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On creating small datasets for training embedded
acoustic scene classification systems via

time-frequency segmentation
Douglas Baptista de Souza, Janderson Ferreira, Fernanda Ferreira, and Michel Meneses

Abstract— Acoustic Scene Classification (ASC) systems have
great potential to transform existing embedded technologies.
However, research on ASC has put little emphasis on solving
the existing challenges in embedding ASC systems. In this paper,
we focus on one of the problems associated with smaller ASC
models: the generation of smaller yet highly informative training
datasets. To achieve this goal, we propose to employ the so-called
multitaper-reassignment technique to generate high-resolution
spectrograms from audio signals. These sharp time-frequency
(TF) representations are used as inputs to a splitting method
based on TF-related entropy metrics. We show via simulations
that the datasets created through the proposed segmentation can
successfully be used to train small convolutional neural networks
(CNNs), which could be employed in embedded ASC applications.

Keywords— Acoustic Scene Classification, Audio Segmentation,
Multitaper-reassigned Spectrogram, Time-frequency Entropies

I. INTRODUCTION

In the last few years, we have seen a growing interest in
context-aware technologies [1]. The goal is to use the acquired
knowledge on the acoustic scene to build or improve devices
such as hearing aids, smartphones, and Internet of Things (IoT)
systems. Acoustic scene classification (ASC) refers to the task
of classifying recorded audio clips into pre-defined categories,
which allows technologies to recognize the environment based
on sound captured from the surroundings [1], [2]. The research
on ASC models has historically relied on very large machine
learning architectures and datasets [1], [3]. For example, the
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge and workshop for ASC and audio event
detection (AED) [4], only included the task for low-complexity
ASC systems in 2020 [5]. The fact the research on small ASC
models has not gained much attention up to until recently,
contrasts with the growing interest in embedded models for
speech and audio recognition [6], [7], [8].

One of the problems preventing small ASC systems from
taking off is the almost lack of benchmarking studies for low-
complexity settings. In these applications, the strict require-
ments for energy consumption, memory usage, latency and
data storage play a crucial role in the feasibility of embedding
emerging technologies [9], [10]. In this regard, the research on
speech recognition systems is considerably ahead of the one
in ASC, as deep-learning models [8], [9], learning frameworks
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[11], and datasets [12] that make the embedding of these
models possible have been already proposed years ago. By
taking as reference the path followed by the speech recognition
research, and considering current trends in embedded machine
learning models, one could identify some topics that should
be addressed in order to make small ASC systems viable.
Examples are the research on i) frameworks such as [6] and
[13] for on-device training of deep neural networks (DNNs),
ii) Convolutional neural networks (CNNs) small enough to be
embedded [8], [9], iii) segmentation techniques to reduce the
size of existing datasets to allow more efficient model training
and evaluation [14], be it for small models [15], or few-shot
learning frameworks [16]. Although topic i) is important in
applications in which online training is not always possible
(e.g., smartphones and domestic assistants which need to work
even in the absence of internet connection), one could argue
that topics ii) and iii) necessarily impact the feasibility of i).
Thus, in this paper, we focus on the second and third topics.

More specifically, we propose a segmentation method for
extracting short segments from long ASC audio clips. In em-
bedded applications, the input audio duration is often limited
to a few seconds by the size of the memory buffer. On the other
hand, public datasets available for training ASC systems like
DCASE are commonly formed by much longer audio records
[3]. In ASC frameworks that happen to perform a segmentation
step, the split is often a simple random cropping of the long
audio record, giving thousands of randomly-cut segments with
very little information aggregated.

The segmentation method presented here consists of ap-
plying the so-called multitaper-reassignment technique [17],
[18] to create sharp, high-resolution spectrograms from long
audio clips. These spectrograms are then used as source for the
application of a cutting criterion based on entropy-like metrics
for time-frequency (TF) representations, such as the Rényi
entropy [19] and the Jones-Park concentration metric [20]. The
idea of the proposed technique is that a much smaller database
to train ASC systems can be generated by carefully selecting
the most reliable segments from audio clips. We show via
simulations that the short audio segments extracted by using
the proposed method allow for training models with much
less parameters in comparison to common architectures in the
ASC literature. The observed classification performances in
the experimental study are close to the ones usually obtained
by using very large ASC datasets and models.

