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Some Necessary Conditions for Abelian Group
Codes with prime Information Group

Jorge Pedraza Arpasi, Tiago Belmonte Nascimento

Resumo— Códigos de Grupo s̃ao uma generalizaç̃ao dos
Códigos Convolucionais. Por isso, algumas vezes, os Códigos
de Grupo também s̃ao chamados de Ćodigos Convolucionais
Generalizados. Um codificador convolucional cĺassico com taxak

n

e m registros de meḿoria pode ser descrito como uma Ḿaquina
de Estados Finito em termos dos grupos bińarios Z

k
2 , Zn

2 e Z
m
2 e

homomorfismos adequadamente definidos sobre o produto direto
Z
k
2 ⊕ Z

m
2 . O código convolucional é a faḿılia de seqûencias

bi-infinitas produzidas pelo codificador convolucional. Generali-
zando esta id́eia um ćodigo de grupoé uma faḿılia de seqûencias
produzidas por uma Máquina de Estados Finito definido sobre a
extens̃ao de dois grupos finitosU⊠S. Considerado como um con-
junto de seqûencias, um ćodigo de grupoé um Sistema Din̂amico
e é fato conhecido que sistemas din̂amicos bem comportados
devem necessariamente ser controláveis. Assim, um bom ćodigo
de grupo deve ser controĺavel. Neste artigo trabalhamos com
códigos de grupo definidos sobre grupos abelianos com grupo de
informação Zp e estabelecemos algumas condições necesśarias
sobre o controle destes ćodigos.

Palavras-Chave— Códigos de grupo, sistemas din̂amicos, con-
trole, p-grupos

Abstract— Group Codes are a generalization of the well known
Convolutional Codes. For this reason, sometimes, Group Codes
are also called as Generalized Convolutional Codes. A classical
convolutional encoder with rate k

n
and m memory registers can

be described as a Finite State Machine in terms of the binary
groups Z

k
2 , Zn

2 and Z
m
2 and adequate homomorphisms over the

direct product Z
k
2 ⊕ Z

m
2 . The convolutional code is a family

of bi-infinite sequences produced by the convolutional encoder.
Generalizing the just above idea, a group code is a family of bi-
infinite sequences produced by a Finite State Machine (FSM)
homomorphic encoder defined on the extension of two finite
groupsU⊠S. As a set of sequences, a group code is a Dynamical
System and it is known that well behaved dynamical systems must
be necessarily controllable. Thus, a good group code must be
controllable. In this paper we work with group codes defined over
abelian groups with information group Zp and give necessary
conditions on the control of these codes.

Keywords— Group codes, dynamical systems, controllability,
p-groups.

I. I NTRODUCTION

Let Z be the set of integers. Over a family of groups with
integer indices,{Gk}k∈Z, we can construct the bi-infinite
direct productG = · · · × Gk−1 × Gk × Gk+1 × . . . . Each
element ofG is a sequence{gk}k∈Z, gk ∈ Gk, and with the
group operations induced componentwise from eachGk, G is
also a group. Then, a generalizedgroup codeC, is a subgroup
of G. If each groupGk is equal to a fixed groupG, then we
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haveG = GZ = · · · × G × G × G × . . . . In this last case, a
subgroupC of G is calledtime invariant group code[1], [2],
[3], [4]

Group codes are a subclass of Error Correcting Codes
(ECC), which can detect and correct transmission errors origi-
nated from noisy communication channels. In communication
engineering, noise is modeled as a random signal. The most
known noise is the Gaussian noise, which is modeled as a
random signal having a normal probabilistic distribution.The
channels suffering Gaussian noise are calledadditive white
Gaussian noise- AWGN channels [5], [6], [7], [8]. The
essence of ECC is the addition of redundancy to the original
message. More redundant information means more protected
information. That fact reduces the transmission velocity of
the channel. Then trade-off between velocity of transmission
and protection of information must be done, and this depends
on the channel class [9], [10]. Telephone channels need real
time transmissions and they prioritize velocity over some little
errors on the human voice. On the other hand bank transaction
channels need strong protection on the transmitted data.

