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An Algorithm for Finding an Approximate
Reliability Sequence for Polar Codes on the BEC

Saeid Ghasemi and Bartolomeu F. Uchôa-Filho

Abstract— One of the most important parts of encoding and
decoding in polar codes is finding the bit-channel reliability
sequence, i.e., the positions of frozen bits and data bits, which has
a great effect on the error correction performance. In this paper,
we present an algorithm with linear complexity for determining
an approximate reliability sequence in small disagreement with
the true reliability sequence on the binary erasure channel (BEC).

Keywords— Polar codes, reliability sequence, binary erasure
channel.

I. INTRODUCTION

Polar codes, proposed by Arikan in 2009 [1], have attracted
a lot of attention as they achieve the symmetric capacity
on binary-input discrete memoryless channels under succes-
sive cancellation (SC) decoding. Polar coding is based on
a phenomenon called channel polarization. After properly
combining the input bits of several copies of the channel
in a parallel concatenation scheme, the bit-channels present
different reliabilities. Asymptotically, as the number of copies
goes to infinity, a fraction of the bit-channels (which equals the
channel capacity) becomes noiseless, while the remaining bit-
channels are rendered useless. Encoding amounts to sending
the data bits through the good bit-channels and the so-called
frozen bits (usually zeros) through the bad bit-channels.

Deciding about the reliable and unreliable bit positions
is always challenging. The reliabilities of all (say, N ) bit-
channels can be first computed. Then, they can be ordered
in increasing order of reliability. Finally, a rate R = K/N
polar code can be obtaining by selecting the K most reliable
(rightmost) bit-channels for the data. The sequence of bit-
channel positions ordered in increasing order of reliability is
called the reliability sequence (RS).

The problem is that, in general, there is no low-complexity
algorithm for obtaining the bit-channel reliabilities. The excep-
tion is the binary-erasure channel (BEC), for which a recursive
formula exists and the reliabilities can be obtained with linear
complexity O(N). Still, in general, ordering has complexity
O(N log(N)). Therefore, a procedure that produces the RS or
an approximate RS, even for the simplest channel of all, i.e.,
the BEC, is of great interest.

A wide range of approximate construction methods are
proposed in [1]-[7]. In general, the reliability order of the
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bit-channels depends on the channel conditions and on the
code length, and therefore is not universal. Several methods
to design the frozen sets on-the-fly with limited complexity
have been proposed [8].

In this paper, we present an algorithm with linear com-
plexity that specifies an approximate RS on the BEC for
any arbitrary length that is a power of two, regardless of the
erasure probability. Although no formal proof is presented, we
show by means of examples that the number of disagreements
between the approximate and the true RS is quite small.
Moreover, by fixing the code rate, i.e., by setting a borderline
between the data set and the frozen set, we realize that the
swapped bit-channels are very close to the borderline. In other
words, their bit-channel reliabilities are quite similar and little
impact on the error performance is expected by adopting the
approximate RS instead of the true one.

This paper is organized as follows. In Section II, we briefly
review the encoding and decoding principles for polar codes.
In Section III, we talk about the concept of RS. In Section IV,
we present the proposed algorithm. In Section V, we discuss
the performance of the proposed algorithm by evaluating the
number of bit-channel swaps (between the frozen set and the
information set). Finally, in Section VI, we conclude the paper.

II. ENCODING AND DECODING PRINCIPLES FOR POLAR
CODES

In polar codes, the codeword length is N = 2p, p =
1, 2, 3, . . .. The length of the information block is K and, con-
sequently, there are N −K frozen bits. Coding in polar codes
consists of two separated steps. The first step is the selection
of the positions of frozen bits and data bits, combining them
together so that the source vector u ∈ FN

2 results, in which
u = (u1, u2, . . . , uN ). In the second step, the source vector u
is mapped to codeword x as follows

x = uGN = uBNF⊗N , (1)

where GN is the generator matrix of order N , BN is the bit-
reversal permutation matrix and F⊗N is related to the n-th
Kronecker product of the kernel matrix F:

F⊗N = F⊗ F⊗N−1,F =

[
1 0
1 1

]
. (2)

The encoding process for N = 8 and K = 4 is shown in
Figure 1. We have shown the positions of the frozen bits with
a blue F next to the corresponding channel. In the next section
we will explain how we can obtain these positions.