The rest of the paper is organized as follows. Section
II discusses background elements involving the multitaper-
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reassignment technique, as well as existing TF-based entropy
metrics. The proposed approach for segmenting long ASC
audios is described in Section III. The experimental study and
conclusions are shown in Sections IV and V, respectively.

II. BACKGROUND ELEMENTS

A. The multitaper reassigned spectrogram

One of the key steps of any audio analysis framework
is choosing a proper space to represent the signals. Often,
TF transformations are employed to map the audio signals
from time to TF domain. One of the most well-known TF
transformation is the spectrogram

S(h)
x (t, f) =

∣∣∣∣F (h)
x (t, f)

∣∣∣∣2 =

∣∣∣∣ ∫ x(τ)h(τ − t)e−j2πfsdτ
∣∣∣∣2
(1)

which is the squared magnitude of F (h)
x (t, f), the short-time

Fourier transform (STFT) of the signal x(t) computed by using
window function h(t) [21]. In speech recognition applications,
the frequency axis of the spectrogram is often transformed to
the log-mel scale. However, in applications of signal analysis
and automatic segmentation, choosing adequate TF transfor-
mations (e.g., see [25]), or spectrogram enhancement methods
(e.g., see [17]) are more common than using one particular
frequency scaling method such as log mel.

Two powerful techniques for enhancing spectrograms are
the multitapering and the reassignment methods [22], [23].
To understand their advantages, one has to approach the pro-
blem of computing spectrograms from a statistical standpoint.
Consider the spectrogram (1) as an estimator for the Wigner-
Ville Spectrum (WVS) [21], a stochastic quantity representing
a candidate time-varying spectrum for a given (potentially
nonstationary) input signal x(t)

Wx(t, f) =

∫ ∞
−∞

E
[
x
(
t+

τ

2

)
x∗
(
t− τ

2

)]
e−j2πτfdτ (2)

where E [·] is expectation operator. The quality of the spectro-
gram estimator could be assessed, for example, by its bias
and variance. The multitapering approach allows to reduce
the variance in the estimation of (2) while controlling the
bias [18]. The idea is to use not one, but k = 1, ...,K
orthonormal windows hk(t) to compute (1), and then average
the resulting collection of spectrograms to smooth out the
fluctuations inherent to the estimation procedure, i.e.,

Ŝ
(hk)
K (t, f) =

1

K

K∑
k=1

S(hk)
x (t, f). (3)

Popular choices for the window functions {hk(t), k =
1, ...,K} in (3) are the orthonormal Hermite polynomials and
the Discrete Prolate Spheroidal Sequences (DPSS) [17].

The reassignment technique addresses the limitation of the
spectrogram to localize the theoretical values of (2) at a given
TF coordinate. Without entering into too much details, it can
be shown that the spectrogram cannot estimate the values of
Wx(t, f) in a pointwise manner, meaning that the value of (1)
at a given (t, f) point is actually composed by the contribution
of WVS estimates over a neighbouring TF window. Hence,

Fig. 1. Examples of spectrograms computed by means of (1) and (6). The
original audio signal is a 10-second long recording made inside a bus.

the spectrogram values stand for blurred estimates of (2). The
reassignment method can improve such blurriness by replacing
the values of the spectrogram w.r.t. a given TF window by the
value of its center of mass, whose coordinates are given by

t̂ = t+ Re[F
(g)
x (t, f)/F

(h)
x (t, f)]

f̂ = f − Im[F
(m)
x (t, f)/F

(h)
x (t, f)]

(4)

where F (g)
x (t, f) and F (m)

x (t, f) are STFTs computed by using
windows g(t) = th(t) and m(t) = ∂h(t)/dt instead of the
usual h(t) as in (1) [23]. With (4) at hand, the reassigned
spectrogram can be estimated by means of

R̂S
(h)

x (t, f) =

∫∫
S(h)
x (τ, s)δ(t− t̂τ,s)δ(f − f̂τ,s)dτds. (5)