The purpose of this work is the study of group codes for the
abelian case. In [11] it has been shown that there are not good
group codes over non abelian groups with information group
beingZp. A study on arbitrary abelian extensionsU ⊠ S was
did before in [12] where the main concern was a minimality
of the states group. We will be concerned with control. For
that this work is organized as follow:

In the Section II is defined the extension of a groupU
by the groupS, this extension is denoted asU ⊠ S. Then is
defined the FSM encoder of a group code which also is called
ISO (Input/State/Output) machine. The next state mappingν :
U⊠S → S and the encoder (output) mappingω : U⊠S → Y

are defined over the extensionU ⊠ S. Finally, is defined the
group codeC, produced by the FSM encoder, as a family of
bi-infinite sequences of outputs.

In the Section III the group codeC is presented as a
Dynamical System in the sense of [13]. Also a graphical
description of a group code known as a trellis is presented.
It is established that the trellis diagram is a set of paths of
transitions between states. After given the control definition,
a sufficient condition of non-controllability is made in the
Theorem 2.

In the Section IV we present our original contributions
about the controllability of group codes produced by encoders
defined on abelian extensionsZp ⊠ S. It is studied the group
code of statesS. The main result of this work, Theorem 5,
refers to the sequence of subsets{Si} of S recursively defined
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by
S0 = {e}, e is the identity element ofS
S1 = {ν(u, s) ; u ∈ U, s ∈ S0}
S2 = {ν(u, s) ; u ∈ U, s ∈ S1}
...

...
...

Si = {ν(u, s) ; u ∈ U, s ∈ Si−1}, i ≥ 0
... =

...

(1)

Then, we will show that a necessary condition for an abelian
group code with information groupZp be controllable is:If
S2 is cyclic thenS3 must be also cyclic.

II. GROUP EXTENSIONS ANDGROUPCODES

A. Group extensions

Definition 1: An extensionof a groupU by a groupS is
a groupG with a normal subgroupN , such thatN ∼= U and
G
N

∼= S, [14].
The extension “U byS”we will denote by the symbolU⊠S.

When G is an extensionU ⊠ S, each elementg ∈ G can
be “factored” as an unique ordered pair(u, s), u ∈ U and
s ∈ S. The semi-direct productU ⋊ S is a particular case of
extension, but also it is known that the semi-direct productis a
generalization of the direct productU×S. Canonical definition
of extension of groups is given in [14], [15], specially in
[15] we find a “practical”way to decompose a given group
G, with normal subgroupN , in an extensionU ⊠ S. That
decomposition depends on the choice of isomorphismsυ :
N → U , ψ : S → G

N
and a lifting l : G

N
→ G such

that l(N) = e, the neutral element ofG. Then, defining
φ : S → Aut(U) by,

φ(s)(u) = υ[l(ψ(s)).υ−1(u).(l(ψ(s)))−1], (2)

andξ : S × S → U

ξ(s1, s2) = l(ψ(s1, s2))l(ψ(s1))l(ψ(s2)), (3)

the decompositionU ⊠ S with the group operation

(u1, s1) ∗ (u2, s2) = (u1.φ(s1)(u2).ξ(s1, s2) , s1s2) (4)

is isomorphic withG, that is,g = (u, s).
Notice that the resulting pair of(u1, s1).(u2, s2), of the

above operation (4), is(u′, s1s2) for someu′ ∈ U , ands1s2
is the operation onS. This property allow us to do not be
concerned to obtain an explicit result when multiple factors are
acting. For instance, in the proof of some Lemmas it will be
enough to say that(u′, s1s2 . . . sn), is the resulting pair of the
multiple product(u1, s1) ·(u2, s2) ·(u3, s3) . . . (un, sn), where
u′ is some element ofU . Analogously,(u, s)n = (u′, sn) for
someu′ ∈ U .

Example 1:Consider the direct product groupZ3
2 =

{(x1, x2, x3) ; xi ∈ Z2}. This abelian group can be decom-
posed as an extensionZ2 ⊠ Z

2
2.

By using the more convenient notation00 instead(0, 0),
010 instead(0, 1, 0), etc., we have that the normal subgroup
N = {000, 100} ⊳ Z

3
2 is isomorphic withZ2. The quotient

group Z
3
2

N
= {{000, 100}, {010, 110}, {001, 101}, {111, 011}}

is isomorphic withZ2
2. Thus, in an expected way, we have

shown thatZ3
2 is an extension ofZ2 ⊠ Z

2
2.