Decoding in polar codes is done by successive cancellation
(SC) with the complexity O(N log(N)). SC decoding can be
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Fig. 1. Polar coding for N = 8, K = 4, and R =
1

2
. Frozen channels are

shown in blue F.

Fig. 2. Binary erasure channel with erasure probability ε.

viewed as a soft/hard message. passing algorithm over the
trellis of polar code. More details are available in [9] and
[10].

III. THE RS OF A BEC

Consider the BEC W shown in Figure 2, where ε is the
erasure probability. It is well-known that this channel has
capacity I(W ) = 1 − ε. Combining two independent uses of
the BEC, a compound channel (W,W ) is obtained. Obviously,
its associated capacity is 2I(W ). By applying the chain rule
of mutual information, this compound channel can be decom-
posed into two synthesized channels. After channel combining
and channel splitting, two independent BECs with the same
reliability are transformed into two polarized channels and
the sum capacity of the two channels is unchanged, that is,
I(W−)+I(W+) = 2I(W ). In [1], Arikan derived the mutual
information of the two channels as I(W+) = 2I(W )−I(W )2,
I(W−) = I(W )2, and proved that the bad channel W− has
a smaller capacity than the given BEC W , whereas the good
channel W+ has higher capacity.

In fact, this process is the basis of channel polarization.
If we do this process more and more times, we obtain more
channels showing a tendency to approach either zero or unit
capacity. In the end, we sort all obtained capacities from the
smallest to the largest and we have the RS. In Figure 3, the
different bit-channel capacities are shown after polarization,
from which we can determine the RS.

Fig. 3. All capacities after polarization over BEC (ε = 0.5) for N = 1024.

Fig. 4. Selection of frozen set and data set from the sorted capacities
according to the code rate for N = 1024. Code rate R = 0.4 is shown
as an example.

According to this sequence, we can determine which po-
sitions are more reliable and consequently have probabilities
of erasure smaller than other positions. Therefore, we allocate
data bits to these positions and frozen bits to the rest of the
positions in which the probability of erasure is higher. In fact,
we consider all frozen bits as zero and when we want to do
decoding, we already know that frozen bits are zero and we
just have to do decoding for the rest of the positions.

In Figure 4, we sorted all capacities obtained from Figure
3. The reliability of transmission depends on the code rate.
For instance, by choosing a small rate, the transmission is
very reliable, because we only use those channels with high
capacity that are located to the right of the blue line and
we consider the rest of the channels as frozen channels. As
the code rate increases, we have to use some low capacity
channels.

For example, suppose that we know for N = 8, the RS is
{1, 2, 3, 5, 4, 6, 7, 8} (channel number 1 is the worst channel

2
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Fig. 5. Finding RS according to direction

and channel number 8 is the best one). The positions of the
four noisiest channels in Fig. 1 are marked with an F . If we
want to send four data bits, say {1, 0, 1, 1}, due to the frozen
bits we have to do encoding for the following source vector:

u = [

F︷︸︸︷
0 ,

F︷︸︸︷
0 ,

F︷︸︸︷
0 , 1,

F︷︸︸︷
0 , 0, 1, 1]. (3)

IV. THE PROPOSED ALGORITHM

How does our algorithm work? Suppose that we want to
obtain the RS for a polar code with length N . We know that
N is a power of 2. We let N = 2p, p = 1, 2, . . . . Obviously,
the RS for N = 2 is {1, 2}. We use this RS to obtain the RS
for N = 4. By using RS for N = 4, we can achieve RS for
N = 8, and so on.

In this algorithm, we assign all numbers from 1 to N to
some vectors, according to how many times we need to go
down (blue lines in Figure 5) from root to the leaf. As a
simple example, for N = 4, based on Figure 5 we have

A
(4)
0 = [1],

A
(4)
1 = [2, 3]

A
(4)
2 = [4].

