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Vehicle Platooning System with Tensor-based
Space-Time Coding Schemes

Bárbara da Silva Oliveira, Michel Gonzaga dos Santos e Walter da Cruz Freitas Júnior

Abstract— In this article, we discuss the platooning system
and propose models for its implementation based on multilinear
algebra. It is investigated a model with Khatri-Rao Space-Time
(KRST) coding and another model that combine a Tensor Space-
Time (TST) and Kronecker Space-Time (KronST) codings, using
Parallel Factor Analysis (PARAFAC) and Tucker decompositions.
A performance analysis is carried out to illustrate and compare
the efficiency of the presented algorithms.

Keywords— Platooning, MIMO, TST, KRST, KronST.

I. INTRODUCTION

Platooning is a cooperative driving system, where semi-
autonomous or autonomous vehicles are orderly conducted,
allowing a more secure, sustainable and optimized traffic [1].
This system emerge from a multidisciplinary field, which im-
plies that several sub-problems can be considered. An impor-
tant one consists of proposing solutions to ensure the reliability
and efficiency of the communication between the vehicles
[1]. The use of Multiple-Input Multiple-Output (MIMO), i.e.
multiple transmit and receive antennas, in mobile communi-
cations has been widely exploited since it provides spatial
multiplexing and improves space diversity, which makes it a
good candidate solution for this task.

In this paper, we consider a Platooning system composed by
K vehicles. The information flows from the beginning to the
end of the queue, where the first vehicle transmits an ensemble
of introductions to the subsequent vehicles, such that each
vehicle receives the instructions, decode, re-encode and re-
transmits it to the following vehicle until the message hits the
end of the queue.

The use of the tensor approach in MIMO communications
systems, [2]-[4], has become very popular due to the possibil-
ity to exploit more than one diversity at time, such as space,
time and frequency. Another advantage of the tensor approach
is that it allows us to derive either iterative or closed form
semiblind receivers to jointly estimate the transmitted symbols
and the transmission channel. Based on these advantages, we
propose a tensor approach for Platooning systems, considering
the Parallel Factor Analysis (PARAFAC) and Tucker decom-
positions, while using Khatri-Rao Space-Time (KRST) [7],
coding and a blended strategy with Tensor Space-Time (TST)
[8], and Kronecker Space-Time (KronST) [5], respectively. In
order to exploit both space and time diversities, with the aim
to ensure good reliability of the estimations. We propose a
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semiblind receiver to estimate both the transmitted symbols
and transmission channel to be used for each vehicle and
compare the performance of both coding strategies.

The article is organized as follows. The second section
presents the theoretical fundamentals of this system, in which
multilinear algebra and the platooning system are introduced.
In the third section, the development of algorithms able to
jointly estimate the transmitted symbols and the transmission
channel are presented. The fourth section shows the Monte
Carlo simulation results obtained with the proposed models.
The last section discusses the conclusion of this article and
some perspectives for the next steps for the study.

Notation: Scalars, vectors, matrices and tensors are denoted,
respectively, by lower-case, boldface lower-case, boldface
upper-case and calligraphic letters, i.e., a, a, A, A. The
outer product is symbolized as ◦ , † is the Moore-Penrose
pseudoinverse, T represents the transposition operator, H is
the Hermitian transpose, the Kronecker product is represented
by ⊗, the Khatri-Rao product is represented by �. The n-mode
product of a tensor with a matrix is represented as ×n.

II. FOUNDATION

A. Matrices and tensors decompositions

In this paper, matrices and tensors decompositions are
employed to model a platooning communication system. The
singular value decomposition (SVD) [6], is a classic approach
for matrices decompositions. Using SVD, it is possible to write
a given matrix A in CI1×I2 , with I1 ≥ I2 as

A = UΣVH , (1)

where U is a a matrix composed by n orthonormalized
eigenvectors of the n largest eigenvalues of AHA, the matrix
V is formed by the orthonormalized eigenvectors of AAH and
Σ is composed by the singular values, n non-negative squares
roots of the eigenvalues of AHA, σi, for i = 1, . . . , n . The
relations of the matrices are given by

UHU = VHV = VVH = In; (2)
Σ = diag(σ1, .., σn). (3)