Theorem 1:If the mappingφ : S → Aut(U) is not trivial
then the extensionU ⊠ S is non-abelian
Proof.- Sinceφ is not trivial, there areu ∈ U and s ∈ S

such thatφ(s)(u) 6= u. Now, consider the pairs(e, s), (u, e) ∈
U ⊠S, wheree is the neutral element of the respective group.
Then (e, s)(u, e) = (e.φ(s)(u).ξ(s, e), s) = (φ(s)(u), s). On
the other hand(u, e)(e, s) = (u.φ(e)(e).ξ(e, s), s) = (u, s).
Therefore(e, s)(u, e) 6= (u, e)(e, s).

B. Finite State Machines and Group Codes

Finite State Machines (FSM) are a subject of Automata
Theory. M. Arbib in [16] describes a FSM as a quintuple
M = (I, S,O, δ, ξ), whereI is the inputs alphabet,S is the
alphabet of states of the machine,O is the outputs alphabet,
δ : I × S → S is the next state mapping, andξ : I × S → O

is the output mapping. Following [17], [3], [2] and by making
modifications on the FSM notation, suitable for our context of
group codes, it is given the definition of an encoder as follows.

Definition 2: Let U , S, and Y be finite groups. Letν :
U ⊠ S → S andω : U ⊠ S → Y be group homomorphisms
defined over an extensionU ⊠ S such that the mappingΨ :
U ⊠ S → S × Y × S defined by

Ψ(u, s) = (s, ω(u, s), ν(u, s)) (5)

is injective with ν surjective. Then, an encoder of a group
code is the MachineM = (U, S, Y, ω, ν).

The groupU is called the uncoded information group and
Y is called the encoded information group. To begin working,
the encoder needs an initial states0 ∈ S and a sequence of
inputs {ui}ni=1, ui ∈ U . Then the encoder will respond with
two sequences{si}ni=1, si ∈ S, and {yi}

n
i=1, yi ∈ Y in the

following way;

ν(u1, s0) = s1 ω(u1, s0) = y1
ν(u2, s1) = s2 ω(u2, s1) = y2
ν(u3, s2) = s3 ω(u3, s2) = y3

...
...

...
...

ν(un, sn−1) = sn ω(un, sn−1) = yn

If we agree that the present time is 0 (zero) and the states0
represents the present state, then the next integer time is 1
(one) ands1 represents the next state from now. Analogously,
the next state froms1 will be s2 and generallysi will be the
next state fromsi−1. In this way, states with positive indices,
{si}

n
i=1, forms a sequence of future states.

On the other hand, sinceν is surjective, then must exist at
least one pair(u0, s−1) such thats0 = ν(u0, s−1). The state
s−1 can represent the previous state from the present state
s0. Analogously fors−1 there must exist a pair(u−1, s−2)
such thatν(u−1, s−2) = s−1 with s−2 representing a previous
state froms−1 and so ons{−i+1} is one previous state from
s−i. Thus, for a given present sates0, there are sequences of
past states{si}

−1
i=−n, past outputs{yi}

−1
i=−n, and past inputs
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{ui}
0
i=−n+1 such that;

ν(u0, s−1) = s0 ω(u0, s−1) = y0
ν(u−1, s−2) = s−1 ω(u−1, s−2) = y−1

ν(u−2, s−3) = s−2 ω(u−2, s−3) = y−2

...
...

...
...

ν(u{−n+1}, s−n) = s{−n+1} ω(u{−n+1}, s−n) = y{−n+1}

Therefore, given bi-infinite sequence of inputs{ui}i∈Z, ui ∈
U and one states0 ∈ S, make sense to say that, the encoder
M = (U, S, Y, ν, ω) will response with the sequence{yi}i∈Z,
yi ∈ Y , of outputs while its internal states will have the
sequence{si}i∈Z, si ∈ S. Notice that once made the choice
of one initial states0, the future relations between the inputs
and outputs-states sequences is bijective, that is,

{{uk}i∈N}
1−1
⇄ {{yi}i∈N, {si}i∈N}, whereN = {1, 2, 3, . . . }

is the natural numbers set.
Definition 3: A time invariant group codeC is the family

of bi-infinite sequencesy = {yi}i∈Z produced by the encoder
M = (U, S, Y, ν, ω), with yi = ω(ui, si−1). Each sequence
y = {yi}i∈Z is called acodeword, [1], [2], [3], [4].

