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Abstract� In this paper an adaptive hybrid morphological
method is presented for designing translation invariant morpho-
logical operators via Matheron Decomposition and via Banon and
Barrera Decomposition. It consists of a hybrid model composed
of a Modular Morphological Neural Network (MMNN) and an
evolutionary search mechanism: the adaptive Genetic Algorithm
(GA) (adaptive rates in genetic operators). The proposed method
searches for initial weights, architecture and number of modules
in the MMNN; then each element of the adaptive GA population
is trained via the Back Propagation (BP) algorithm. Also, it
is presented and experimental investigation with the proposed
method using a relevant application in image processing, the
restoration of noisy images, where it veri�es that the method pro-
posed herein allows seamless and ef�cient design of translation
invariant morphological operators of either increasing or non-
increasing types, and the results are discussed and compared,
in terms of Noise to Signal Ratio (NSR), with the previously
methods proposed in literature, showing the robustness of the
proposed method.

Keywords� Translation Invariant Morphological Operators,
Morphological Neural Networks, Evolutionary Computation, Hy-
brid Systems, Image Restoration.

I. INTRODUCTION

Mathematical Morphology (MM) represents an important
class in image processing. It uses a nonlinear focus based
on geometric analysis through using structuring elements,
which are small patterns that operates in spatial domain and
extract information about the geometric forms in the image [1],
[2]. The MM was created around 1960, being developed by
Matheron [3] and Serra [4] with goal of processing boolean
images. Sternberg [5] and Serra [4] extended such concept
for gray scale image processing. The MM formal de�nition,
in terms of lattice algebra, was presented by Heijmans [6].
An important result for MM was presented by Banon and
Barrera [7], the decomposition theorem of translation invariant
operators, which guarantees that every translation invariant
operator, not necessary increasing, may be decomposed by a
combination of basic operators: dilation, erosion, anti-dilation
and anti-erosion. The Banon and Barrera [7] theorem result
is a generalization of the Matheron canonic decomposition
theorem [3] for increasing translation invariant operators.

Ricardo de A. Araújo is with Center for Informatics, Federal University
of Pernambuco, Av. Prof. Luiz Freire, s/n, CDU, 50732-970, Recife - PE -
Brazil. Email: raa@cin.ufpe.br.

Robson P. de Sousa is with Center of Science and Technology, State
University of Para�́ba, 58109-790, Campina Grande - PB - Brazil. Email:
sousarob@yahoo.com.br.

The design of translation invariant operators is a relevant
problem in mathematical morphology, with applications in
image processing, like image restoration, edge extraction and
object recognition. Many works have focused on the design
of this kind of operators. Yang and Maragos [8] designed
operators (min-max classi�ers) according to Matheron decom-
position [3] by using the mean square error for minimizing the
cost function. Dougherty and Loce [9] designed sub-optimal
operators satisfying Matheron theorem [3] for binary image
processing. Davidson and Hummer [10] used Morphological
Neural Networks (MNNs) for designing morphological �lters,
differing from the classical neural networks [11] in the sense
that the computation in each node of the MNN is carried out
by simple morphological operators in the context of Algebra
of Images [12]. Herwing and Shalkoff [13] presented a MNN
with learning based on the delta rule for designing �lter for
binary images.

Pessoa and Maragos [14] proposed a general class of neu-
ral network architectures involving morphological/rank/linear
operators, from which traditional multi-layer perceptrons and
morphological/rank networks can be designed using the back
propagation algorithm. Harvey and Marshall [15] used Simple
Genetic Algorithm (SGA) for designing morphological �lters
for gray level images. Oliveira [16] generalized the work of
Harvey and Marshall [15] by implementing Banon and Barrera
decomposition [7] via SGA for operators non necessarily
linear. Based on [14], Sousa [1], [2] presented particular
network architectures, referred to as Modular Morphological
Neural Networks (MMNNs), via the Matheron decomposition
theorem [3] and the more general Banon and Barrera decom-
position theorem [7]. The MMNN training in [1], [2] can be
via the SGA or via the back propagation (BP) algorithm. Based
on [1], [2], Araújo et al. [17] presented an adaptive evolution-
ary method for designing translation invariant morphological
operators applied to image restoration.