A tensor [9] can be defined as an N -th order array X ∈
CI1×I2×...×IN . An important class of tensors are the rank-
one tensor, defined as the outer product of N column vectors
a(n) ∈ CIn×1, for n = 1, 2, . . . , N :

X = a(1) ◦ a(2) ◦ ... ◦ a(N). (4)

It can be defined elementwise, as well:
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xi1,i2...,iN = a
(1)
i1
a
(2)
i2
...a

(N)
iN

, (5)

where 1 ≤ in ≤ IN .
The tensors decompositions used in this work are the

Parallel Factor Analysis (PARAFAC) and the Tucker decom-
positions. The PARAFAC decomposition model emerges of
a sum of rank-one tensors. Given a rank-R, a third-order
PARAFAC tensor X ∈ CI1×I2×I3 , with elements xi1i2i3 , it
can be expressed as follows:

X = a1 ◦ b2 ◦ c3 + E , (6)
X = IR ×1 A×2 B×3 C + E , (7)

xi1,i2,i3 =
R∑

r=1

ai1,rbi2,rci3,r + ei1,i2,i3 , (8)

where, A ∈ CI1×R with elements ai1,r, B ∈ CI2×R, with
elements bi2,r and C ∈ CI3×R, with elements ci3,r, which are
called the factor matrices and IR is an identity tensor whose
dimensions are (R × R × R). The dimension R stands for
the number of components used in the model and ei1,i2,i3 ,
elements of the tensor E ∈ CI1×I2×I3 , is the residual part.

The tensor may be defined as well by its flat n-mode matrix
unfoldings XI1×I3I2 , XI2×I3I1 and XI3×I2I1 , as

XI1×I3I2 ≈ A(C�B)T ; (9)
XI2×I3I1 ≈ B(C�A)T ; (10)
XI3×I2I1 ≈ C(B�A)T . (11)

The Tucker model [9] decomposes a tensor into loading
matrices and a core tensor. Each matrix has factors in different
modes. A Tucker decomposition for a third-order tensor is
given by:

X = G ×1 A×2 B×3 C + E , (12)

xi1,i2,i3 =
P∑

p=1

Q∑
q=1

R∑
r=1

ai1,pbi2,qci3,rgp,q,r + ei1,i2,i3 . (13)

Here ai1,p,bi2,q and ci3,r are the elements of the matrices
A ∈ CI1×P , B ∈ CI2×Q and C ∈ CI3×R. Also, gp,q,ris an
element of the core tensor G ∈ CP×Q×R and E represents the
residual part of the decomposition.

Its flat n-mode matrix unfoldings are XI1×I3I2 , XI2×I3I1
and X(3):

XI1×I3I2 ≈ AGP×RQ(C⊗B)T ; (14)
XI2×I3I1 ≈ BGQ×RP (C⊗A)T ; (15)
XI3×I2I1 ≈ CGR×QP (B⊗A)T . (16)

B. The Platooning system

The Platooning system [10] allows that groups of vehicles
be able to move together in an automatized way. There are
vehicles called Platooning Members (PM), which receive and
retransmit information, transmitted periodically to maintain
the platoon safety and stability from a vehicle called the
Platooning Leader (PL). The information is referred to as
Cooperative Awareness Messages (CAMs) [11], including data
on environmental conditions, such as desired acceleration,

required distance and status of communication between the
vehicles.

There are two schemes for this model, the sequential and
the simultaneous transmission. In the first type, the data are
transmitted in sequence, the PL transmits to the first PM
and then each PMk transmits to the following PMk+1, for
k = 1, . . . ,K − 1. In the simultaneous transmission, since
the acceleration data in the CAM is computed in the previous
period, it is considered that an order is not necessary for the
transmission, so all the PMs receive the CAM.

The general system is composed of two big steps [1]. The
former is the communication between PL to PM. The PL sends
the information once to the PM directly behind it and the
designated receiver decodes the information, which is assigned
to it. Each of the platoon members has an ID address at the
application layer, so the information is sent to the desired
vehicle. The second step is PM to PM communication. In
this step, the PM sends the CAM to the next PM in the order
defined by the platooning. After the last PM has received the
data, they can compute the accurate acceleration, using the
actual acceleration and the measured distance, for the next
period.