Example 2:Consider the encoderM = (Z2,Z
2
2,Z

3
2, ω, ν)

whereν : Z2⊠Z
2
2 → Z

2
2 defined byν(u, s1, s2) = (u+s2, s1)

andω : Z2⊠Z
2
2 → Z

3
2 is defined byω(u, s1, s2) = (s2, u, s1)

Suposse the encoder is initialized at states0 = 00
then for the inputs sequence{1, 1, 0, 0, 1, 1, 0, 1, 0, 1} the
encoder states will be{10, 11, 11, 11, 01, 00, 00, 10, 01, 00}
and the sequence of encoded outputs will be
{010, 011, 101, 101, 111, 110, 000, 010, 001, 110}.

III. C ONTROLL AND GROUPCODES

Each codeword of a group code satisfies the definition of
a trajectory of a Dynamical System in the sense of Willems
[13]. From this each group codeC is a dynamical system. In
this context, the encoderM = (U, S, Y, ν, ω) is a realization
of C, [3], [2], [12].

Given a codewordy and a set of consecutive indices{i, i+
1, . . . , j − 1, j} = [i, j], the projection of the codeword over
these indices will bey|[i,j] = {yi, yi+1, . . . , yj}. Analogously
y|[i,j) = {yi, yi+1, . . . , yj−1}, y|[i,+∞) = {yi, yi+1, . . . } and
so on. With this notation theconcatenationof two codewords
y1, y2 ∈ C in the instantj is a sequencey1 ∧j y2 defined by
{

(y1 ∧j y2)|(−∞,j) = y1|(−∞,j);

(y1 ∧j y2)|[j,+∞) = y2|[j,+∞).

Definition 4: If L is an integer greater than one, then a
group codeC is said L-controllable when for any pair of
codewordsy1 andy2, there are a codewordy3 and one integer
k such that the concatenationy1∧ky3∧k+Ly2 is a codeword
of the group codeC. [4], [1], [13].

It is said that a natural numberl > 1 is the index of
controllability of a group codeC when l = min{L ; C is L−
controllable}. Any applicable group code, for correction of
errors of transmission and storage of information, needs to
have an index of controllability. Shortly, when a code has an
index of controllability then is said that it is controllable [13].
Clearly, a codeC to beL-controllable is a sufficient condition
for C to be controllable.

i=0 i=1 i=2 i=3 i=4

s=00

s=10

s=01

s=11

Fig. 1. Trellis diagram of the encoderM = (Z2,Z
2

2
,Z3

2
, ω, ν)

A. The Trellis of a Group Code

The triplets (s, ω(u, s), ν(u, s)) of the set
{Ψ(u, s)}(u,s)∈U⊠S , where Ψ is defined by (5), can be
represented graphically. In the context of Graph Theory,
[18], they are callededges whose vertices set isS and
the graph is calledstate diagram labeled by ω(u, s). In
the Figure 1 the full state diagram of the code generated
by the FSM M = (Z2,Z

2
2,Z

3
2, ω, ν) is shown between

the times 2 and 3 also it is repeated between the times
3 and 4. In the context of Coding Theory the elements
of {Ψ(u, s)}(u,s)∈U⊠S are called transitions or branches.
The expansion in time of the state diagram is calledtrellis
diagram. This is made by concatenating at each time unit
separate state diagram. For two consecutive time unitsi

and i + 1, the transitionsbi = (si, ω(ui+1, si), ν(ui+1, si))
and bi+1 = (si+1, ω(ui+2, si+1), ν(ui+2, si+1)) are said
concatenated whensi+1 = ν(ui+1, si). Hence a bi-infinite
trellis path of transitions is a sequenceb = {bi}i∈Z such
that bi and bi+1 are concatenated for eachi ∈ Z. The
set of trellis paths form the trellis diagram. Since each
codewordy passes only by one states at each unit of time,
then the relation between the codewordsy and pathsb
is bijective. A pathb = {bi}i∈Z with b0 = (00, 010, 10),
b1 = (10, 001, 01) b2 = (01, 110, 00) and bi = (00, 000, 00)
for all i ∈ Z− {0, 1, 2} it is shown by a traced line in Figure
1.

