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The Shannon and Rényi Differential Entropies of
the Weighted Sum of Squared Nakagami-m Random

Variables
Antonio Alisson Pessoa Guimarães and Charles Casimiro Cavalcante

Abstract— This paper investigates the Shannon and Rényi dif-
ferential entropies over the weighted sum of squared Nakagami-m
mutually independent random variables. Based on the probability
density function (PDF) of the sum of Gamma variables, we
provide, in terms of special functions, closed-form expressions
for such entropy measures. Finally, we present the numerical
results of a particular case involving the weighted sum of two
squared Nakagami-m random variables, in order to graphically
represent the theoretical analysis.

Keywords— Shannon differential entropy, Rényi differential
entropy, Nakagami-m random variable.

I. INTRODUCTION

In general terms, the Shannon entropy or, simply, entropy
of a random variable is defined in terms of its probability
distribution that quantifies the amount of information in such
variable. In other words, this concept is a metric for infor-
mation and has a fundamental role in Information Theory,
in which is sometimes seen as a measure of randomness or
uncertainty [1], [2].

In recent years, Information Theory has found many ap-
plications and, consequently, the use of this measure can be
extended to other areas of knowledge, such as: communication
systems [3], signal processing [4], pattern recognition [5],
data mining [6], machine learning [7], thermodynamics [8],
economy [9], quantum mechanics [10], among others.

Naturally, the Shannon entropy concept was widely adapted
for the purpose of modeling problems of similar characteristics
and, as consequence, variations and generalizations were pro-
posed. For instance, Rényi entropy [11], Tsallis entropy [12],
Sharma-Mittal entropy, it which contains Shannon, Rényi and
Tsallis entropies as special cases [13].

In parallel, our particular interest in such metrics over the
sum of squared Nakagami-m random variables is due to the
significant number of recent publications over Nakagami-m
fading channels in wireless communication systems. In this
sense, the Nakagami-m fading covers a wide range of multi-
path fading channels by varying the fading parameter m as the
one-side Gaussian, Rayleigh and Rice fading channels [14].
Furthermore, in the context of performance analysis inves-
tigation on diversity combining, diversity reception, ergodic
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capacity or mutual information problems, this model provides
good analytical tractability in various situations [15], [16].

The use of multiple antennas at the transmitter and receiver
in wireless communication systems, known as multiple-input
multiple-output (MIMO) systems, into ergodic capacity prob-
lems, for example, may require the determination of the statis-
tics over the sum of squared envelopes of Nakagami-m faded
signals, whose problems are equivalents to evaluate the statis-
tics of the sum of Gamma random variables [16], [17], [18].

In turn, the entropy measures can be applied over multipath
fading channels in several contexts. In [3], bounds on mutual
information of Rayleigh fading channels with Gaussian input
was derived, while [19] investigates the performance of energy
detection-based spectrum sensing over F composite fading
channels. Moreover, [20] provides a communication scheme
for MIMO fading channels that estimates the fading via
transmission of pilot symbols at regular intervals and feeds
the fading estimates to the nearest neighbor decoder. More
recently, [21] addresses the performance of wireless fading
channels, namely, Rayleigh, Rician, and Nakagami-m fading
channels, taking both noiseless and additive noisy cases.

Specifically, this work provides closed-form expressions
for Shannon and Rényi differential entropies considering the
weighted sum of squared Nakagami-m mutually independent
random variables, where two situations are observed: identi-
cally and non-identically distributed Nakagami-m random vari-
ables. In addition, the Shannon information will be obtained
as a particular measure of the Rényi entropy [2].

In other words, we present new results for Shannon and
Rényi differential entropies with simple analytical represen-
tations. Therefore, we expect that the proposed results may
contribute to the investigation of performance metrics over
Nakagami-m fading channels and with their respective vari-
ants.

The rest of this paper is organized as follows. The next
section presents important results on Nakagami-m and Gamma
random variables as well as the statement that relates the
Shannon and Rényi entropies. Section III applies these results
to derive the formulas for Shannon and Rényi entropies.
Section IV provides a numerical interpretation of the entropy
results. Finally, in Section V we state the conclusions.

Throughout this paper, the probability density function
(PDF) and the moment generating function (MGF) of a
random variable X are denoted as pX(·) and MX(·), respec-
tively. Furthermore, EX [·] and Var[·] stand for expectation and
variance of X , respectively.
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II. PRELIMINARY ASPECTS

In this section, we establish the notation used in this paper,
followed by the mathematical framework from which will be
described the definitions and lemmas. The propositions of such
lemmas are not necessarily novelties, but they are relevant to
understand the proposed theory and also some proofs are not
commonly available in the literature.