This paper presents an adaptive hybrid morphological
method for designing translation invariant operators via Math-
eron Decomposition and via Banon and Barrera Decompo-
sition for image restoration of images corrupted by salt and
pepper noise. It consists of a hybrid model composed of an
MMNN [1], [2] and an adaptive Genetic Algorithm (GA) [18],
which may be regarded as an improvement of the methodology
described in [17] as follows: (a) the GA is adaptive for faster
convergence; (b) each element of the adaptive GA population
represents an MMNN; and (c) an adaptive GA is used to search
for the initial weights, architecture and number of modules



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ �OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

of the MMNN, wherein each element of the adaptive GA
population is trained via the BP algorithm.

II. BACKGROUND

A. Mathematical Morphology
Mathematical Morphology represents an important class of

nonlinear signal processing systems, which aims to quanti-
tatively describe the geometrical structure of a signal using
structuring elements. The following equations are used in
MMNN for designing translation invariant operators [1], [2]:

Dilation: δk = max
(→

x +
→
a k

)
; (1)

Erosion: εk = min
(→

x − →
a k

)
; (2)

Anti-Dilation: δa
k = 1−min

(→
x − →

b k

)
; (3)

Anti-Erosion: εa
k = 1−max

(→
x +

→
b k

)
, (4)

where →
x is the input signal and →

a k and
→
b k represent the

structuring element (terms
→
b k represent the re�ection of the

complement of the structuring elements of anti-dilation or anti-
erosion).

B. Adaptive Genetic Algorithm
The adaptive GA of Mitsuo and Cheng [18] differs from

SGA by using adaptive methods applied to crossover and
mutation operators. The method adopted in the present work is
the deterministic adaption [18] and consists in modifying the
operators rate according to a pre-stablished rule. The operators
rates are gradually decreased in each population evolution. The
following equation de�nes the rule adopted as the adaptive
parameter in the rates of crossover and mutation:

Txa = Txi − (Txi − Txf ) ∗ ga

G
, (5)

where Txa, Txi and Txf represent the current, initial and
�nal rates. The terms G and ga represent, respectively, the
maximum number of generations and the current generation.

Figure 1 illustrates the adaptive GA procedure.

AdaptiveGeneticAlgorithmProcedure() {
τ = 0; // τ : iteration number
initialize P(τ ); // P(τ ): population for iteration τ
evaluate f (P(τ )); // f (·): �tness or cost function
while ( not termination condition ) {

τ = τ+1;
select individuals parents pairs from P(τ -1);
perform crossover operator with the selected

individuals parents pairs;
generate a new P(τ );
perform the mutation operator with the new P(τ );
evaluate f (P(τ ));
update the crossover and mutation rates according

to Equation (5);
}

}
Fig. 1. Adaptive genetic algorithm procedure.

According to Figure 1, the adaptive GA procedure starts
with the creation of an individuals' population, or more specif-
ically, the solutions set. Then, each individual is evaluated
by a �tness function (or cost function), which is an heuristic
function that guides the search for an optimal solution in state
space. After evaluating the GA population, it's necessary to use
some procedure to select the individual parent pairs, which will
be used to perform the genetic operators (crossover and muta-
tion). The next step is responsible to performing the crossover
genetic operator. Usually, the crossover operator mixture the
parents genes for exchanging genetic information from both,
obtaining its offspring individuals. After crossover operator,
all offspring individuals will be the new population, which
contains relevant characteristics of all individuals parent pairs
obtained in selection process. The next step is to mutate the
new population. The mutation operator is responsible by the
individual genes aleatory modi�cation, allowing the population
diversi�cation and enabling GA to escape of local minima (or
maxima) of the surface of the cost function (�tness). Finally,
the new mutated population is evaluated and then the crossover
and mutation rates are updated according to Equation 5. This
procedure is repeated until a stop condition be reached.

III. MMNN FUNDAMENTALS

A. MMNN Architecture for the Matheron Decompositon
Sousa [1], [2] de�ned the MMNN for designing translation

invariant operators that satisfy the Matheron decomposition
theorem [3] for dilations as well as for erosions. The Math-
eron theorem [3] states that every increasing and translation
invariant operator may be decomposed by a union of erosions
or a intersection of dilations. Figure 2 presents the MMNN
architecture for the Matheron decomposition [3] by dilations.
The following equations de�ne the MMNN architecture for
the Matheron decomposition [3] via dilations according to this
approach.

vk = δk = max
(→

x +
→
a k

)
, (6)

where →
x is the input signal of the MMNN.

Network output: Y = min(
→
v ), (7)

where
→
v = (v1, v2, . . . , vk). (8)

The weight matrix, A, of the MMNN is de�ned by

A = (
→
a 1;

→
a 2; . . . ;

→
a k), (9)

where →
a k ∈ Rk, k = 1, 2, . . . , N , represent the MMNN

weights (i.e. rows composed by structuring elements →
a k).

