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Maximizing the SNR of DNA Spectrum
for Coding Sequence Identification

Milena Marinho Arruda, Andresso da Silva and Francisco Marcos de Assis

Abstract—By properly mapping a DNA sequence into one
or more signals, the energy spectrum of DNA sequences can
reveal standard periodicities, in particular, a periodicity of three
bases, to characterize coding and regions. In this sense, we
propose a new method for spectral analysis for coding sequence
discrimination. The method consists in defining a mapping for
a given DNA sequence whose SNR of its spectrum is maximized
subject to the spectral entropy constraint being greater than
zero. Finally, we show that our method not only improves the
coding sequence discrimination rate but also improves the SNR
and spectral entropy even for those coding sequences that there
are no periodicity of three bases.

Keywords— coding sequence, DNA, entropy, SNR, spectral
analysis.

I. INTRODUCTION

The growth of biological databases and the need to
understand how many components present in a living cell are
working together to perform cellular functions are reasons
that justify the interest in mathematical, statistical, and
computational tools to the analysis of genomic data. The
Genomic Signal Processing (GSP) refers to the use of these
multidisciplinary approaches to understand the properties and
structure of DNA.

Although the genetic information of an organism is encoded
in DNA molecules by means of units called bases, such
as: adenine (A), cytosine (C), guanine (G) and thymine (T),
the current GSP methods require the association of a DNA
sequence with a discrete-time signal by an operation called
mapping. A simple and commonly used mapping scheme is
the Voss representation [1]. From properly mapping a character
sequence into one or more signals, digital signal processing
can provide a set of useful tools for interpreting genomic
information.

For instance, the energy spectrum of DNA sequences
can reveal standard periodicities to characterize coding and
non-coding regions, as well as intronic and exonic regions. The
need for a way to discriminate coding from non-coding regions
arises mainly when a gene location is only approximately
known [2]. In eukaryotic cells, the DNA is divided into genes
and intergenic regions. The genes are further divided into exon
and intron, which is shown in Figure 1. Finally, the coding
sequence (CDS) is then the portion of a gene which codes for
a protein, that is, its exons.
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Fig. 1: The eukaryotic DNA consists of genes and intergenic
regions. Moreover, the genes are composed of two regions
called exon and intron which are interleaved with each other.

In this sense, Trifonov and Sussman [3] were the first ones
to observe the existence of periodicities in DNA sequences
from the analysis of the autocorrelation function; and, Tsonis
et al. [4] found that whereas intronic regions show a rather
random pattern, coding sequences show periodicities and in
particular a periodicity of three base. Although, intuitively, the
hypothesis for the origin of this periodicity derives from the
triple nature of the codon and from the codon bias involved
in the translation process, it proved to be insufficient. This
periodic phenomenon has intrigued many biologists who seek
to understand and explain such periodicity [5], [6], [7].

Since the three-base periodicity in CDS is a classical
discriminatory frequency, it is often used in gene finding. The
problem, however, is how to define an energy spectrum for a
DNA sequence. In spite of Silverman and Linsker [8] were
the first ones to define and analyze the energy spectrum of a
DNA sequence, the classical approach was proposed by Voss
[1]. The difference is essentially the number of discrete-time
signals assigned in each case. That is, Silverman and Linsker
[8] associated each of the four bases to a vertex of a regular
tetrahedron resulting in three signals and, Voss [1] associated
each of the four bases to binary indicator signals. Next, for
the spectral analysis, the Fourier transform of each signal are
evaluated and, the sum of their squared magnitude represents
the energy spectrum of the DNA sequence. Coward [9] shown
that these two methods yield essentially the same result.

Besides this classical approach, numerous techniques have
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been proposed to improve these estimates and reduce
background noise. For instance, Tiwari et al. [10] proposed
a method in which it is sufficient to evaluate the energy
density at frequency 1/3 in a window of M samples, sliding it
through the entire DNA sequence; Anastassiou [11] proposed
to optimize the mapping by maximizing an objective function
whose parameters are mean and standard deviation of Fourier
transform; Vaidyanathan er al. [12] proposed the use of
the antinotch filter; Galleani and Garello [13] proposed the
Minimum Entropy Mapping (MEM) Spectrum, in which the
spectrum of a DNA sequence should be calculated considering
a real mapping for which the spectral entropy is minimized;
Sahu et al. [14] proposed the use of the S transform; and Roy
et al. [15] propose a minimum standard estimator.