Definition 5: Two statess and r are saidconnectedwhen
there are a pathb and indicesi, j ∈ Z such thatb|[i,j] =
{bi, bi+1, . . . , bj} with bi = (si, ω(ui+1, si), ν(ui+1, si)) and
bj = (sj , ω(uj+1, sj), ν(uj+1, sj)) such thats = si and r =
ν(uj+1, sj).

Theorem 2:Let C be a group code produced by the encoder
M = (U, S, Y, ω, ν). If there are two statess ∈ S and r ∈ S

for which there is not a finite path of transitions connecting
them thenC is non-controllable.

Proof: On the contrary there isl > 1 such thatl is the
controllability index ofC. Let y1 be one codeword passing
by the states at time k, let y2 be a codeword passing by
the stater at time k + L, L ≥ l. There must existy3 ∈ C
with its respective pathb3 such thaty3|(−∞,k) = y1|(−∞,k)

andy3|[k+L,+∞) = y1|[k+L,+∞) andb3|(k,k+L], a finite path,
connectings andr. Contradiction.
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Equivalently, we can say that two statess andr are connected
when there is a finite sequence of inputs{ui}

n
i=1 such that

r = ν(un, ν(un1, . . . ν(u2, ν(u1, s)) . . . )) (6)

Theorem 3:Given a encoder(U, S, Y, ν, ω) consider the fa-
mily of state subsets{Si}, recursively defined in the equation
(1) then;

1) EachSi is a subgroup ofS
2) Si−1 is normal inSi , for all i = 1, 2, . . . .
3) If Si−1 = Si thenSi = Si+1.
4) If Si is cyclic thenSk is cyclic for all k ≤ i.
5) If the group code is controllable thenS = Sk for some

k.
Proof:

1) By induction. Considerr, s ∈ Si, Sinceν is surjective,
there exist(u1, s1) and (u2, s2) with s1, s2 ∈ Si−1 and
u1, u2 ∈ U such thatr = ν(u1, s1) and s = ν(u2, s2).
Hence,sr = ν(u3, s1s2), u3 ∈ U and thussr ∈ Si.

2) ClearlyS0 ⊳ S1. For i > 1, supposeSj−1 ⊳ Sj , for all
j ≤ i. Given s ∈ Si+1 and r ∈ Si, considers.r.s−1 =
ν(u, s1).ν(v, r1).ν(u, s1)

−1, wheres1 ∈ Si, r1 ∈ Si−1,
u, v ∈ U . Hence, s.r.s−1 = ν(u1, s1.r1.s

−1
1 ) ∈ Si,

becauses1.r1.s
−1
1 ∈ Si−1.

3) Given s ∈ Si+1 there arer ∈ Si and u ∈ U such
that ν(u, r) = s. SinceSi = Si−1, r ∈ Si−1. Hence
ν(u, r) = s ∈ Si.

4) Si means all its subgroups are cyclic.
5) If not, there iss ∈ S such thats 6∈ Sk for any k ∈

N. Then, the neutral statee ∈ Sk ⊂ S and s are not
connected by any finite trellis path. Therefore the group
code is non-controllable.

In the Figure 1 S0 = {00}, S1 = {00, 10}, S2 =
{00, 10, 01, 11} = S, therefore the code is controllable.

Lemma 1:Let S− be the full one-time past of the neutral
states0 = e ∈ S, precisely defined by

S− = {s ∈ S ; ν(u, s) = e , for someu ∈ U}. (7)

ThenS− is a normal subgroup ofS and |S−| = |S1|
Proof: Consider the kernels of the second projection

π2(u, s) = s and the next state mappingν. Both are sur-
jective homomorphisms, then by the fundamental Theorem
of homomorphisms U⊠S

ker(ν)
∼= S and U⊠S

ker(π2)
∼= S. Hence

|ker(ν)| = |ker(π2)|. The statement of the Lemma is satisfied
noticing thatS− = ker(ν) andS1 = ker(π2).

IV. T HE ENCODER(Zp, S, Y, ν, ω) WITH p PRIME

Lemma 2:The abelian extensionZp ⊠ Zm either is iso-
morphic to the direct productZp ⊕ Zm or it is isomorphic to
the cyclic groupZpm.