Symbol ∧ represents the minimum operation.
In a dual manner, the MMNN architecture for the Matheron

decomposition [3] via erosions is de�ned by substituting
dilations by erosions and symbol ∧ by ∨, where ∨ repre-
sents the maximum operation. Figure 3 presents the MMNN
architecture for the Matheron decomposition [3] by erosions.
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Fig. 2. MMNN architecture used for the Matheron decomposition via
dilations.

Fig. 3. MMNN architecture used for the Matheron decomposition via
erosions.

B. MMNN Architecture for the Banon and Barrera Decompo-
sition

Sousa [1], [2] de�ned the MMNN for designing translation
invariant operators satisfying the Banon and Barrera decom-
position theorem [7] for sup-generators as well as for inf-
generators. The Banon and Barrera theorem [7] states that
every translation invariant operator, not necessarily increasing,
may be decomposed by a union of sup-generators or a inter-
section of inf-generators. Figure 4 presents the architecture of
the MMNN for the Banon and Barrera decomposition [7] via
sup-generators. The following equations de�ne the MMNN
architecture for the Banon and Barrera decomposition [7] via
sup-generators according to this approach.

uk1 = εk = min
(→

x − →
a k

)
, (10)

uk2 = δa
k = 1−max

(→
x +

→
b k

)
. (11)

Sup-Generator: vk = min
(→
uk

)
, k = 1, 2, . . . , N, (12)

where
→
uk= (uk1, uk2), k = 1, 2, . . . , N. (13)

Network output: Y = max(
→
v ), (14)

where
→
v = (v1, v2, . . . , vN ). (15)

The weight matrices, A and B, of the MMNN are de�ned
by

A = (
→
a 1;

→
a 2; . . . ;

→
aN ), (16)

B = (
→
b 1;

→
b 2; . . . ;

→
b N ), (17)

where →
a k and

→
b k ∈ Rk, k = 1, 2, . . . , N , represent the

MMNN weights (i.e. rows composed by structuring elements
→
a k and

→
b k). Symbol ∧ represents the minimum operation

in the sub-integrators units and symbol ∨ represents the
maximum operation in the general integrator unit.

In a dual manner, the architecture for the Banon and Barrera
decomposition [7] via inf-generators is de�ned by substituting
dilations by erosions, anti-dilations by anti-erosions, symbol
∧ by ∨ in the sub-integrators units, and symbol ∨ by ∧
in the general integrator unit. Figure 5 presents the MMNN
architecture for the Banon and Barrera decomposition [7] via
inf-generators.

Fig. 4. MMNN architecture used for the Banon and Barrera decomposition
via sup-generators.

IV. MMNN TRAINING ALGORITHM

A. MMNN Training for the Matheron Decomposition
Based on the BP algorithm and the MMNN architecture

ilustrated in Figure 2, Sousa [1], [2] presented the MMNN
training for the Matheron decomposition [3] as follows:

A(n + 1) = A(n)− µ∇AJ(A), n = 0, 1, . . . (18)
where µ is the learning rate and ∇AJ(A) is the gradient
matrix for some objective function J(A) (to be minimized
with respect to the weight matrix A). For a given training set{

(
→
xm, dm), m = 1, 2, . . . , M

}
, (19)

where dm is the desired output for a given input →xm, J(A)
is de�ned by

J(A) =
1
2
e2
m, (20)
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Fig. 5. MMNN architecture used for the Banon and Barrera decomposition
via inf-generators.

where em = dm−ym is the difference between the desired out-
put and the actual output for the input →xm, m = 1, 2, . . . ,M .
The gradient presented in equation (18) is given by

∂J

∂
→
a k

= −e
∂y

∂vk

∂vk

∂
→
a k

, k = 1, 2, . . . , N. (21)

According to Sousa [1], [2], the partial derivatives in equation
(21) are estimated by the methodology of Pessoa and Mara-
gos [19] via rank indication vectors →

c and smooth impulse
functions Qσ, and are given by

∇AJ(A) = −e.diag(
→
c ).C, (22)

where
→
c = Qσ(y.

→
1−→v )

Qσ(y.
→
1−→v ).

→
1

T and C = (
→
c 1;

→
c 2; . . . ;

→
c N ), with

→
ck= Qσ(vk.

→
1−→x+

→
ak)

Qσ(vk.
→
1−→x+

→
ak).

→
1

T .