Therefore, this paper investigates the SNR and spectral
entropy as a measure to improve the DNA coding sequence
identification. Although the MEM Spectrum [13] have already
discussed how to choose the mapping of a DNA sequence
that minimizes its spectral entropy to reveal its periodicities,
the algorithm proposed by them sometimes returns a worse
spectrum regarding to the signal noise ratio (SNR) analyses
when compared to others representations in the literature
such as Voss. Additionally, the computational time is another
problem in their method since an exhaustive search algorithm
was used for optimization.

We propose an optimization process that maximizes the
SNR of the DNA spectrum, and, hence, minimizes the spectral
entropy and the background noise. We also discuss the
optimization process proposed by us in detail and present
reasons to support it. Finally, we tested the method on
synthetic and real DNA sequences, whose properties are
known, and the results showed to be effective for the coding
sequences identification. The algorithm was implemented in
Python, a free open-source language.

This paper is organized as follows: Section II provides
notations and definitions. In Section III, we define our method
and discuss its most important features. The results are then
presented in Section IV and, finally, the conclusions are
elaborated in Section V.

II. PRELIMINARIES

In this section, we describe some notations and definitions
that are essentially important to the analysis in this paper, for
more details we recommend [16], [17].

A. Notations and Definitions

Let s be a given DNA sequence of length V. The mapping
M is defined as the association between the four DNA basis
characters and four distinct complex numbers. That is,

M:A—a, C—e G—g, Tt (1
such that,
a, ¢, g, t € C. 2)

Supposing that the first four nucleotides of a given DNA
sequence are s = ACGT---. From the mapping M we can,
therefore, associate the following discrete-time signal to s,

z[n] = ad[n] + cdn — 1]+ gé[n — 2] + to[n — 3] +---, (3)

where d[n| is the unit impulse function. Moreover, an
alternative way to (3) is

z[n] = axp[n] + cxe[n] + gran] + tern], 4)

where x,[n| is the binary indicator function that assume 1
when the n-th symbol in s is the basis o € {4, C, G, T}, and
0 otherwise. Notice that the set of these four binary indicator
sequences is redundant since they add to 1 for all n thus, any
three indicator sequences are sufficient to determine the DNA
sequence.

Example 1: The four binary indicator functions for the
sequence s = AACTGT are: x,[n] = d[n] + d[n — 1], z¢[n] =
d[n — 2], x¢[n] = 0[n — 4], zr[n] = d[n — 3] + d[n — 5].

B. Spectral Analysis

To discover underlying periodicities in genomic sequences,
the spectral analysis is then performed on signal (4), whose
energy spectrum is also a function of the mapping M, that is,

Slk; M |+ eXclk] + gXalk] + X2k, (5)

where X, [k] with o € {A, C, G, T} is the Fourier transform
of the respective binary indicators defined by

= [aXa[k

N—-1
Xolk] =" zalnle 7F k=0,1,...
n=0

,N—1. (6

In particular, the classical approach to energy spectrum
analysis was proposed by Voss [1] and it is the addition of
the energy contribution of all four binary indicators of s as
follows:

Svosslk] = | Xalk)|* + | Xclk]]” + | Xe[k]|” + | Xx[H]*. ()

Another successfully technique was proposed by Nair and
Sreenadhan [18], in which, it has used the electron-ion
interaction pseudopotentials (EIIP) indicator to map the DNA
to a signal. This mapping is as follows: A — 0.1260, C —>
0.1340, G — 0.0806 and T — 0.1335; and the energy spectrum
is given by (5).

Furthermore, Galleani and Garello [13] proposed a new
definition of spectrum for DNA sequences based on an entropy
minimization criterion, the MEM Spectrum. In this case, the
spectrum should be calculated considering a real mapping in
which the spectral entropy is minimized, that is, the mapping
is chosen such that

M =arg min H(M), 8)

a,c,g,teR

where H (M) is the entropy of (5) defined by

[N/2]
H(M) =~ Y p[k]logplk], 9)
k=0
where, Sk
plk] = ZLN/QJ S[k ] (10)

The spectral entropy is a measure of the uniformity of
energy distribution in the frequency domain. Notice that the
minimum value of H (M) is zero and occurs when p[k] = 1



XXXIX SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2021, 26-29 DE SETEMBRO DE 2021, FORTALEZA, CE

for some k, and the maximum value occurs when the energy
distribution is uniform. In this case, H(M) = log (N/2 + 1)
nats. The natural logarithm was used in (9), and, therefore, the
entropy spectrum was given in nats.