A. The Gamma and Nakagami-m distributions

A random variable Z follows a Gamma distribution with
parameters α > 0 e β > 0 if the PDF is given by [22]

pZ(z) =
zα−1e−z/β

βαΓ(α)
u(z), (1)

where u(·) is the unit step function and Γ(·) is the gamma
function [23]. In what follows we will use the notation

Z ∼ γ(α, β) (2)

to denote that Z is Gamma distributed with parameters α and
β which are called as the shape and scale, respectively, of the
random variable. Furthermore, the MGF of Z is expressed as

MZ(t) = EZ
[
etZ
]

=

(
β

β − t

)α
, (3)

where EZ [·] represents the expectation (mean) operator
over Z.

In turn, a random variable X following a Nakagami-m
distribution is defined by [14]

pX(x) =
2

Γ(m)

(m
Ω

)m
x2m−1e−(m/Ω) x2

u(x) (4)

where m = E2[X2]
Var[X2] and Ω = EX

[
X2
]
, and we represent that

X is Nakagami-m distributed with parameters m and Ω as

X ∼ NKm(m,Ω). (5)

Now, we introduce two lemmas regarding the properties
of Gamma and Nakagami-m random variables, which will be
used in this work.

Lemma 1: If X ∼ NKm(m,Ω), then the random variable
Z = kX2, is Gamma distributed as

Z ∼ γ
(
m,

kΩ

m

)
, (6)

where k is a positive number.
Proof: The PDF of Z is obtained from a simple variable

transformation [22]

pZ(z) =
1

2k
√
z/k

[
pX

(√
z

k

)
+ pX

(
−
√
z

k

)]
u(z). (7)

Lemma 2: Let {Zi}ni=1 be a sequence of n independent
Gamma random variables with parameters αi and β, respec-
tively. Then the random variable X defined as

X =
n∑
i=1

Zi (8)

is Gamma distributed. Specifically, we can write that

X ∼ γ

(
n∑
i=1

αi, β

)
(9)

Proof: In order to derive the PDF of X it is sufficient
to determine the associated MGF. Note that the MGF of each
Zi is given by

MZi
(t) =

(
β

β − t

)αi

. (10)

Since {Zi}ni=1 is a sequence of n independent random vari-
ables, then using this fact on the MGF of X we obtain

MX(t) =
n∏
i=1

MZi
(t) =

(
β

β − t

)∑n
i=1 αi

, (11)

and the proof is completed.

B. The Shannon and Rényi entropies

The Shannon differential entropy h(Z) (or simply differ-
ential entropy) is a measure of randomness of a continuous
random variable Z in which defined as [2]

h(Z) = −
∫
S
pZ(z) log (pZ(z)) dz, (12)

where S is the support set of Z.
In turn, the Rényi entropy hr(Z) of order r > 0, with r 6= 1,

is defined as [2]

hr(Z) =
1

1− r
log

(∫
S
prZ(z) dz

)
, (13)

which can be seen as a generalization of Shannon entropy [11]
and the details are described as follows.

Lemma 3: Let Z be a continuous random variable. The
condition that relates the Shannon and Rényi entropies of Z
is

lim
r→1

hr(Z) = h(Z). (14)

As consequence of this result and by convention it writes

h1(Z) = h(Z). (15)

Proof: Firstly, we transform the analytical expressions
of Shannon and Rényi entropies, respectively, in terms of the
mean operator EZ [·] as

hr(Z) =
1

1− r
log
(
EZ
[
pr−1
Z (Z)

])
(16)

and
h(Z) = −EZ [log (pZ(Z))]. (17)

From the fact that log (·) is a continuous function, EZ [·] is
a linear operator and since pZ(·) is a positive function, we
obtain

lim
r→1

log
(
EZ
[
pr−1
Z (Z)

])
= log (EZ [1]) = log (1) = 0. (18)

Consequently,

lim
r→1

hr(Z) =
0

0
, (19)
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whose result represents an indeterminate form. Thus, applying
the L’Hôpital’s Rule, we have [24]

lim
r→1

hr(Z) = − lim
r→1

d

dr
log
(
EZ
[
pr−1
Z (Z)

])
. (20)

By convenience, we define the differentiable function G(·) as

G(r) = EZ
[
pr−1
Z (Z)

]
. (21)

Then, applying the chain rule yields

d

dr
log (G(r)) =

1

G(r)

d

dr
G(r). (22)

Now, we need to evaluate the derivative of G(t) and in this
case we have

d

dr
G(r) =

d

dr
EZ
[
pr−1
Z (Z)

]
= EZ

[
d

dr
pr−1
Z (Z)

]
= EZ

[
1

pZ(Z)

d

dr
prZ(Z)

]
= EZ

[
1

pZ(Z)
prZ(Z) log (pZ(Z))

]
,

(23)

where the last equality was obtained following the derivative
rule [24]

d

dx
ax = ax log (a), a > 0. (24)

Thus, Eq. (23) reduces to

d

dr
G(r) = EZ

[
pr−1
Z (Z) log (pZ(Z))

]
(25)

and substituting such result in Eq. (22), we obtain

d

dr
logG(r) =

1

EZ
[
pr−1
Z (Z)

]EZ[pr−1
Z (Z) log (pZ(Z))

]
.