B. MMNN Training for the Banon and Barrera Decomposition
Based on the BP algorithm and the MMNN architecture

ilustrated in Figure 4, Sousa [1], [2] presented the MMNN
training for the Banon and Barrera decomposition [7] as
follows:

A(n + 1) = A(n)− µ∇AJ(A,B), n = 0, 1, . . . (23)

B(n + 1) = B(n)− µ∇BJ(A, B), n = 0, 1, . . . (24)

where µ is the learning rate and ∇AJ(A,B) and ∇BJ(A,B)
are the gradient matrices for some objective function J(A,B)
(to be minimized with respect to the weight matrices A and
B). For a given training set de�ned in Equation 19, J(A,B)
is de�ned in a similar fashion by

J(A,B) =
1
2
e2
m. (25)

The gradients presented in equations (23) and (24) are given
by

∂J

∂
→
a k

= −e
∂y

∂vk

∂vk

∂uk1

∂uk1

∂
→
a k

, k = 1, 2, . . . , N, (26)

∂J

∂
→
b k

= −e
∂y

∂vk

∂vk

∂uk2

∂uk2

∂
→
b k

, k = 1, 2, . . . , N. (27)

According to Sousa [1], [2], the partial derivatives in equations
(26) and (27) are estimated by the methodology of Pessoa
and Maragos [19] via rank indication vectors →

c and smooth
impulse functions Qσ, and are given by

∇AJ(A, B) = −e.diag(
→
c ).diag(c̃1).C1, (28)

∇BJ(A,B) = −e.diag(
→
c ).diag(c̃2).C2, (29)

where

c̃1 = (ĉ11, ĉ21, . . . , ĉN1), c̃2 = (ĉ12, ĉ22, . . . , ĉN2),
(ĉk1, ĉk2) = Qσ(min(

→
u k).

→
1−→uk)

Qσ(min(
→
u k).

→
1−→uk).

→
1

T ,

C1 = (
→
c 11;

→
c 21; . . . ;

→
c N1), →

ck1= − Qσ(uk1.
→
1−→x +

→
ak)

Qσ(uk1.
→
1−→x +

→
ak).

→
1

T ,

C2 = (
→
c 12;

→
c 22; . . . ;

→
c N2), →

ck2= − Qσ((1−uk2).
→
1−→x−

→
bk)

Qσ((1−uk2).
→
1−→x−

→
bk).

→
1

T .

V. THE PROPOSED METHOD

The method proposed in this paper, referred to as adaptive
hybrid morphological operators design (AHMOD) method,
uses an adaptive evolutionary search mechanism for designing
translation invariant operators via the Matheron decompo-
sition [3] and the Banon and Barrera decomposition [7]
for image restoration of images corrupted by salt and pep-
per noise. It consists of a hybrid model composed of an
MMNN [1], [2] and an adaptive GA [18], which searches
for the initial weights, architecture and number of modules
of the MMNN, wherein each element of the adaptive GA
population is trained via the BP algorithm. Each element of
adaptive GA population represents an MMNN. As an example,
Figure 6 represents an element of the adaptive GA population,
where se(i), i = 1, 2, . . . , N , denotes the initial MMNN
weights. The term arch indicates the MMNN architecture
(each architecture has a corresponding training algorithm). The
term mod represents the number of MMNN modules. Table I
presents an example of coding used for identifying the MMNN
architectures. Figure 7 illustrates the general scheme of the
proposed method.

Fig. 6. Coding of the adaptive GA chromosome.
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Fig. 7. General scheme of the proposed method.

TABLE I
EXAMPLE OF CODE FOR THE MMNN ARCHITECTURES.

Code MMNN architecture
0 Matheron decomposition via dilations
1 Matheron decomposition via erosions
2 Banon and Barrera decomposition via sup-

generators
3 Banon and Barrera decomposition via inf-

generators

VI. SIMULATIONS AND RESULTS

The noise to signal ratio (NSR) is used for assessing per-
formance of the designed operator when applied to restoration
of images. It is de�ned by

NSR = 10 log10
(D − Y )2

(D)2
, (30)

where (D − Y )2 and (D)2 represent the mean energy of the
error (second moment of the error) and the mean energy of
the desired output (second moment of the target).