In general, multitapering and the reassignment have been
employed as separate, individual techniques to improve the
spectrogram computation. In [17], however, the authors fu-
sed both methods into the multitaper-reassigned spectrogram,
which can be obtained by combining (3) and (5) as follows:

Ŝ
(hk)
K (t, f) =

1

K

K∑
k=1

R̂S
(hk)

x (t, f). (6)

Despite of its advantages, the multitaper-reassigned spectro-
gram has not yet been fully explored in signal analysis and
segmentation. This observation is particularly true in audio
applications. An example of the ability of the multapering-
reassignment technique to improve the spectrogram estimation
is shown in Fig. 1. In this figure, a 10-second audio clip from
the DCASE 2020 challenge database [5] is analyzed through
the traditional [Fig. 1 (a)] and the multitaper-reassigned [Fig.
1 (b)] spectrograms, computed by means of (1) and (6),
respectively. Notice the low-energy nonstationary background
is completely suppressed in the traditional spectrogram. Also,
the low-frequency, slowly-nonstationary fluctuations, as well
as the harmonic structure between the time marks of 6 and
7.5 seconds can be better spotted in Fig. 1 (b).
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B. Measuring the concentration of time-frequency frames

Thanks to the analogy between probability and sinal energy
densities [21], estimates of the WVS such as multitaper-
reassigned spectrograms can be interpreted (to a certain extent)
as approximate probability distributions in two dimensions.
Thus, according to this interpretation, more concentrated (pe-
aky) spectrograms would correspond to smaller entropy values.
The concentration in TF domain has been used as quality me-
asure for TF representations by many authors [17], [24], [25].
The idea being that highly-concentrated representations are
normally associated with the case in which the signal energy
is less spread over a smaller TF region, meaning that estima-
tion and classification tasks based on highly-concentrated TF
representations can be more reliable [19].

Different criteria have been proposed to measure the con-
centration of TF representations [24]. Here, we make use of
two well-known TF concentration metrics: the Jones-Park ratio
[20] and the Rényi entropy [19]. For the multitaper-reassigned
spectrogram of (6), the former metric is given as

RJP =

∫∫ [
Ŝ
(hk)
K (t, f)

]2
dtdf

/[∫∫
Ŝ
(hk)
K (t, f)dtdf

]2
(7)

and evaluates the spread of (6) over a TF region. The more
concentrated (6), the larger the value of (7). Conversely,
entropy-like measures such as the Rényi entropy of order α

RRN =
1

1− α
log

{∫∫ [
Ŝ
(hk)
K (t, f)

]α
dtdf

}
(8)

take smaller values for more concentrated cases, which cor-
respond to a scenario with less TF entropy. Note that (8) is
parametrized by α. In the experimental study of Section IV,
we explore Rényi entropy of two different orders.

III. PROPOSED SEGMENTATION SCHEME

Having determined which TF transformation to use and the
criterion to evaluate the concentration of the TF frames, the
proposed method to segment long ASC clips is the following:

1) For a given long ASC audio signal, compute its
multitaper-reassigned spectrogram with (6) for all of its
time extent (i.e., the spectrogram analysis should stretch
over all duration T of the original audio).

2) Choose a metric to evaluate the concentration in TF
domain of the windowed frames (e.g., Jones-Park ratio).

3) Choose a window of duration T = tf − ti, with ti and
tf being the start and end points of the audio segment.

4) Evaluate the concentration of the TF block using the
metric chosen in step 2 and store its value.

5) Considering a time step of ∆t, sweep the window of
analysis over time to get another frame of the original
multitaper-reassigned spectrogram.

6) Based on the stored metric values, select the window
segment giving the largest concentration in TF domain
and get its corresponding ti and tf .

7) Use ti and tf to cut a segment of duration T from the
original audio.

Fig. 2. Proposed scheme for segmenting long ASC audio clips by using
multitaper-reassigned spectrogram and metrics to evaluate TF concentration.

The scheme above is also depicted in Fig. 2. The experiment
on applying the proposed segmentation to an ASC system
prone to be embedded is shown in the next section.