The energy spectrum of DNA sequences can be slightly
different when we compare the three previous methods of
spectral analysis. For instance, the normalized energy spectrum
for the CDS of some genes are showed in Fig. 2, 3,4 and 5. In
these figures, the horizontal axis is the normalized frequency
and the vertical axis is the normalized energy spectrum. These
differences show that a proper choice of the mapping can
enhance the hidden information for further analysis of DNA
sequences. For this reason, this paper proposes a new mapping
for a given DNA sequence whose SNR of its spectrum is
maximized subject to the spectral entropy constraint being
greater than zero, which is discussed in Section III.

A quantitative analysis of these spectrum was given by the
SNR. The SNR, defined as the ratio of signal power to the
noise power, was computed by estimating the signal power,
that is, the fundamental frequency, as the highest spectral
component in the signal, and the computation of noise power
or the background noise excluding the fundamental frequency
and the DC value.

III. MATERIALS AND METHODS
A. Experimental Data

The data is available at nucleotide database from National
Center for Biotechnology Information (NCBI) that provides
open access to biomedical and genomic information [19]. All
DNA sequences have an identifier, the accession number, a
simple series of digits processed by NCBI for which the
sequence is referenced. In this paper, we isolated all genes
for which there were no introns from chromosome XVI of
Saccharomyces cerevisiae (accession number NC_001148).
When we analyze a specific gene, we refer to it by its locus tag.
Therefore, our database has 443 CDS whose average length
is 1463.33 bases with standard deviation of 1008.56.

B. Maximum SNR Mapping

We define the spectrum of a DNA sequence by choosing
the mapping that maximizes the SNR of its energy spectrum.
Therefore, the new mapping is a complex map for which

M =arg max SNR(S[k; M]), (11)
a,c,g,teC
subject to the constraint
H(M) >0, 12)

whose importance is discussed in Section III-C. The
corresponding energy spectrum is, therefore, given by (5)
using the mapping M.

C. Constraint Discussion

A DNA sequence is completely determined by any three of
the four binary indicator sequences since they add to 1 for all

n, and, therefore, the four corresponding Fourier transforms
are also a redundant set in which

0, kK#0
N, k=0

Thus, in the search space, there are mappings whose spectrum
has a stronger peak at £ = 0 plus some minimal fluctuations at
k # 0. These cases are the trivial solutions of the optimization
problem.

Notice that the spectral entropy of the trivial solutions
is approximately zero. Therefore, in order to avoid trivial
solutions, we have to choose those mappings whose spectral
entropy is greater than zero.

Xalk) + Xell + Xl#] + Xilk] = { a3

D. Optimization Details

In general, the SNR is not convex with respect to the
mapping M. This fact means that the optimization problem
must be solved in a concave space, and, therefore, it is
sensible with respect to the initial condition. Therefore, we
suggest using the EIIP mapping as the initial condition of
the optimization problem defined in (11) due its biological
significance. Furthermore, with respect to the solver used
for optimization, the Sequential Least Squares Programming
(SLSQP) algorithm was preferred due its ability to search over
the design space whose bounds constraints were delimited by

-1 <Re{a, ¢, g, t} <1, (14)

and
—1<Im{a, ¢ g, t} < 1. (15)

IV. RESULTS

For the purpose of comparison, the energy spectrum of
CDS in database was evaluated using the proposed method
and the three methods already discussed in this paper: Voss
[1], EIIP [18], MEM Spectrum [13]. The Table I summarizes
the number of CDS whose algorithms identified the largest
spectral peak occurring between the frequencies 0.31 and
0.35rad/sample in the spectrum of the sequences. Whether the
largest peak occurs in this range, the algorithm was considered
to have correctly identified the sequence. Otherwise, it has
identified it incorrectly.