, (4)

In this example, A(4)
0 shows all the numbers that we can

achieve by going down two times, while A(4)
1 represents all

numbers that we obtain by going down one time, and A(4)
2 =

[4] is for going down zero time. Therefore, in this case, the RS
from the worst to the best channel is {1, 2, 3, 4} . The basic
issue in this algorithm is that, if we go down fewer times, we
have a channel with higher capacity.

We now give a general description of the proposed algo-
rithm. Let N = 2p, p = 1, 2, . . . be the codeword length of
the polar code. The proposed approximate RS is denoted by
the vector A(N), whose elements are the claimed ordered bit-
channel positions. The approximate RS is given by

A(N) = [A
(N)
0 · · ·A(N)

p ], (5)

where A
(N)
i for i = 0, . . . , p is a sub-vector of size |A(N)

i | =(
p
i

)
whose elements are obtained recursively from the sub-

vectors A
(N/2)
i and A

(N/2)
p−i as we describe next.

1) For any N = 2p, the 1-st and the p-th sub-vectors are
given by

A
(N)
0 = [1] and A(N)

p = [N ]. (6)

So, for p = 1, we have

A(2) = [1, 2], (7)

where A
(2)
0 = [1] and A

(2)
1 = [2];

2) For p > 1, and for i = 1, . . . , p− 1, we have

A
(N)
i = [A

(N/2)
i B

(N)
i ], (8)

where |B(N)
i | = |A(N/2)

p−i | =
(
p−1
p−i

)
:= z.

The sub-vector B(N)
i is given by

B
(N)
i = [b

(N)
i,1 . . . b

(N)
i,j . . . b

(N)
i,z ], (9)

where
b
(N)
i,j = (N + 1)− a(N/2)

p−i,z−j+1. (10)

As an example, in the following, we show the method for
obtaining these sequences for N = 4, 8, 16. We consider [1, 2]
as trivial RS for N = 2. In any length, we have shown numbers
from previous length with P.L above numbers. For N = 4

N = 4 :


A

(4)
0 =

P.L︷︸︸︷
1

A
(4)
1 =

P.L︷︸︸︷
2 , 3

A
(4)
2 = 4,

⇒ RS = [1, 2, 3, 4]. (11)

For N = 8

N = 8 :



A
(8)
0 =

P.L︷︸︸︷
1

A
(8)
1 =

P.L︷︸︸︷
2, 3 , 5

A
(8)
2 =

P.L︷︸︸︷
4 , 6, 7

A
(8)
3 = 8

⇒ RS = [1, 2, 3, 5, 4, 6, 7, 8].

(12)
For N = 16

N = 16 :



A
(16)
0 =

P.L︷︸︸︷
1

A
(16)
1 =

P.L︷ ︸︸ ︷
2, 3, 5, 9

A
(16)
2 =

P.L︷ ︸︸ ︷
4, 6, 7, 10, 11, 13

A
(16)
3 =

P.L︷︸︸︷
8 , 12, 14, 15

A
(16)
4 = 16

⇒ RS = [1, 2, 3, 5, 9, 4, 6, 7, 10, 11, 13, 8, 12, 14, 15, 16].
(13)

For example, in the latter case, the best channel is channel
number 16 and the worst is channel number 1.

As we can see, the complexity of this algorithm is O(N),
while in the original algorithm of Arikan [1], because it is a
sorting problem, the complexity is O(N log(N)).
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1|2|3|5|9|17|33|4|6|7|10|11|13|18|19|21|25|34|35|37|41|49|8|12|14|20|15|22|23|26|36|27|38|39|29|42|43|45|50|51|53| 16|57|24|28| 40|30|44|31|46|52|47|54|55|58|59|32|61|48|56|60|62|63|64
1|2|3|5|9|17|33|4|6|7|10|11|13|18|19|21|25|34|35|37|41|49|8|12|14|15|20|22|23|26|27|29|36|38|39|42|43|45|50|51|53| 57|16|24|28| 30|31|40|44|46|47|52|54|55|58|59|61|32|48|56|60|62|63|64

Fig. 6. Reliability sequences for N = 64 (top: proposed, bottom: Arikan’s with ε = 0.05). Disagreements are shown in red.