IV. EXPERIMENTAL STUDY

A. On the chosen dataset

The ASC audio database from the DCASE 2020 challenge
(Task 1A) has been considered in this experiment [5]. More
precisely, this dataset is used for the task of classifying
long audio scene samples (with ten seconds of duration),
which correspond to audio clips recorded in different locations
(cities) around the world. In this work, aiming at making
the experiment better adapted to the average Brazilian urban
areas1, it has been determined that some classes originally seen
in the dataset such as "tram", "airport", and "metro station",
for example, would not be considered. These audio scenes
are present only in a small portion of the Brazilian cities.
After filtering out the unwanted labels, we have arrived at the
following four scenes (labels y′s) for the classification task:
y = {"Bus", "Park", "Street traffic", and "Shopping mall"}.
Using a reduced number of labels also facilitates the task of
training smaller, low-complexity machine learning models.

The DCASE 2020 audio files are divided into two sub-
groups: the development (train) and the evaluation (test)
datasets, but audio labels are provided only for the former.
Thus, researchers participating in the DCASE 2020 challenge
can train their models in the development dataset, but the
evaluation samples can be used only for label prediction. The
DCASE committee does not provide the ground truth labels
for the evaluation dataset (not without proper, writing request),
but suggests that researchers can arbitrarily divide the >14k
samples from the development dataset into train, validation,

1This is a consideration defined a priori for this research work.
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TABLE I
NUMBER OF AUDIO SAMPLES CONSIDERED FOR EACH LABEL

Partition Bus Shopping Park Street Total
mall traffic samples

Train 964 1089 1029 796 3878
Validation 20 99 36 36 191

Test 456 252 375 609 1692

and test subsets, as long as audio scenes recorded from same
locations are kept within the same partition. Thus, following
the proposed scheme, we have partitioned the DCAS E2020
development dataset as shown in Table I.

B. Experiment design choices

Different options can be considered to design an experiment
to evaluate the applicability of the proposed segmentation
scheme to embedded ASC applications. We list below the
requirements guiding the experiment of this section.
• We adopt the criterion of [8] and [9] and limit the number

of model parameters to less than 250k.
• Some machine learning models need to be trained on

device in an offline manner (e.g., see [7]). To account for
such a possibility and to avoid a prohibitive training time,
we only train the chosen DNN model for 10 epochs.

• Although the DCASE 2020 audio dataset for the consi-
dered task is sampled at 48 kHz, we have resampled it
to 16 kHz, which is a sample rate better suited to low-
complexity audio recognizers (e.g., see [10]).

• To account for the maximum size of audio buffer avai-
lable in common microprocessors, we considered audio
clips of T = 2 seconds of duration as input to the system.
Such a duration is a common choice in embedded audio
applications, since it allows buffering short utterances like
in [26], or longer ones as in [27].

C. On the chosen model

Taking into account the points above, the segmentation task
can thus be seen as the one of finding candidate 2-second
clips within the 10-second audio samples, by employing the
segmentation method described in Section III. The chosen
model is the CNN developed by Tensorflow/Google Research
teams (see [8]), and made freely available in [28] as a part of
a tutorial to create a simple spoken keyword recognizer [12].
Despite of being a relatively small architecture in comparison
to other CNNs used for speech recogntion, the model of [28]
contains more than the maximum number of 250k parame-
ters, as defined above. To ensure the model meets the size
requirement, we reduced the size of its last dense layer from
128 to 32 neurons. Moreover, we removed the two dropouts
layers presented in the original architecture, as using dropouts
in training sessions restricted to few epochs and a small dataset
can affect the learning performance. By carrying out these
modifications, the size of the CNN could be reduced from
about 1.6M to less than 220k parameters. An overview of the
obtained CNN model is shown in Table II. For more details
about the original architecture and its layers, see [8] and [28].

TABLE II
ARCHITECTURE AND NUMBER OF PARAMETERS IN EACH LAYER

Layer (type) Output Shape Param #
resizing_45 (Resizing) (None, 32, 32, 1) 0
normalization_46 (Normalization) (None, 32, 32, 1) 3
conv2d_92 (Conv2D) (None, 30, 30, 64) 640
conv2d_93 (Conv2D) (None, 28, 28, 32) 18264
max_pooling2d_46 (MaxPooling2D) (None, 14, 14, 32) 0
flatten_46 (Flatten) (None, 6272) 0
dense_92 (Dense) (None, 32) 200736
dense_93 (Dense) (None, 4) 132
Total params: 219975

D. Choosing features and segmentation setups

To segment the 2-second clips from the selected audios, the
following methods have been considered (see Fig. 2):
a) proposed segmentation with Rényi entropy (8) and α = 5,
b) proposed segmentation with Rényi entropy (8) and α = 3,
c) proposed segmentation with Jones-Park metric (7),
d) search for the highest-energy segment in time domain,
e) crop of random segments along the audio.