III. SYSTEM MODEL

In this paper, we propose two tensor-based models for
platooning systems: one based on PARAFAC and other based
on Tucker tensor decomposition. The first one allows the use
of a KRST coding strategy [5] and [7], while the other one
combines the TST and KronST coding strategies. These coding
strategies were chosen considering the structure of the matrix
unfoldings of each tensor decomposition, such that it allows
us to effectively model the received signal employing these
decompositions. It is considered that each member has M
antennas to perform both transmission and reception and the
data send by the PL is received only by the first PM (PM1).
The sequential CAM transmission scheme and the cooperative
protocol decode-and-forward (DF) are assumed.

Fig. 1: Platooning System.

The general system model is represented in Fig. 1. The
scenario is composed of K vehicles, each of them having,
respectively, M antennas. A different channel H(k) ∈ CM×M

is attributed to each pair of vehicles.
In the DF protocol [12], the PM decode and then reencode

to forward the message received. The signal received by k-th
PMs is given by:

Y(k) = H(k)X(k−1)T + N(k), (17)

where X(k−1) is the encoded transmitted signal and Y(k) the
signal received at each PM, H(k) is the k-th hop channel,
between the (k − 1)-th PM and the k-th PM.
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A. Khatri-Rao Space-Time (KRST) coding

1) Enconding: At a first approach, we consider a symbol
matrix defined as S ∈ CN×M , with N data streams with M
symbols each, to represent the CAM. The symbol matrix is
encoded using the KRST encoding strategy [7] at each vehicle,
by means of the Khatri-Rao product between a space-time
code matrix C(k) ∈ CP×M and S, where we assume that
each k-th vehicle uses its code matrix. C(k) is assumed to be
a column orthonormal matrix and it follows that

C(k)† = (C(k)HC(k))−1C(k)H = C(k)H . (18)

The dimension P is the row-wise spreading length, where each
symbol is repeated P times. The encoded symbol matrix in
the PL is written as:

X
(0)
M×PN = (C(0) � S). (19)

The signal received at the first PM, which was transmitted
through the channel H(1), is represented by

Y
(1)
M×PN = H(1)(C(0) � S)T + N

(1)
M×PN . (20)

where N
(1)
M×PN stands for the noise contribution.

The matrix Y(1)M×PN is the flat 1-mode matrix unfolding
of the tensor Y(1) ∈ CM×N×P , which satisfies a PARAFAC
decomposition, according to the equation (9), whose mode-n
representation is

Y(1) = IM ×1 H(1) ×2 S×3 C(0) +N (21)

Since the transmission rate stands for the ratio of the number
of transmitted symbols, M(N − 1), to the number of symbol
periods, PN , times log2 µ, where µ is the cardinality of the
modulation, for this model it is given by the following equation

Tr =
M(N − 1)

PN
log2 µ. (22)

The same reasoning can be applied, without loss of gener-
ality, to the following PMk.

2) Decoding: The signal received at PMk, according to the
DF protocol, is described as

Y
(k)
M×PN = H(k)(C(k−1) � Ŝ)T + N

(k)
M×PN , (23)

where Ŝ is the symbol matrix estimated in the (k − 1)-th
PM and sent to the k-th PM.

Consider its flat 3-mode matrix unfolding

Y
(k)
P×NM = C(k−1)(Ŝ�H(k))T + N

(k)
P×NM . (24)

The factor (Ŝ � H(k))T can be estimated performing a
least squares (LS) estimation using the column orthonormal
property of the coding matrix C(k)

C(k)HY
(k)
Pk×NM = (Ŝ�H(k))T . (25)

Since we perform a left inverse, it implies that C(k−1) must
have full column rank, such that: M ≤ P .

Then, the matrices Ŝ and H(k) are estimated using Khatri-
Rao factorization SVD algorithm [5].

3) Uniqueness and scale ambiguity elimination: In this
decomposition, the condition of uniqueness [2] is given by

N∑
n=1

kA(n) ≤ 2R+ (N − 1), (26)

in which kA(n) is the k-rank, the maximum value for k
columns be linearly independent, of the N -way tensor X , with
A(n) components matrices and rank R.