(26)
Therefore, the Rényi differential entropy can be represented
as

hr(Z) =
1

1− r
log (G(r)) (27)

and from Eq. (20) we conclude

lim
r→1

hr(Z) = − lim
r→1

d

dr
log (G(r))

= − lim
r→1

1

EZ
[
pr−1
Z (Z)

]EZ[pr−1
Z (Z) log (pZ(Z))

]
= − 1

EZ [1]
EZ [1 · log (pZ(Z))]

= −EZ [log (pZ(Z))]

= h(Z),
(28)

as described in Eq. (17).

III. THE ENTROPY OF THE SUM OF SQUARED
NAKAGAMI-m VARIABLES

In this section, we propose analytical expressions to Shan-
non and Rényi entropies of a random variable written as a
weighted sum of squared Nakagami-m mutually independent
random variables.

Then, let {Ri}ni=1 be a sequence of n mutually independent
Nakagami-m random variables as

Ri ∼ NKm(mi,Ωi). (29)

We also consider the convenient sequence of n positive
numbers {ki}ni=1 such that

k1
m1

Ω1
= k2

m2

Ω2
= · · · = kn

mn

Ωn
= L, (30)

where L > 0 is a constant. In addition, the sum of the
parameters mi, denoted by µ, is greater than or equal to 1,
i.e.,

µ =

n∑
i=1

mi ≥ 1. (31)

Therefore, from these assumptions, we define the continu-
ous random variable Z as

Z =
n∑
i=1

kiR
2
i , (32)

which represents a weighted sum of squared Nakagami-m
variables.

In order to achieve our goals, we must initially transform Z
into a sum of Gamma independent random variables. Indeed,
let Xi be a random variable defined as Xi = kiR

2
i for each

i = 1, 2, . . . , n. Then, Z can be written as

Z =
n∑
i=1

Xi (33)

and, from Lemma 1, we ensure that

Xi ∼ γ
(
mi,

kiΩi
mi

)
. (34)

According to equality restriction in Eq. (30), each variable Xi

is Gamma distributed as

Xi ∼ γ(mi, L). (35)

Consequently, by Lemma 2, we conclude that Z is also
a Gamma variable with parameters µ =

∑n
i=1mi and L,

respectively. Thus, the PDF of Z is given by

pZ(z) =
zµ−1e−z/L

LµΓ(µ)
u(z). (36)

Now, effectively we will determine the Rényi entropy of Z
and in the sequence, the Shannon entropy as an special case.
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A. The Rényi entropy of Z

Substituting the PDF of Z obtained in Eq. (36) over
Rényi entropy expression (see Eq. (13)), yields

hr(Z) =
1

1− r
log

[
1

[LµΓ(µ)]r

∫ ∞
0

zµr−re−rz/L dz

]
, (37)

or, equivalently,

hr(Z) =
1

1− r
log

[
1

[LµΓ(µ)]r

∫ ∞
0

z(µr−r+1)−1e−rz/L dz

]
.

(38)
The last formulation has the objective to use the following
integral result [25, Eq. 3.381-4]∫ ∞

0

xν−1e−ωxdx =
1

ων
Γ(ν) (39)

where, ν > 0 and ω > 0. In our case, we have ω = r/L > 0,
because r and L are positive numbers, and ν = µr − r + 1.
The details about ν being also a positive number are described
in Appendix.

Thus, from Eq. (39), we obtain

hr(Z) =
1

1− r
log

[
1

[LµΓ(µ)]r

(
L

r

)µr−r+1

Γ(µr − r + 1)

]

=
1

1− r
log

[
rr−µr−1

[Γ(µ)]r
L1−rΓ(µr − r + 1)

]
.

(40)

Therefore, expanding the last expression using logarithmic
properties, Rényi entropy becomes

hr(Z) =
1

1− r

[
(r − µr − 1) log (r) + (1− r) log (L)

+ log (Γ(µr − r + 1))− r log (Γ(µ))
]
,

(41)

that completes the proof.
As a particular case, for independent and identi-

cally distributed (i.i.d.) Nakagami-m random variables,
we have µ = mn and Rényi entropy is written as

hr(Z) =
1

1− r

[
(r −mnr − 1) log (r) + (1− r) log (L)

+ log (Γ(mnr − r + 1))− r log (Γ(mn))
]
.

