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Some Necessary Conditions for Abelian Group
Codes with prime Information Group

Jorge Pedraza Arpasi, Tiago Belmonte Nascimento

Resumo— Codigos de Grupo $io uma generalizago dos haveG = GZ =-.- x G x G x G x .... In this last case, a
Codigos Convolucionais. Por isso, algumas vezes, odigos subgroupC of G is calledtime invariant group cod¢l], [2],
de Grupo também sio chamados de @digos Convolucionais 131, [4]
Generalizados. Um codificador convolucional éssico com taxa% ' )
e m registros de menbria pode ser descrito como uma Mquina Group codes are a subclass of Error Correcting Codes
de Estados Finito em termos dos grupos birios Z5, Z5 e Z5* e (ECC), which can detect and correct transmission errogs-ori
homomorfismos adequadamente definidos sobre o produto direto nated from noisy communication channels. In communication
L & Z3'. O codigo convolucional e a fanilia de seqiencias  onqineering, noise is modeled as a random signal. The most

bi-infinitas produzidas pelo codificador convolucional. Generali- K ise is the G . . hich | deled
zando esta ickia um cddigo de grupoé uma fanilia de seqwencias nown noise IS the Laussian noise, which IS modeled as a

produzidas por uma Maquina de Estados Finito definido sobre a random signal having a normal probabilistic distributidine
extensio de dois grupos finitos/ X S. Considerado como um con- channels suffering Gaussian noise are cabelditive white
jur]to de seqiéncias, um a’nd_igo de grupo(_a um Sistema Diimico  Gaussian noisee AWGN channels [5], [6], [7], [8]. The
€ € fato conhecido que sistemas damicos bem comportados gggence of ECC s the addition of redundancy to the original

devem necessariamente ser contraveis. Assim, um bom 6digo . .
de grupo deve ser controhvel. Neste artigo trabalhamos com MeSSage. More redundant information means more protected

codigos de grupo definidos sobre grupos abelianos com grupo deinformation. That fact reduces the transmission velocity o
informac&o Z, e estabelecemos algumas condies necessias the channel. Then trade-off between velocity of transroissi

sobre o controle destes @digos. and protection of information must be done, and this depends
Palavras-Chave— Codigos de grupo, sistemas diéimicos, con- 0n the channel class [9], [10]. Telephone channels need real
trole, p-grupos time transmissions and they prioritize velocity over soittke|

Abstract— Group Codes are a generalization of the well known errors on the human voice. On the other hand bank transaction
Convolutional Codes. For this reason, sometimes, Group Codes channels need strong protection on the transmitted data.

are also called as Generalized Convolutional Codes. A classical . .

convolutional encoder with rate = and m memory registers can 1 Ne purpose of this work is the study of group codes for the
be described as a Finite State Machine in terms of the binary abelian case. In [11] it has been shown that there are not good
groups Z5, Z5 and Z3* and adequate homomorphisms over the group codes over non abelian groups with information group
direct product Z5 @ Z5'. The convolutional code is a family beingZ,. A study on arbitrary abelian extensiobisX S was

of bi-infinite sequences produced by the convolutional encoder. did before in [12] where the main concern was a minimality

Generalizing the just above idea, a group code is a family of bi- . .
infinite sequences produced by a Finite State Machine (FSM) of the states group. We will be concerned with control. For

homomorphic encoder defined on the extension of two finite that this work is organized as follow:

grm;psU&dS_i _Aska set i’rf] Steq”ﬁ'gcis- agrdoup co_del is atDynamic?I In the Section Il is defined the extension of a grolip
ystem and it is known that well behaved dynamical systems mus : L -

be necessarily controllable. Thus, a good group code must be by Fhe groups, this extension is denoted @ég S Thep IS

controllable. In this paper we work with group codes defined over defined the FSM encoder of a group code which also is called

abelian groups with information group Z, and give necessary 1SO (Input/State/Output) machine. The next state mapping

conditions on the control of these codes. UK S — S and the encoder (output) mapping UXKS — Y
Keywords— Group codes, dynamical systems, controllability, are defined over the extensiéhX S. Finally, is defined the
p-groups. group codeC, produced by the FSM encoder, as a family of

bi-infinite sequences of outputs.
. INTRODUCTION In the Section Il the group cod€ is presented as a