The MMNN is trained via an adaptive GA with initial
population of 100 elements, maximum of 100 generations,
with an interval of adaptive variation Txi = 1.0 to Txf = 0.5
for crossover probability and Txi = 0.05 to Txf = 0.0001
for mutation probability, according to [18]. The adaptive GA
stopping criterion is the number of iterations of the GA. Each
element of the adaptive GA population is then trained via
the BP algorithm for 100 epochs, using smooth rank function
(Qσ = exp

[− 1
2 (x/σ)2

]
) with the smoothing parameter σ =

0.05, and a convergence factor µ = 0.01. The training set

consists of 25% of a given image (that represents a continuous
region of the image), whereas the test set consists the entire
image. All images are normalized within the range [0,1]; gray-
scale structuring elements are normalized in the range [-1,1].

A. Applications
A classical problem in image processing is restoration of

images corrupted by noise [20]. The present paper considers
salt and pepper noise. The classical median �lter [20] is an
alternative commonly used for restoring images corrupted by
that noise.

The Table II presents the results obtained by the proposed
method (AHMOD Method) and by the methods proposed
in literature, where MEDIAN denotes the median �lter [20]
result, MMNN (SGA) and MMNN (BP) denote the results
obtained by Sousa [1], [2] and MMNN (AGA) and MMNN
(AGA-MOD) denote the results obtained by Araújo et al. [17].

TABLE II
NSR RESULTS FOR A NOISE DENSITY = 5%.

Method MMNN
mod

MMNN
arch

NSR (dB)

MEDIAN - - -21,55
MMNN (SGA) 8 1 -17,63
MMNN (SGA) 8 0 -19,00
MMNN (SGA) 25 1 -18,40
MMNN (SGA) 25 0 -19,70
MMNN (BP) 8 1 -19,65
MMNN (BP) 8 0 -21,10
MMNN (BP) 25 1 -22,19
MMNN (BP) 25 0 -23,53

MMNN (AGA) 8 1 -22,21
MMNN (AGA) 8 0 -23,22
MMNN (AGA) 25 1 -23,11
MMNN (AGA) 25 0 -23,76
MMNN (AGA) 50 1 -23,27
MMNN (AGA) 50 0 -24,07
MMNN (AGA) 75 1 -23,31
MMNN (AGA) 75 0 -24,13
MMNN (AGA) 100 1 -24,11
MMNN (AGA) 100 0 -24,27

MMNN (AGA-MOD) 22 0 -24.52
AHMOD Method 24 0 -24.81

The AHMOD method automatically chose the MMNN
architecture via Matheron Decomposition by dilations (arch =
0) and selected the MMNN modules amount (mod = 24).
It is observed that for a noisy density corresponding to 5%,
the proposed method presented better performance when com-
pared to other methods presented in the Table II. It is worth to
mention that the AHMOD method overperforms the MMNN
(AGA) by using a smaller number of MMNN modules. The
AHMOD method led to NSR=-24.81dB with 24 modules,
while MMNN (AGA) led to NSR=-24.27dB with 100 mod-
ules. The MMNN modules amount decrease is a positive factor
when it considers a inquiry of the computational complexity
for the morphological operator design. Furthermore, when
compared to MMNN (AGA-MOD), the proposed method
slightly increased the number of MMNN modules (an increase
of two MMNN modules). However, even with a slightly



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ �OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

increase in MMNN modules, the proposed method obtained a
gain of 0.29dB. Figure 8 shows the image corresponding to
the morphological operator obtained by AHMOD method for
Matheron decomposition by 24 dilations.

Fig. 8. Testing images. Results of AHMOD method for Matheron decom-
position by 24 dilations. (a) Test image and (b) Restored image.

VII. CONCLUSIONS

An adaptive hybrid morphological method for designing
translation invariant operators, via Matheron Decomposition
and via Banon and Barrera Decomposition, was presented
in this paper. It consists of a hybrid model composed of a
Modular Morphological Neural Network (MMNN) and an
evolutionary search mechanism: the adaptive Genetic Algo-
rithm (GA) (adaptive rates in genetic operators). The proposed
method searches for initial weights, architecture and number of
modules in the MMNN; then each element of the adaptive GA
population is trained via the Back Propagation (BP) algorithm.

Results have shown that the proposed method is more
ef�cient than the median �lter and the methods proposed by
Sousa [1], [2] and Araújo et al. [17] for restoring images
corrupted by salt and pepper noise. The proposed method
has reduced the number of decompositions and the compu-
tational complexity in the operators design when compared to
MMNN (AGA) [17]. Furthermore, when compared to MMNN
(AGA-MOD) [17], the proposed method slightly increased the
number of MMNN modules. However, even with a slightly
increase in MMNN modules, the proposed method obtained a
meaningful gain in terms of noise to signal ratio (NSR).

Future works will consider the proposed method in image
segmentation and pattern recognition.
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