by

w(n) = w(n − 1) − µdξ(n)u∗(n), (9)

where

ξ(n) =

4
∑

m=1

exp

[

−|εim(n)|2
2ρ

]

εim(n)

4
∑

m=1

exp

[

−|εim(n)|2
2ρ

]

(10)

and µd is the step-size. In this case, to ensure a proper
separation of the clusters, ρ should be lower than the half of
the minimum distance between two neighboring constellation
symbols [3].

As indicated in (10), the SDD adaptation needs to compute
only 4 exp( · ) at each iteration, which can be implemented
through a table. The task of M -QAM equalization, where
M = 22L, is achieved with L stages, being that L − 1
stages consist in only 2(L − 1) comparisons to identify the
region Ai, which does not cause a significant increase in
computational complexity. Thus, the algorithm’s complexity is
always equivalent to the minimum complexity of the 4-QAM
case [4]. Considering for example 64-QAM, the complex plan
is divided in 64/4 = 16 regions. Each region must contain
4 symbols as shown in Figure 2. Suppose that the equalizer
output is 6.0 + j6.5. The first stage consists in classifying
the output into the 4 quadrants of the complex plan. In the
example, the output is in the first quadrant because its real and
imaginary parts are positive. At the second stage, the output
must be classified into other 4 regions and at the last stage ξ(n)
can be calculated using the four symbols aim, m = 1, 2, 3, 4
of the final region Ai.
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Fig. 2. Illustration of local regions for SDD adaptation and 64-QAM; the
center of each local region is indicated by ∗, and the constellation symbols
are represented by •.

C. The Modified SDD

Maintaining only the last stage, to ensure a correct behavior
of the SDD algorithm even for M > 16, the error ξ(n) of (10)
is multiplied by the absolute value of the center of the local
region Ai at each iteration. Thus, if the region Ai is the one
indicated in Figure 2, for example, ξ(n) must be multiplied
by |6+j6| = 6

√
2. This modified algorithm is named MSDD.

The modification can be interpreted as a simple adjust in
the SDD step-size. Since the local region Ai is different
at each iteration, (9) needs to be compensated to ensure a
correct equalization for all regions of the complex plan. At
an additional cost of one single multiplication per iteration,
we have observed (by means of exhaustive simulations) that
the MSDD algorithm outperforms SDD in the equalization of
QAM signals. We should notice that for 16-QAM, since the
centers of the four regions Ai are equal to c = 2

√
2, MSDD

with step-size µd reduces to SDD with step-size c µd. For 4-
QAM, since the center of the single region coincides with the
origin of the complex plan, to ensure a correct behavior of
MSDD, we assume c = 1. Then, in this case, MSDD and
SDD are the same algorithms.

Although the MSDD algorithm presents a steady-state per-
formance better than SDD and sometimes much better than
CMA, it suffers from a slow convergence. Thus, its combina-
tion with CMA allows a better performance mainly during the
convergence, as shown by the simulations of Section IV.

D. The concurrent SDD-CMA

The concurrent algorithm of [3], denoted by SDD-CMA,
has the following update equation

w(n) = wc(n) + wd(n), (11)

where wc and wd are the coefficient vectors updated by
CMA and SDD algorithm, that is, by eqs. (2) and (9),
respectively. As the SDD algorithm, SDD-CMA does not
need a phase recovery algorithm for rotations non-multiple
of π/2. It is relevant to note that the errors (3) and (10),
used to update respectively wc(n) and wd(n), depend on
the coefficients of previous time instants of both algorithms,
since they depend on y(n) and y(n) = u

T (n)w(n − 1) =
u

T (n) [wc(n − 1) + wd(n − 1)]. Consequently, if one of both
algorithms does not perform well, the concurrent will also
present a bad performance.

E. Convex combination of two CMAs

A convex combination of one fast and one slow CMA was
proposed in [9] and is depicted in Figure 3. In this scheme,
the overall coefficient vector is given by

w(n − 1) = λ(n)w1(n − 1) + [1 − λ(n)]w2(n − 1), (12)

where w1 and w2 are updated by (2), considering the step-
sizes µc1 and µc2 respectively, with µc1 > µc2. Similarly, the
output of the overall equalizer is given by

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n), (13)

where yi(n), i = 1, 2 are the outputs of the equalizers, i.e.,
yi(n) = u

T (n)wi(n − 1), u(n) is the common regressor
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vector, and wi(n − 1) are the coefficient vectors of each
component equalizer. The mixing parameter λ(n) is modified
via a sigmoidal function and the auxiliary variable α(n − 1)
[7]-[9], that is,