Let Z be the set of integers. Over a family of groups witfpynamical System in the sense of [13]. Also a graphical
integer indices,{G}rez, We can construct the bi-infinite de_scrlptlon_ of a group code I_<nov_vn as a trellis is presented.
direct productG = --- x Gj_1 x Gy x Gpe1 X .... Each It is established that the trellis diagram is a set of paths of

element ofG is a sequencdgy }rez, g € Gy, and with the transitions between states. After given the control deédinjt

group operations induced componentwise from e@ghg is ahsufficient condition of non-controllability is made in the
also a group. Then, a generalizgubup codeC, is a subgroup 1n€orem 2.

of G. If each groupG,, is equal to a fixed groug, then we In the Section IV we present our original contributions
about the controllability of group codes produced by encade
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by Theorem 1:If the mapping¢ : S — Aut(U) is not trivial
So = {e}, eis the identity element of then the extensio® X S is non-abelian
S1 = {v(u,s); uelUse S} Proof.- Since ¢ is not trivial, there arex € U ands € §
Sy = {v(u,s); ueU,seSi} such thatp(s)(u) # u. Now, consider the pairg, s), (u, e) €
: P (1) UXS, wheree is the neutral element of the respective group.
S = {v(u,s);ucUs€Sii},i>0 Then (e, s)(u,e) = (e.d(s)(u).£(s,e),s) = (p(s)(u),s). On

. the other handu,e)(e, s) = (u.¢(e)(e).£(e, s),s) = (u,s).
= Therefore(e, s)(u, e) # (u,e)(e, s).
Then, we will show that a necessary condition for an abelian
group code with information groufd, be controllable isilf

Sy is cyclic thenS; must be also cyclic B. Finite State Machines and Group Codes
Il. GROUP EXTENSIONS ANDGROUP CODES Finite State Machines (FSM) are a subject of Automata
A. Group extensions Theory. M. Arbib in [16] describes a FSM as a quintuple

M = (1,5,0,6,¢), wherel is the inputs alphabet§ is the
alphabet of states of the machin@,is the outputs alphabet,
0:1x 8 — S is the next state mapping, agd I x S — O
is the output mapping. Following [17], [3], [2] and by making
modifications on the FSM notation, suitable for our contdxt o
group codes, it is given the definition of an encoder as falow
Definition 2: Let U, S, andY be finite groups. Let :
UKS — Sandw : UK S — Y be group homomorphisms

Definition 1: An extensionof a groupU by a groups$ is
a groupG with a normal subgroupV, such thatV = U and
% ~ G, [14].

The extensiontU by S”we will denote by the symbal/[XS.
When G is an extension/ X S, each elemeny € G can
be “factored” as an unique ordered pair,s), v € U and
s € S. The semi-direct produd x S is a particular case of
extension, but also it is known that the semi-direct prodiet ) X !
generalization of the direct produitx 5. Canonical definition d€fined over an extensidfi X 5 such that the mapping’ :
of extension of groups is given in [14], [15], specially i’ ¥ S — & x Y xS defined by
[15] we find a “practical’'way to decompose a given group
G, with normal subgroupV, in an extension’ X S. That V(u, s) = (s,w(u, s),v(u,s)) (5)
decomposition depends on the choice of isomorphisms

N - U, ¢ : 8 — $ andalitingl : £ — G such is injective with v surjective. Then, an encoder of a group

that [(N) = e, the neutral element ofy. Then, defining code is the Machind/ = (U, S,Y,w,v).
¢: S — Aut(U) by, The groupU is called the uncoded information group and
- 1 1 Y is called the encoded information group. To begin working,
o(s)(w) = vli(W(s).0™"(w). (W ()~ 2) the encoder needs an initial staig € S and a sequence of
and{: SxS—U inputs {u;}_;, u; € U. Then the encoder will respond with

two sequencegs;}? ;, s; € S, and{y;}"_,, y; € Y in the
following way;

€(s1,52) = L(¥(s1, 52)) (¥ (1))l (Y (s2)), 3

the decompositio/ X S with the group operation
(u1,51) * (u2, s2) = (u1.¢(s1)(uz).£(s1,82) , s152)  (4) v(ui, so)  =s1 | w(u,s0) =u

is isomorphic withG, that is,g = (u, s).