Proof: Consider the element(1, 0) ∈ Zp ⊠ Zm. By
the Theorem 1, about the equation (2),(1, 0)2 = (1 + 1 +
ξ(0, 0), 0). Now, by the equation (3),ξ(0, 0) = 0. Thus,
(1, 0)2 = (2, 0) and in general(1, 0)n = (n, 0), for any
n ∈ {1, 2, . . . , p− 1}. ThereforeH = {(1, 0), (2, 0), . . . , (p−
1, 0), (0, 0)} is a cyclic subgroup isomorphic withZp. On the
other hand consider the element(0, 1) ∈ Zp⊠Zm. If (0, 1)m =

(0, 0), then the subgroupK = {(0, 1), (0, 2), . . . , (0,m −
1), (0, 0)} is isomorphic withZm andH ∩K = {(0, 0)}. In
this case, in accordance with the Theorem 2.29, pg 40 of [14]
Zp⊠Zm must be isomorphic with the direct productZp⊕Zm.
In the case of(0, 1)m = (u, 0), with u 6= 0 we have thatu
is a generator ofZp, then ((0, 1)m)p = (u, 0)p = (0, 0) with
((0, 1)m)i 6= (0, 0) for 0 < i < p. Therefore,(0, 1)m = (u, 0)
implies thatZp⊠Zm is isomorphic with the cyclic groupZpm.

Lemma 3:Consider the encoderM = (Zp, S, Y, ω, ν), with
p prime. Also consider the subgroupS− of the Equation (7)
and the sequence of subgroupsSi of the equation (1), then;

1) If there ares 6= e and s ∈ S− ∩ Si thenS− ⊂ Si, for
i ≥ 0;

2) If S− ⊂ Si thenν(Zp, S
−) ⊂ Si, for i ≥ 0.

Proof:

1) Sinces ∈ S− ∩ Si, then {s, s2, . . . , sp−1, sp = e} ⊂
S− ∩ Si.

2) Givenr 6= e such thatr ∈ Si∩S
− suppose there is some

u ∈ Zp such thatν(u, r) = s 6∈ Si. For the subgroup
S1 = {s0, s1 = ν(u1, e), s2 = ν(u2, e), . . . , sp−1 =
ν(up−1, e)}, we have thatsS1 is a coset where each
element isν(u, r)ν(ui, e) = ν(u′, r), for someu′ ∈
Zp. HencesS1 = {ν(Zp, r)} with sS1 ∩ Si = ∅. But,
since r ∈ S− there is at least oneu0 ∈ Zp such that
ν(u0, r) = e, in contradiction withsS1 ∩ Si = ∅.

Theorem 4:Consider the encoderM = (Zp, S, Y, ω, ν),
then eachSi of (1) must be ap-group.

Proof: By induction overi, for i = 1 we have[S1 :
S0] = p or [S1 : S0] = 1. Now suppose there is a natural
numberk > 1 such that[Si : Si−1] = p, for all i ≤ k. We
have that the subgroupSk has pk elements and each of its
elements has orderpi, i ≤ k. If p > [Sk+1 : Sk] > 1 then
[Sk+1 : Sk] = m = qr11 q

r2
2 . . . qrtt , where eachqi is a prime

andqi < p. There must be an elements ∈ (Sk+1 − Sk) such
that sq1 = e.
Let u ∈ Zp and r ∈ Sk be such thatν(u, r) = s, then
ν(u1, r

q1) = e. Hencerq1 ∈ S− ∩ Sk.
If r 6= e thenrq1 6= e, becauseq1 < p. By Lemma 3,S− ⊂ Sk

andν(u, r) = s ∈ Sk, a contradiction.
If r = e thenν(u, r) = s ∈ S1 ⊂ Sk, a contradiction.

Corollary 1: If [Sk : Sk−1] = p thenν(u, s) ∈ Sk − Sk−1

for all s 6= e

Corollary 2: If the code is controllable then|Si| = pi

Lemma 4: If S− ∩ Si 6= {e} for someSi 6= S, then the
code produced by the encoderM = (Zp, S, Y, ω, ν) is non-
controllable.