Fig. 7. Number of bit-channel swaps for erasure probability ε = 0.05.

V. SWAPPED BIT-CHANNELS

To evaluate the efficiency of our algorithm, we compare our
results with Arikan’s (i.e., the true) RS as follows. According
to the code rate, we split all bit-channels into two sets:
the frozen set and the information set. Then, we count the
number of indices swaps between these sets and compare this
number with the maximum possible number of swaps, namely,
min(R, 1−R)×N .

In Figure 7, we can see the number of swaps between the
frozen set and the data set for N = 2, 4, 8, . . . , 512, R =
0.2, 0.3, . . . , 0.9, and erasure probability ε = 0.05.

TABLE I
EFFICIENCY (RELATED TO FIG. 7)

R = 0.2R = 0.3R = 0.4R = 0.5R = 0.6R = 0.7R = 0.8R = 0.9

N = 64 100 100 100 96.88 100 100 92.19 84.38
N = 128 100 97.4 98 98.44 98.05 97.4 92.19 100
N = 256 100 97.4 99 96.09 99.02 96.1 98.05 92.19
N = 512 96.1 99.35 96.6 96.48 95.11 97.4 89.26 82.2

In Table I, related to Figure 7, we can see the efficiency of
the proposed algorithm. For example, if N = 256, R = 0.3
(green line in Figure 7), we can see that there are two swaps.
So, the efficiency is

our swaps︷︸︸︷
2

(R×N)︸ ︷︷ ︸
max swaps

=
100− E

100
⇒ E = 100− 100× 2

(0.3× 256)
= 97.4%

Due to the bit swaps between the data set and the frozen set,
a few information bits may be sent over frozen bit-channels.

Therefore, we evaluate the impact of adopting the proposed
RS on the performance of the polar code. The interesting issue
related to the swapped bit-channels is that their capacities
are very similar. In fact, we have some swaps between those
bit-channels close to the border between the two sets, and
this does not affect the performance of transmission and error
correction significantly.

For example when N = 256, R = 0.3, and ε = 0.05 (green
line in Figure 7), our swaps are bit-channels number 139
and 141. In fact, we have to consider 139 and 141 as frozen
bits (channels with capacity near zero), but in our algorithm
instead of these two channels, we considered 105 and 113 as
frozen bits. If we compare their capacities, it is clear that the
difference in channel capacity is very small, as follows:

139 ↔ 105, 2.85× 10−31 ↔ 2.4× 10−30,
141 ↔ 113, 1.14× 10−30 ↔ 5.7× 10−28 .

As another example, for N = 256, R = 0.7, and ε = 0.05,
with respect to Figure 7, we have three swaps:

144 ↔ 233, 1.3× 10−7 ↔ 4.36× 10−6

152 ↔ 241, 2.61× 10−7 ↔ 9.32× 10−5

156 ↔ 111, 5.23× 10−7 ↔ 6.30× 10−7

As an obvious result, the swapped channels having close
capacities, is that the overall capacity loss due to swapping is
negligible. In other words, our algorithm does not promote a
swap between a very good channel and a rather poor channel.

Finally, it is also important to observe the discrepancy
between the proposed and Arikan’s sequences in terms of bit
position switching within the information set. In Figure 6, we
make this comparison with respect to the length N = 64.
It is clear that all switchings occur within short blocks of
symbols, meaning, again, that the reliabilities of the switched
bit positions are very similar. As a result, very little impact on
the decoder’s performance is expected.

VI. CONCLUSION

In this work, we have described a new method to obtain the
positions of frozen and data bits with the minimum possible
complexity O(N) that we can apply for transmission in the
binary erasure channel, regardless of the erasure probability.
The so called RS produced by the algorithm is very close to
the true one, which is usually obtained in the literature with
complexity O(N log(N)).

It should be mentioned that all the results and conclusions in
this paper are based on short examples. Further investigation
would be necessary in order to prove more general results. For
instance, it would be important to know whether the same good
efficiency (in terms of bit swaps) and bit switching behaviour
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are also achieved for large N . Of course, this is of paramount
importance and should be considered as future work. Finally,
bit error rate performance should be evaluated to support our
claims in the paper.
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