Notice that the resulting pair ofui, s1).(us, s2), of the
above operation (4), i§u’, s1s2) for somew’ € U, and sy s9 : : : :
is the operation orS. This property allow us to do not be V(Un,Sn—1) = Sn | W(Un, Sn—1) = Un
concerned to obtain an explicit result when multiple fagtamre
acting. For instance, in the proof of some Lemmas it will b we agree that the present time is 0 (zero) and the state
enough to say that.’, sy s . .. s,,), is the resulting pair of the represents the present state, then the next integer time is 1
multiple product(uy, s1)- (uz, s2)-(us, s3) ... (un, sn), Where (one) ands; represents the next state from now. Analogously,
u’ is some element of/. Analogously,(u, s)™ = (v/,s™) for the next state from; will be s and generallys; will be the

someu’ € U. next state froms;_;. In this way, states with positive indices,
Example 1:Consider the direct product grouf3 = {s;}",, forms a sequence of future states.

{(z1,29,23) ; @ € Za}. This abelian group can be decom- On the other hand, sinceis surjective, then must exist at

posed as an extensidiy X Z3. least one paifug, s_;) such thatsy = v(ug,s_1). The state

By using the more convenient notati® instead(0,0), s_; can represent the previous state from the present state
010 instead(0, 1,0), etc., we have that the normal subgroup,. Analogously fors_; there must exist a paifu_1,s_s)
N = {000,100} < Z3 is isomorphic withZ,. The quotient such that/(u_1,s_») = s_; with s_, representing a previous
group% = {{000, 100}, {010, 110}, {001,101}, {111,011}} state froms_; and so ons;_;, 1} is one previous state from
is isomorphic withZ3. Thus, in an expected way, we haves_;. Thus, for a given present satg, there are sequences of
shown thatZ3 is an extension o, X Z3. past stateqs; ;[n, past outputs{y;} ..., and past inputs

1=—n’
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{u;})__, . such that;

v(uo,5-1) = So w(ug, s-1) =%Yo
v(u_1,5_2) =5 w(u_1,5-2) =y_1
v(u—2,5-3) =S5-2 w(u_g,5-3) =Y-2
V(u{7n+1}757n) = S{—n+1} w(u{fn+1}757n) = Y{—n+1}
Therefore, given bi-infinite sequence of inpyts; };cz, u; € o

U and one statg, € S, make sense to say that, the encodet
M = (U, S,Y,v,w) will response with the sequende; }cz,

y; € Y, of outputs while its internal states will have therig. 1. Trellis diagram of the encodéd = (Z,, 72, 73, w, v)
sequence(s; }iecz, s; € S. Notice that once made the choice

of one initial statesy, the future relations between the inputs

and outputs-states sequences is bijective, that is,

1-1

{{uk}ieN} = {{yi}ieNa{Si}ieN}a whereN = {1,2,3,. . }

is the natural numbers set. The triplets (s,w(u,s),v(u,s)) of the set
Definition 3: A time invariant group cod€ is the family {¥(u, )} u.s)cums, Where U is defined by (5), can be

of bi-infinite sequences = {y; }icz produced by the encoderyepresented graphically. In the context of Graph Theory,

M = (U,S,Y,v,w), with y; = w(ui,si—1). Each sequence[1g] they are callededgeswhose vertices set isS and

y = {vi}icz is called acodeword [1], [2], [3], [4]. the graph is calledstate diagramlabeled by w(u,s). In
Example 2:Consider the encode¥/ = (Z2,Z3,Z3,w,v) the Figure 1 the full state diagram of the code generated

wherev : Zo)Z3 — Z3 defined byv(u, s1,52) = (u+s2,51) by the FSM M = (Z»,72,73,w,v) is shown between

andw : Z; WZj — Z3 is defined byw(u, s1,52) = (s2,u,51)  the times 2 and 3 also it is repeated between the times
Suposse the encoder is initialized at stag = 00 3 and 4. In the context of Coding Theory the elements

then for the inputs sequencgl, 1,0,0,1,1,0,1,0,1} the of (W(u,s)}(,..coms are calledtransitions or branches

encoder states will bg(10,11,11,11,01,00,00,10,01,00}  The expansion in time of the state diagram is caliesdlis

and the sequence of encoded outputs will b§agram This is made by concatenating at each time unit

i=0 i=1 i=2 i=3 i=4

A. The Trellis of a Group Code

{010,011, 101,101,111, 110,000, 010,001, 110}. separate state diagram. For two consecutive time uhits
and: + 1, the transitionsh; = (s;, w(wit1,5:), v(witr1,8;))
I1l. CONTROLL AND GROUPCODES and b1 = (Sit1,w(Uira, Sit1), ¥(Uita,Si+1)) are said