TABLE I: CDS identification rate by spectral analysis.

[ Status [ Correct [ Incorrect |
Voss [1] 353 (79.7%) 90 (20.3%)
EIIP [18] 354 (79.9%) 89 (20.1%)
MEM Spectrum [13] 254 (57.3%) 189 (42.7%)
Proposed 374 (84.4%) 68 (15.6%)

Notice that the methods do not discriminate the three-base
periodicity for all genes. There are several reasons for that.
First, the way the energy spectrum is defined for a DNA
sequence can influence the coding sequence identification
process. For instance, the energy spectrum as defined by Voss
and by us has a largest peak at frequency 0.33rad/sample for
the gene YPL230W; however, this discriminatory frequency is
vanishing when the EIIP method is used and the background
noise increases when MEM Spectrum is evaluated (see Fig. 2).
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Fig. 2: Spectral analysis for the CDS of gene YPL230W from chromosome XVI of Saccharomyces cerevisiae.
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Fig. 3: Spectral analysis for the CDS of gene YPL0O64C from chromosome XVI of Saccharomyces cerevisiae.
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Fig. 4: Spectral analysis for the CDS of gene YPLO61W from chromosome XVI of Saccharomyces cerevisiae.
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Fig. 5: Spectral analysis for the CDS of gene YPL278C from chromosome XVI of Saccharomyces cerevisiae.
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A similar result is obtained for the gene YPL064C, in which
the energy spectrum defined by EIIP and by us has a largest
peak at frequency 0.33rad/sample; however, the background
noise increases when Voss and MEM Spectrum are evaluated
(see Fig. 3).

Another reason is that although the existence of three-base
periodicity in CDS be a classical discriminatory frequency
in the biological context, some CDS do not seem to be
distinguished by it. For instance, all methods indicate that
the largest peak occurs at the frequency 0.33rad/sample for
the gene YPLO61W (see Fig. 4). On the other hand, all
methods indicate that the largest peak occurs at the frequency
0.04rad/sample for the gene YPL278C (see Fig. 5).

Although there are such limitations in discrimination of
three-base periodicity for a CDS, the results from the Table I
shown that our proposed method has the higher correct rate for
CDS identification and the MEM Spectrum was the method
with the lowest correct rate. Besides that, MEM Spectrum
requires more computational effort, being impractical when we
compare with the other three methods for spectral analysis.

From Fig. 2d, 3d, 4d, and 5d, notice that by maximizing
the SNR, our method improves not only the graphical analysis
but also the SNR and spectral entropy. Hence, the background
noise of DNA spectrum is reduced and the CDS identification
is improved. The most of the incorrect status returned by
our proposed method (12.9%) occurs when there is no
largest energy peak at frequency 0.33rad/sample also for
the Voss and EIIP methods. In the remains of the incorrect
classification (2.7%) of the proposed method, either the
Voss or EIIP method also returns an incorrect classification.
However, even for those CDS whose discriminatory frequency
is not 0.33rad/sample for both Voss and EIIP, our proposed
method improves the SNR and spectral entropy and (see Fig.
5d). Moreover, among the correct classification returned by
our proposed method, in 11.5% of them the Voss and EIIP
methods return an incorrect classification.

V. CONCLUSIONS

The new method for CDS classification of genes proposed
in this paper was implemented in Python, a free open-source
language, and was evaluated for CDS of genes from
chromosome XVI of Saccharomyces cerevisiae. The method
consists in defining a mapping for a given DNA sequence
whose SNR of its spectrum is maximized subject to the
spectral entropy constraint being greater than zero.

It is important to point out that the resulting signal from
the numerical representation of a given DNA sequence is the
linear combination of four indicator binary functions and there
is a spectrum for each mapping M. The SNR estimator then
computes the signal power as the energy of the highest spectral
component that occurs at an unknown frequency. For this
reason, it is not evident and needs to be verified whether an
approach that uses SNR also improves CDS classification.

In this sense, we compare our proposed method with the
other three in the literature: Voss [1], EIIP [18] and MEM
Spectrum [13]. Our method not only improves the CDS
identification rate but also improves the SNR and spectral

entropy even for those CDS whose discriminatory frequency
is not in range 0.31 and 0.35rad/sample.
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