If the condition (26) is satisfied, the matrix factors A(n),
which for this model are the matrices H(k), C(k) and S, for
k = 1, . . . ,K − 1, are unique up to permutation and scaling
ambiguity, when the factors of the tensor can be mixed and
the vectors in rank-one representation can be scaled [4],

Â(n) = A(n)ΠΛ(n). (27)

In which Π ∈ CR×R is the permutation matrix and Λ(n) ∈
CR×R are diagonal scaling matrices, where

∑N
n=1 Λ(n) = I.

Since we assume the knowledge of C(k), we only have the
scaling ambiguities affecting our estimated matrices. Then, the
final estimates are given using a scaling ambiguity factor ω,

[S:,1,S:,2, . . . ,S:,M ]←− [ω1S:,1, ω2S:,2, . . . , ωMS:,M ],
(28)

[Ĥ:,1, Ĥ:,2, . . . , Ĥ:,M ]←− [ω−11 Ĥ:,1, ω
−1
2 Ĥ:,2, . . . , ω

−1
M Ĥ:,M ].

(29)

B. Kronecker Space-Time (KronST) + Tensor Space-Time
(TST) coding

1) Encoding: In this model, it is introduced a mixed coding
strategy to the system, using a TST coding simultaneously
with the KronST coding strategy. We consider again a symbol
matrix S ∈ CN×M , with N data streams and M periods
of symbols, which is encoded, at first, using the KronST by
means of the Kronecker product between a Space-Time code
matrix C(k) ∈ CP×Q and S. In the sequence, we perform
the TST coding, by taking the flat 1-mode matrix unfolding
of a Space-Time tensor G(k) ∈ CM×M×Q, G

(k)
M×QM and

multiplying it with the transpose of the result of the KronST
coding. We assume that each k-th vehicle uses its own C(k)

and G(k). Here, it is assumed that both C(k) and G
(k)
Q×M2 are

column orthonormal matrices. The dimension P and Q are
the row-wise and column-wise spreading lengths, respectively,
where each symbol is repeated PQ times. The encoded symbol
matrix in the PL is written as:

X
(0)
M×PN = G

(0)
M×QM (C(0) ⊗ S)T . (30)

The signal received at the first PM, which was transmitted
through the channel H(1) is given by

Y
(1)
M×PN = H(1)G

(0)
M×QM (C(0) ⊗ S)T + N

(1)
M×PN , (31)

where N
(1)
M×PN stands for the noise contribution. The equation

(31) can be seen as a flat 1-mode matrix unfolding of a tensor
Y(1), that satisfies a Tucker 3 decomposition, whose mode-n
representation is

3
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Y(1) = G(0) ×1 H(1) ×2 Ŝ×3 C(0) +N (1). (32)

Since number of transmitted symbols is MN − 1 and
the number of symbol periods is PN , for this model the
transmission rate is given by the following equation

Tr =
NM − 1

PN
log2 µ. (33)

The same reasoning can be applied, without loss of gener-
ality, to any PMk.

2) Decoding: Taking the third unfolding, with C ∈
CR×PMs defined as:

Y
(k)
P×NM = C(k−1)G

(k−1)
Q×M2(Ŝ⊗H(k))T + NP×NM . (34)

The Kronecker product (Ŝ ⊗H)T can be estimated using
the least squares (LS) algorithm, we have the solution as

(G(k−1)C(k−1))†YP×NM = (Ŝ⊗H)T . (35)

where (G(k−1)C(k−1)) must have full column rank, which
implies that M2 ≤ P .

Then, similarly to the model with KRST code, we use
the Kronecker factorization SVD algorithm, [5], to obtain
estimated versions of S and H.

3) Uniqueness and scale ambiguity: : The uniqueness in
Tucker model [4] is guaranteed when the core tensor G is
known. If this condition is achieved, the factors are unique up
to permutation and scaling ambiguity in

Â(n) = Ψ
(n)
i A(n). (36)

Where Ψ
(n)
i is the scalar ambiguity for the i-th mode of

A(n) and
∑N

n=1 Ψ
(n)
i = 1.