λ(n) = sgm[α(n − 1)] =
1

1 + e−α(n−1)
, (14)

with α(n) being updated as

α(n) = α(n − 1) − µαeα(n)λ(n)[1 − λ(n)], (15)

where

eα(n) = (|y(n)|2 − Ra
2)Re{y(n)[y1(n) − y2(n)]∗}, (16)

µα is the step-size, and Re{ · } denotes the real part of a
complex number. Equation (15) was obtained in [9], using a
stochastic gradient rule to minimize (1). The auxiliary variable
α(n) is used to keep λ(n) in the interval [0, 1]. A drawback
of this scheme is that α(n) stops updating whenever λ(n)
is close to 0 or 1. To avoid this, [9], [8] suggest that α(n)
be restricted (by simple saturation) to lie inside a symmetric
interval [−α+, α+].

Since CMA does not recover the signal phase, PTA (Eq. (5))
can be used in conjunction with each component equalizer.
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Fig. 3. Adaptive convex combination of two CMAs.

III. CONVEX COMBINATION OF ONE CMA AND ONE
MSDD ALGORITHM

The convex combination of one CMA and one MSDD
is depicted in Figure 4. Since these algorithms minimizes
different cost functions, the mixing parameter λ(n) is adapted
to minimize the decision-directed cost function, i.e.,

JD = E{|ed(n)|2}, (17)

where
ed(n) = y(n) − â(n − ∆) (18)

is the decision error. If λ(n) was adapted to minimize (1)
or (6), the combination would perform close to the algorithm
related to the considered cost function. Thus, we choose (17),
which is different from the cost functions of the combined
algorithms.

As in the convex combination of two CMAs, we assume
that λ(n) is adapted via (14), i.e., using a sigmoidal function
and the auxiliary variable α(n − 1). Thus, we need to find
a recurrent equation to update α(n − 1). Using the gradient

method to minimize the instantaneous version of JD, that is,
ĴD(n) = |ed(n)|2, we have

α(n) = α(n − 1) − µα

2

∂ĴD(n)

∂α(n − 1)
. (19)

Using (14) and the chain rule, we obtain

∂ĴD(n)

∂α(n − 1)
=

∂ĴD(n)

∂λ(n)

∂λ(n)

∂α(n − 1)

=
∂ĴD(n)

∂λ(n)
λ(n)[ 1 − λ(n) ]. (20)

Rewriting ed(n) as a function of λ(n), i.e.,

ed(n) = λ(n)y1(n) + [1 − λ(n)]y2(n) − â(n − ∆), (21)

we arrive at

∂ĴD(n)

∂λ(n)
=

∂ [ e∗d(n)ed(n) ]

∂λ(n)

=
∂ e∗d(n)

∂λ(n)
ed(n) +

∂ ed(n)

∂λ(n)
e∗d(n)

= 2Re{ed(n)[ y1(n) − y2(n) ]∗}. (22)

Now, replacing (22) in (20) and the result in (19), we obtain

α(n) = α(n − 1) − µαeα,d(n)λ(n)[ 1 − λ(n) ], (23)

where eα,d(n) = Re{ed(n)[ y1(n) − y2(n) ]∗}.
As in the convex combination of two CMAs, α(n) is

restricted (by simple saturation) to lie inside the interval
[−α+, α+]. Thus, the updating of α(n) never stops, even
when λ(n) is close to 0 or 1. Furthermore, to avoid phase ro-
tation, PTA is considered in conjunction with CMA, allowing
an adequate convex combination.
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Fig. 4. Adaptive convex combination of one CMA and one MSDD.

IV. SIMULATION RESULTS

In all the simulations, we assume: 64-QAM, the channels
whose coefficients are in tables I and II, and equalizers with
M = 23 coefficients initialized with zero, except the 12th one.
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TABLE I
A 22-TAP CHANNEL IMPULSE RESPONSE FROM [3].

Tap Real Imag. Tap Real Imag.
0 0.0145 -0.0006 11 0.0294 -0.0049
1 0.0750 0.0176 12 -0.0181 0.0032
2 0.3951 0.0033 13 0.0091 0.0003
3 0.7491 -0.1718 14 -0.0038 -0.0023
4 0.1951 0.0972 15 0.0019 0.0027
5 -0.2856 0.1896 16 -0.0018 -0.0014
6 0.0575 -0.2096 17 0.0006 0.0003
7 0.0655 0.1139 18 0.0005 0.0000
8 -0.0825 -0.0424 19 -0.0008 -0.0001
9 0.0623 0.0085 20 0.0000 -0.0002

10 -0.0438 0.0034 21 0.0001 0.0006

TABLE II
A 3-TAP CHANNEL IMPULSE RESPONSE.