(42)

B. The Shannon entropy of Z

According to Lemma 3, Shannon entropy h(Z) can be
obtained from limr→1 hr(Z). Indeed, by convenience, we
define the differentiable function F (·) as

F (r) = (r − µr − 1) log (r) + (1− r) log (L)

+ log (Γ(µr − r + 1))− r log (Γ(µ)).
(43)

Thus, Rényi entropy in Eq. (41) reduces to

hr(Z) =
F (r)

1− r
. (44)

In addition, due to the continuity of the logarithmic and
Gamma functions, it follows

lim
r→1

F (r) = −µ log (1) + log (Γ(µ))− log (Γ(µ)) = 0. (45)

As consequence, it yields the indeterminate form

h(Z) = lim
r→1

hZ(t) =
0

0
. (46)

By L’Hôpital’s Rule, we get

h(Z) = − lim
r→1

d

dr
F (r). (47)

Note that, after some chain rules, we obtain

d

dr
F (r) = (1− µ) log (r) +

r − µr − 1

r
− log (L)

− log (Γ(µ)) +
µ− 1

Γ(µr − r + 1)

d

dt
Γ(t),

(48)

where, t = µr− r+ 1. Using the fact that Digamma function
is defined by [23]

ψ(x) =
1

Γ(x)

d

dx
Γ(x), x 6= 0,−1,−2, . . . , (49)

then, the derivative of F (·) becomes

d

dr
F (r) = (1− µ) log (r) +

r − µr − 1

r
− log (L)

− log (Γ(µ)) + (µ− 1)ψ(µr − r + 1).
(50)

From the above, the Shannon entropy represented in Eq. (47)
can be finally rewritten as

h(Z) = (1− µ)ψ(µ) + log (Γ(µ) · L) + µ, (51)

and the proof of the statement is completed.
Similarly to Rényi entropy case, for i.i.d. random variables,

the Shannon entropy follows

h(Z) = (1−mn)ψ(mn) + log (Γ(mn) · L) +mn. (52)

IV. NUMERICAL RESULTS

Here, we provide numerical results of the analytical expres-
sions obtained in section above. Specifically, for convenient
positive constants k1 and k2, we evaluate the Rényi and
Shannon entropies of a random variable Z2 defined as

Z2 = k1R
2
1 + k2R

2
2, (53)

where, R1 and R2 are independent Nakagami-m distributed as
follows

R1 ∼ NKm(1.5, 1) and R2 ∼ NKm(1, 2). (54)

Note that, µ = 1.5 + 1 = 2.5 and, based on Eq. (30), we
obtain k1 = 1, k2 = 3 and L = 1.5. Consequently, Z2 is
Gamma distributed as

Z2 ∼ γ(2.5, 1.5) (55)

and given by
Z2 = R2

1 + 3R2
2. (56)

Hence, using some numerical substitutions, the
Rényi entropy of order r in Eq. (41) reduces to

hr(Z2) =
1

1− r

[
(−1.5r − 1) log (r) + 0.405(1− r)

+ log (Γ(1.5r + 1))− 0.2847r
]
nats,

(57)
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while the Shannon entropy of Z2 is given by a simple numeric
value obtained from Eq. (51). Precisely,

h(Z2) = 2.1354 nats. (58)

Finally, in order to graphically illustrate such results, we
plot in Fig. 1 Rényi and Shannon entropies for different values
of r. Obviously, in Rényi entropy curve exists a point of
discontinuity over r = 1, which is compensated by Shannon
entropy.

Shannon entropy (r = 1)

1

2

3

4

5

0.0 2.5 5.0 7.5 10.0
Order r

E
nt

ro
py

(n
at

s)

Rényi entropy
0 < r < 1
r > 1

Fig. 1. The Rényi and Shannon entropies of Z2 for different values of r.

V. CONCLUSIONS

In this paper, we derived closed-form expressions for Shan-
non and Rényi differential entropies over the weighted sum
of squared Nakagami-m random variables including the case
of independent and identically distributed variables. From
the proposed hypotheses, it was possible to transform such
weighted sum into a simple Gamma distribution. In addition,
after some algebraic manipulations, the respective entropies
can be written in terms of special functions, specifically,
gamma and digamma functions. Finally, we presented an
example to illustrate the mathematical formulations developed
in this work.
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APPENDIX

Here, we proof that ν = µr − r + 1 is a positive number.
By contradiction, suppose there is r > 0, with r 6= 1, such
that ν ≤ 0. Thus,

µ ≤ 1− 1

r
. (59)

If 0 < r < 1, then 0 < 1 < 1/r and µ < 0, which contradicts
the assumption that µ ≥ 1 (see Eq. (31)). In turn, if r > 1,
we obtain

µ ≤ 1− 1

r
< 1 ≤ µ (60)

i.e., µ < µ, which implies an another contradiction. Therefore,
ν = µr − r + 1 > 0, for all r > 0, with r 6= 1.
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