The, the final estimates are given using scaling ambiguity
factor ω,

ω = ˆ̂S(1, 1)/S(1, 1); (37)
ˆ̂S←− ˆ̂S/ω; (38)
Ĥ←− Ĥω. (39)

Algorithm 1: Estimation of H and S in each platoon
member
1 Using the received Ŷ in the PM and the known C
2. Calculate the factor (S�Hk) using LS, solving
(24) or (S⊗H), solving (32)

3. Compute the Khatri-Rao Factorization SVD or the
Kronecker Factorization SVD

4. Eliminate the scaling ambiguities using (27) and
(28) or using (34), (35) and (36).

5. Estimate the received symbols.
6. Use the DF protocol, with the actual member
coding the Ŝ with the defined code matrix C and
transmitting to the next PM.

(a) Channel NMSE KRST
Platooning comparison

(b) SER KRST Platooning
comparison

Fig. 2: Simulation Results KRST

IV. RESULTS

This section aims to provide some computational simula-
tions, in order to evaluate the performance of both models and
their respective estimation algorithms. This section contains
the Monte Carlo simulation method for the estimation of the
transmission symbols, over a range of signal-to-noise ratio
(SNR) values.

In the scenario, we have used a 64-QAM modulation.
It was assumed the Rayleigh fading channel and the white
Gaussian additive noise with variance σ2, the matrices C(k)

and G
(k)
Q×M2 are assumed to be truncated DFT matrices. Then,

to compare the performance of the simulations, the symbol
error rate (SER) was calculated for each PM and plotted
against the symbol energy to noise spectral density ratio
(Es/N0) values. It was also considered the normalized mean
square error (NMSE) of the estimated channels of the models
presented in this paper, also as a function of the Es/N0,

NMSE(H) =
1

M

M∑
m=1

∥∥∥Ĥm −Hm

∥∥∥2
F

‖Hm‖2F
(40)

where Ĥm is the estimated version of Hm at each m-th run.
The parameters of the simulations were chosen in order to

ensure the same transmission rate for both strategies. For the
KRST we have N = 2, M = 3, P = 4 and for the KronST +
TST we have N = 2, M = 2, P = 4, Q = 4.

A. Symbols and channel performances for different PMs

Here the impact of the retransmission of the transmitted
symbols is evaluated over four PMs, considering the KRST in
the Figures 2(a) and 2(b) and the combination of the KronST
and TST coding strategies in the figures 3(a) and 3(b).

As it can be seen in the Figures 2(b), 3(b), as one may
expect, for each coding strategy the SER is degraded once
the symbols are retransmitted over the PMs, since what is

4
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(a) Channel NMSE KronST +
TST comparison KronST

(b) SER KronST + TST Pla-
tooning comparison

Fig. 3: Simulation Results KronST + TST

transmitted is an estimated version of the transmitted symbols
recovered at each PM and encoded again and transmitted to
the next PM. One may notice, that according to the figure
2(a), 3(a) the estimation of the transmission channel, for each
coding strategy, presents the same performance for each PM,
which is also expected since the channel between the PMs
have the same characteristics.

B. Coding strategies comparison

Here the performance of the symbols and channel estimation
for the two proposed coding strategies are compared. Figure
4(a) shows the SER comparison for each strategy, one may
notice that the combined use of the TST and KronST shows
the best performance, especially for high values of Es/N0.
The figure 4(b) compares the channel NMSE for each strategy
and its results collaborate with the hypothesis that the second
coding strategy presents the best performances, since it is also
the case for the channel estimation.

V. CONCLUSIONS

In this work, we investigate the application of KRST and
combined TST and KronST coding techniques for vehicle
platooning systems. Through the comparative analysis between
the models, we see that the second achieved the best perfor-
mance. This can be explained by the increased redundancy
that the model offers. The observed results also contribute to
confirm the effectiveness of using multidimensional algebra
tools in scenarios of mobile communications.

Further work will be done and better results might be
achieved with different configurations, using more sophisti-
cated tensor decompositions and different techniques of signal
transmission, like Orthogonal Frequency-Division Multiplex-
ing (OFDM).

(a) SER comparison between
the KronST+TST and KRST

(b) SER comparison between
the KronST+TST and KRST

Fig. 4: Simulation Results KronST+TST Vs. KRST
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