Each codeword of a group code satisfies the definition gpncatenated whes;., = v(u;11,s;). Hence a bi-infinite
a trajectory of a Dynamical System in the sense of Willenfllis path of transitions is a sequende = {b;}icz such
[13]. From this each group codgis a dynamical system. In that b; and b;,, are concatenated for each € Z. The

this context, the encode¥! = (U, S, Y, v,w) is arealization set of trellis paths form the trellis diagram. Since each
of ¢, [3] [2]’ [12]. T codewordy passes only by one stateat each unit of time,

then the relation between the codeworgsand pathsb

1,...,j — 1,4} = [i, 4], the projection of the codeword overlS biiective. A pathb = {bi}iez with by = (00,010, 10),

these indices will bey|; jj = {vs,yi+1.- - .,y;}. Analogously by = (1_0’001701) by = (01,110,00) andb; = (00,000, 00)

Vi) = (i viss i1} Vligoo) = (Wi vits } and for all i € Z — {0, 1,2} it is shown by a traced line in Figure
i, s Yit+ly - Yj—171 7,400 ) PR

so on. With this notation theoncatenatiorof two codewords o _

y1, y2 € C in the instantj is a sequencg; A; y» defined by Definition 5: Two statess andr are saidconnectedwvhen
(y1 A ¥2)|(Cooi) = ¥il(—ooi)i there are a pathb and indicesi,j € Z such thatb|;; ;; =
(v1 A y2)li +O;) — yaly +O<;)' {bi, bis1,...,b;} with b; = (s;, w(wit1,s),v(uis1,8;)) and
Definition 4: If L is an integer greater than one, then b = (s5,w(ujr1, ), (uj41,55)) such thats = s; andr =

group codeC is said L-controllable when for any pair of V(U1 5).

codewordsy; andy., there are a codewongs and one integer ~ Theorem 2:LetC be a group code produced by the encoder

k such that the concatenation Ay ys Ar.zy2 is a codeword M = (U, S,Y,w,v). If there are two states € S andr € S

Given a codeword and a set of consecutive indicés i +

of the group code. [4], [1], [13]. for which there is not a finite path of transitions connecting
It is said that a natural numbdr > 1 is the index of them thenC is non-controllable.
controllability of a group cod€ when! = min{L ; Cis L — Proof: On the contrary there i&> 1 such that/ is the

controllable}. Any applicable group code, for correction ofcontrollability index ofC. Let y; be one codeword passing
errors of transmission and storage of information, needs lty the states at time &, let yo be a codeword passing by
have an index of controllability. Shortly, when a code has d@he stater at time k + L, L > [. There must exisys € C
index of controllability then is said that it is controll&]13]. with its respective patfbz such thatys|(_ oo x) = Y1l(—oo,k)
Clearly, a code to be L-controllable is a sufficient condition andys| ;1. +0c) = Y1|[k+L,+00) @Ndbs|( 111, & finite path,
for C to be controllable. connectings andr. Contradiction. [ ]
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Equivalently, we can say that two stateandr are connected (0,0), then the subgroupgs = {(0,1),(0,2),...,(0,m —

when there is a finite sequence of inpdis }? ; such that 1),(0,0)} is isomorphic withZ,, and H N K = {(0,0)}. In
this case, in accordance with the Theorem 2.29, pg 40 of [14]

7= v(un, v(un, . v(uz, v(u, 5)) ) ®6) 7.,XZ,, must be isomorphic with the direct produ& ®Z,,.

Theorem 3:Given a encodefU, S,Y, v, w) consider the fa- In the case of(0,1)™ = (u,0), with v # 0 we have that:

mily of state subset$S;}, recursively defined in the equationis a generator of,, then ((0,1)™)? = (u,0)? = (0,0) with

(1) then; ((0,1)™)% £ (0,0) for 0 < i < p. Therefore,(0,1)™ = (u,0)
1) EachsS; is a subgroup ofS implies thatZ, XZ,, is isomorphic with the cyclic grouf,,,,.
2) S;_qisnormalinS; , foralli=1,2,.... n
3) If $;_1 =S; thenS; = S; ;. Lemma 3:Consider the encodéd! = (Z,, S,Y,w,v), with
4) If S; is cyclic thensSy, is cyclic for all k < i. p prime. Also consider the subgroupy of the Equation (7)
5) If the group code is controllable theh= Sj, for some and the sequence of subgrousof the equation (1), then;

k. 1) If there ares #e ands € S™ N S; thenS~— C §;, for
Proof: i>0;