The values of α chosen for the segmentation schemes a)
and b) are commonly used in the literature for computing
the Rényi entropy [18], [19], [17]. The method d) stands for
simply sweeping over the extent of a given audio signal x(t)
in time and evaluating the most energetic 2-second segment,
i.e., finding tf and ti maximizing

∫ tf
ti
|x(t)|2dt, given that

tf − ti = 2 seconds. Finally, the method e) stands for simply
cutting random 2-second segments from the longer audio clips,
and is one of the most used cropping techniques in the ASC
literature (e.g., see [4]). The input features for the CNN
have been considered as the spectrograms (1) computed by
employing h(t) as Hanning window, making use of 512 bins
for computing the FFT, and 256 points for the stride and the
window length. Note that, although the multitaper-reassigned
transformation was selected to generate the representations
employed in the segmentation step, simple spectrograms have
been chosen as model input features so the overall framework
could meet the desired low-complexity and latency constraints.

E. Training and testing performances

The CNN model has been trained and tested five times
considering the dataset described in Section IV-A and the
segmentation methods a) to e). The results are given as average
accuracy scores in Table III. Note that these scores actually
stand for the per-class true-positive rates (TPRs) (see [29]).

In Table III, it can be seen that the best classification results
are for the methods based on the Rényi entropy (α = 5
and 3), while the worst performance is given by the random
segmentation, which is the cropping scheme usually employed
in the literature (e.g., see [4]). It should be remarked that the
obtained per-class classification performances are in certain
cases better or close to those obtained by using much bigger
DNN models2, usually with few million parameters and large
training databases generated by using a very larger number

2Note that the focus of this work is to improve segmentation and dataset
creation for ASC, not to beat state-of-the-art classification performances.
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of clips randomly cut from audio. Here, we used only one
(carefully segmented) clip per long audio record.

To see the obtained results from another perspective con-
sider, for example, the reported performances of [30] and
[31], which are models with 4.31M and 3.2M parameters,
respectively. In [31], the recognition rates for Bus, Shopping
mall, Park, and Street traffic have been 86.9%, 65.7%, 89.9%,
and 89.6%, respectively. Although models such as [30] and
[31] have been trained and tested using the full (i.e., ten clas-
ses) ASC database (thus making the classification task more
difficult), the performance obtained here under the restrictive
implementation requirements defined in Section IV-B are very
satisfactory for the considered experiment.

TABLE III
AVERAGE CLASSIFICATION ACCURACIES (OR TPRS) FOR THE

CONSIDERED SEGMENTATION METHODS AND CLASSES

Segmentation Bus Shopping Park Street Avg. all
method mall traffic classes
a) Renyi α = 5 87% 95% 77% 82% 86%
b) Renyi α = 3 95% 92% 67% 83% 84%
c) Jones-Park 85% 98% 69% 81% 82%
d) Energy cut 74% 94% 67% 88% 80%
e) Random cut 87% 97% 65% 75% 79%

V. CONCLUSIONS

In this paper, a segmentation method to build small data-
sets for training low-complexity acoustic scene classification
(ASC) systems was proposed. The rationale behind the method
was to employ the multitapering-reassignment technique to
generate sharp spectrograms, from where a criterion based on
spectrogram concentration was adopted for selecting candi-
date audio segments. Two metrics for assessing spectrogram
concentration were considered: Rényi entropy and Jones-Park
ratio. To evaluate the proposed method, we designed an
experiment in which a convolutional neural network (CNN)
was adapted to an embedded ASC task scenario. The obtained
classification performance of audio scene samples when using
the proposed segmentation schemes for generating training
samples outperformed the competing methods considered.
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