Proof: In accordance with item 1 of the above Lemma
3, S− is a subset ofSi. By Theorem 4,Si is ap-group which
haveS1 andS− as subgroups of orderp. Since anyp-group
has only one subgroup with orderp, thenS1 = S−. Again, by
the item 2 of the above Lemma 3ν(Zp, S1) ⊂ S1. Therefore,
considering anys ∈ S such thats 6∈ S1 we have that there is
not any finite path connecting the neutral elemente ∈ S1 ⊂ S

ands. By the Theorem 2 the code is non-controllable
Theorem 5:Consider the encoderM = (Zp, S, Y, ω, ν) and
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the subgroupsSi of the equation (1). If the code is controllable
thenS2 cyclic implies thatS3 is cyclic

Proof: We have thatS1 = ν(Zp ⊠ {e}) is cyclic. If
S2 = ν(Zp ⊠ S1) is cyclic thenS2

∼= Zp or S2
∼= Zp2 . But if

S2
∼= Zp then allSi

∼= Zp, Theorem 3. and the encoderM =
(U, S, Y, ω, ν) would be useless. ThusS2 must be isomorphic
to Zp2 . By contradiction, supposeS3 = ν(Zp ⊠ S2) is not
cyclic, then by Lemma 2,S3

∼= Zp ⊕ Zp2 . For the sake of
clarity let S3 be such thatS3 = Zp ⊕ Zp2 . Then each state
of S3 is a pair (i, j) with i ∈ Zp = {0, 1, . . . , p − 1} and
j ∈ Zp2 = {0, 1, . . . , p, . . . , 2p, . . . , p2 − 1}.

Any subgroup of orderp2 of Zp ⊕ Zp2 is cyclic and
generated by a pair(i, j) wherej must have orderp2. Hence
S2 =< (i, j) > has the following elements;

(i, j) (2i, 2j) (3i, 3j) . . . (0, pj)
(i, (p + 1)j) (2i, (p + 2)j) (3i, (p + 3)j) . . . (0, 2pj)
(i, (2p + 1)j) (2i, (2p + 2)j) (3i, (2p + 3)j) . . . (0, 3pj)

. . . . . . . . . . . . . . .

(i, ((p − 1)p + 1)j) (2i, ((p − 1)p + 2)j) (3i, ((p − 1)p + 3)j) . . . (0, 0)

Consider the pair(0, p) ∈ S3. The order of(0, p) is p,
thereforeS1 is generated by(0, p). Now, chose any(i, j) ∈
S2−S1 and let(x, y) be defined by(x, y) = ν(0, (i, j)) ∈ S3.
On one side we have that(x, y)p = (0, pj) ∈ S1. On the other
side (x, y)p = (ν(0, (i, j)))p = ν((0, (i, j))p) = ν(u, (0, jp)),
for someu ∈ U . But by the Theorem 4,ν(u, (0, jp)) must be
in S2 − S1, a contradiction.

Example 3:Consider the primep = 3, and the subgroups
S0, S1

∼= Z3. SupposeS2
∼= Z9, Figure 2.

We have that for S3 = Z3 ⊕ Z9 the subgroups
of order 9 are {01, 02, 03, 04, 05, 06, 07, 08, 00},
{11, 22, 03, 14, 25, 06, 17, 28, 00} and
{12, 24, 06, 18, 21, 03, 15, 27, 00}, and the subgroups of order
3 are {03, 06, 00}, {10, 20, 00}, {13, 26, 00}, {23, 16, 00}.
SinceS1 ⊂ S2, we must choiceS1 = {03, 06, 00}. In this
example we chooseS2 = {01, 02, 03, 04, 05, 06, 07, 08, 00}.
Supposeν(0, 01) = 11 then ν(u, 03) = 03 ∈ S2. In general
ν(0, 01) = ij implies ν(u, 03) = 0r where r ∈ {0, 3, 6}.
ThereforeS3 must be cyclic.

V. CONCLUSIONS

We had shown that for an encoder(Zp, S, Y, ω, ν) the
intersectionS− ∩ Si, for i ≥ 1, must have only one element
{e}. In other case the code will be non controllable. Also we
had shown that ifS2 is cyclic thenS3 must be cyclic. In this
direction the next work can be to show a general statement
about the cyclic condition ofSi andSi+1 for any i ≥ 1.
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Fig. 2. Trellis ofZ3 ⊠ S