1) By induction. Consider, s € S;, Sincev is surjective,  2) If S= C S; thenv(Z,,57) C S;, fori > 0.
there exist(u1, s1) and (uz, s) with s1,s2 € S;_; and Proof:
uy,ug € U such thatr = v(uy,s1) ands = v(ug, s2). 1) Sinces € S~ N S;, then{s,s?,...,sP71 s? = ¢} C
Hence,sr = v(us, $152), uz € U and thussr € S;. S—NS;.

2) Clearly So < S1. Fori > 1, supposeS;_1 < S;, for all  2) Givenr # e such that- € S;N.S~ suppose there is some
j <i.Givens € S;y1 andr € S;, considers.r.s™! = u € Z, such thatv(u,r) = s ¢ S;. For the subgroup
v(u,s1).v(v,r).v(u,s1) !, wheres; € S;, 71 € S;_1, S1 = {s0,51 = v(u1,€),50 = v(ug,€),...,8-1 =
u,v € U. Hence,s.r.s™' = v(uy,s1.r1.57") € S, v(up—1,€)}, we have thatsS; is a coset where each
becauses; .r1.s7 ' € 5i 1. element isv(u,r)v(u;,e) = v(u',r), for somew’ €

3) Givens € S;41 there arer € S; andu € U such Z,. HencesS; = {v(Z,,r)} with sS1 NS; = (. But,
that v(u,r) = s. SinceS; = S;_1, r € S;_1. Hence sincer € S~ there is at least one, € Z, such that
v(u,r) =s €S, v(ug, ) = e, in contradiction withsS; N S; = 0.

4) S; means all its subgroups are cyclic. -

5) If not, there iss € S such thats ¢ Sy for any k& € Theorem 4:Consider the encoded = (Z,, S, Y,w,v),
N. Then, the neutral state € S, C S ands are not then eachs; of (1) must be a-group.

connected by any finite trellis path. Therefore the group Proof: By induction overi, for i — 1 we havel[S; :

code is non-controllable. So] = p or [Sy : Sp] = 1. Now suppose there is a natural
numberk > 1 such that[S; : S;_1] = p, for all i < k. We

In the Figure 15, = {00}, S = {00,10}, S2 = haye that the subgrouf, hasp* elements and each of its

{00,10,01,11} = S, therefore the code is controllable. elements has order’, i < k. If p > [Syi1 : Si] > 1 then
Lemma 1:Let S~ be the full one-time past of the neutral[SkJrl Sp] =m = qflqgé ...q}*, where eachy; is a prime

states) = e € .S, precisely defined by andg; < p. There must be an elemente (Sy41 — Si) such

ST ={seS; v(u,s) =e,for someu € U}. @ that s = e.
Let w € Z, andr € Si be such that(u,r) = s, then
Then S~ is a normal subgroup of and|S~| = | S| v(up, ) = e. Hencer® € S~ N S.
Proof: Consider the kernels of the second projectiofy ;- - ¢ thenr® + e, because; < p. By Lemma 3,5~ C S
m(u,s) = s and the next state mapping Both are sur- andy(u,r) = s € S, a contradiction.
jective homomorphisms, then by the fundamental Theorgf, — ¢ thenv(u,r) = s € S; C Sk, a contradiction. n
of homomorphisms; X% = S and ;025 = S. Hence  Corollary 1: If [Sy : Sp_1] = p thenv(u, s) € Si — Sk
|ker(v)| = |ker(m2)|. The statement of the Lemma is satisfiegor all s £ ¢

noticing thatS™ = ker(v) and Sy = ker (). B Corollary 2: If the code is controllable thefs;| = p’
Lemma 4:If S— N S; # {e} for someS; # S, then the
IV. THE ENCODER(Zy, S,Y, v,w) WITH p PRIME code produced by the encod#f = (Z,,S,Y,w,v) is non-
Lemma 2:The abelian extensiof, X Z,, either is iso- controllable.
morphic to the direct produdt, ® Z,, or it is isomorphic to Proof: In accordance with item 1 of the above Lemma
the cyclic groupz,,,,. 3,57 is a subset of;. By Theorem 4.5; is ap-group which