Tap Real Imag.
0 0.3740 -0.0556
1 0.4689 0.7031
2 0.3740 -0.0556

Figure 5-a) shows JD = E{|ed(n)|2} estimated by the
ensemble-average of 100 independent runs for the MSDD
algorithm, CMA, and their convex combination. We consider
the channel of Table I with a signal-to-noise ratio (SNR) of
40 dB. To facilitate the visualization, the curves were filtered
by a moving-average filter with 64 coefficients. The MSDD
algorithm presents a initial convergence faster than that of
CMA and stays at JD ≈ −2 dB until n = 105. Although CMA
is initially slower than MSDD, it presents a better performance
from n = 2 × 104 to n = 1.15 × 105. After that, MSDD
reaches JD ≈ −12 dB, being better than CMA. Thus, the
combination performs close to MSDD during the first 2×104

iterations, close to CMA from n = 2 × 104 to n = 105, and
switches back to MSDD from n = 1.25 × 105. It is relevant
to note that from n = 105 to n = 1.25×105, the combination
outperforms both of its components. In Figure 5-b), we show
E{λ(n)}, confirming the previous observations.

In Figure 6, we compare the proposed convex combination
with the concurrent SDD-CMA and with the combination
of two CMAs (CCMA). C-MSDD-CMA presents a better
performance than the other combinations during the first
2×104 iterations. However, it is slightly worse than the other
combinations from n = 2×104 until n = 5×104 and presents
an intermediate behavior from n = 5 × 104 until n = 105.
After that, it outperforms the other combinations, achieving
JD ≈ −12 dB, while CCMA reaches JD ≈ −8 dB and SDD-
CMA achieves JD ≈ −7.2 dB. The equalizer output signal
constellations after convergence are shown in Figure 7. We
can observe that the proposed convex combination presents
the best performance, in regards of “eye-opening”.

Figure 8-a) shows JD estimated by the ensemble-average of
70 independent runs for the MSDD algorithm, CMA, and their
convex combination. At n = 2 × 105, the channel is changed
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Fig. 5. a) Ensemble-average of the squared absolute value of the decision
error for a) MSDD (µd = 10−5, ρ = 0.6), CMA (µc = 5 × 10−7,
µϕ = 10−3) and their convex combination C-MSDD-CMA (µα = 2,
α+ = 4); M = 23; 64-QAM, channel of Table I; SNR = 40dB; mean
of 100 independent runs. b) Ensemble-average of λ(n).
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Fig. 6. a) Ensemble-average of the squared absolute value of the decision
error for C-MSDD-CMA (µc = 5 × 10−7, µϕ = 10−3, µd = 10−5,
ρ = 0.6, µα = 2, α+ = 4), SDD-CMA (µc = 5 × 10−7, µd = 10−5,
ρ = 0.6), CCMA (µ1 = 5 × 10−7, µ2 = 10−7, µα = 0.8, µϕ = 10−3,
α+ = 4); M = 23; 64-QAM; channel of Table I; SNR = 40dB; mean of
100 independent runs.

from that of Table II to that of Table I. We assume SNR =
35 dB and µα = 5. We can observe that the C-MSDD-CMA
is close to MSDD in the steady-state. However, during the
convergence, it presents an intermediate performance between
those of CMA and MSDD. Through exhaustive simulations,
we observed that the switching between its component al-
gorithms depends on the signal-to-noise ratio. For low SNR
(< 35 dB), the decision error is high and the mixing parameter
does not work properly in the convergence, which leads the
combination to present a mean-square performance worse than
one of its components. Figure 8-b) shows E{λ(n)}, which is
always smaller than 1. This means that the combination does
not perform like CMA in the mean-square sense.



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Real part

Im
ag

in
ar

y 
pa

rt

a) C−MSDD−CMA

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Real part

Im
ag

in
ar

y 
pa

rt

b) SDD−CMA

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Real part

Im
ag

in
ar

y 
pa

rt

c) CCMA

Fig. 7. Equalizer output signal constellations after convergence for a) C-
MSDD-CMA, b) SDD-CMA, and c) CCMA (the parameters of the algorithms
are the same shown in the legend of Figure 6).

V. CONCLUSIONS

We proposed a modification to the SDD algorithm in order
to use only its last stage in the recovering of M -QAM
signals. Then, we combined the modified SDD with CMA
to take advantage of their different convergence and steady-
state behaviors. Through simulations, we verified that when
the signal-to-noise ratio is higher than 35 dB the scheme
seems to be universal, performing as the best component
filter and being better than both of them in some situations.
Furthermore, it can present a better performance than those
of other algorithm combinations contained in the literature.
However, for low SNR the minimization of decision directed
cost function does not seem to be the most adequate to update
the mixing parameter. Further work should imply different
forms to update this parameter.
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