Proof: Consider the elementl,0) € Z, X Z,,. By haveS; andS~ as subgroups of ordgr. Since anyp-group
the Theorem 1, about the equation (2),0)> = (1 + 1+ has only one subgroup with ordgrthenS; = S—. Again, by
£(0,0),0). Now, by the equation (3)£(0,0) = 0. Thus, the item 2 of the above LemmaigZ,, S1) C Si. Therefore,
(1,0)2 = (2,0) and in general(1,0) = (n,0), for any considering any € S such thats ¢ S; we have that there is
n € {1,2,...,p—1}. ThereforeH = {(1,0),(2,0),...,(p— not any finite path connecting the neutral elemert.5; C S
1,0),(0,0)} is a cyclic subgroup isomorphic with,. On the ands. By the Theorem 2 the code is non-controllable =
other hand consider the eleméft1) € Z,XZ,,. If (0,1)™ = Theorem 5:Consider the encodé = (Z,, S,Y,w,v) and



XXIX SIMPOSIO BRASILEIRO DE TELECOMUNICA@ES - SBrT'11, 02-05 DE OU

TUBRO DE 2011, CURITIBA, PR

the subgroup$; of the equation (1). If the code is controllable [7] D. J. C. Mackay,Information Theory, Inference, and Learning Algo-

then S; cyclic implies thatSs is cyclic
Proof: We have thatS; = v(Z, K {e}) is cyclic. If

Sy = v(Z, X Sy) is cyclic thenSy = Z,, or Sy = Z,2. But if
Sy =2 Zy, then allS; = Z,,, Theorem 3. and the encodéf =
(U, S,Y,w,r) would be useless. Thu$, must be isomorphic
to Z,>. By contradiction, supposgs = v(Z, X S) is not
cyclic, then by Lemma 253 = Z, @ Z,2. For the sake of
clarity let S be such thatSs = Z, ® Z,2. Then each state
of Ss is a pair(i,j) with ¢ € Z, = {0,1,...,p — 1} and
J €Ly ={0,1,...,p,....2p,...,p* — 1}

Any subgroup of orderp? of Z, & Z, is cyclic and
generated by a paifi, ;) where;j must have ordep®. Hence

~

Sy =< (1,7) > has the following elements;
(4, 3) (21, 25) (31, 35) (0, pj)
(i, (p+ 1)7) (24, (p +2)3) (31, (p + 3)4) (0, 2pj)
(i, (2p + 1)37) (24, (2p + 2)4) (3, (2p + 3)7) (0, 3pj)
G (P = Dp+15) (26, (o~ Dp+2)3) (35, ((p — Dp + 3)5) 0,0

Consider the pain0,p) € Ss. The order of(0,p) is p,
thereforeS; is generated by0, p). Now, chose any(i, j) €
Sy — 57 and let(z, y) be defined byz,y) = v(0, (i, 7)) € Ss.
On one side we have thét, y)? = (0,pj) € S;. On the other
side (2, )7 = (1(0, (i, 4)))” = v((0, (i, 5))) = v(u, (0, 7p)),
for someu € U. But by the Theorem 4y(u, (0, jp)) must be
in Sy — 51, a contradiction.

[ |

Example 3:Consider the prime = 3, and the subgroups
So, S1 & Z3. SupposeS, = Zg, Figure 2.

We have that for S5 Zs & 7Zg the subgroups
of order 9 are {01,02,03,04,05,06,07,08,00},
{11,22,03,14, 25,06, 17, 28,00} and
{12,24, 06, 18,21, 03, 15,27,00}, and the subgroups of order
3 are {03,06,00}, {10,20,00}, {13,26,00}, {23,16,00}.
Since S; C S3, we must choiceS; = {03,06,00}. In this
example we choosé, = {01, 02,03, 04, 05,06,07,08,00}.
Supposev(0,01) = 11 thenv(u,03) = 03 € S,. In general
v(0,01) = 45 implies v(u,03) = Or wherer € {0,3,6}.
ThereforeS; must be cyclic.

V. CONCLUSIONS

We had shown that for an encodéZ,,S,Y,w,v) the
intersectionS— N S;, for ¢ > 1, must have only one element

{e}. In other case the code will be non controllable. Also we

had shown that ifS; is cyclic thenS3; must be cyclic. In this

direction the next work can be to show a general statement

about the cyclic condition of; and S;; for anyi > 1.
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