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Change Detection Algorithm Based on U-NET
Convolutional Neural Network for Multitemporal
Wavelength-Resolution SAR Images

Rodrigo Aragio Santos, Marcelo da Silva Pinho, and Renato Machado

Abstract—Este artigo apresenta um algoritmo de deteccdo
de mudanca (CDA - change detection algorithm) para imagens
de radar de abertura sintética (SAR) de resolucido de compri-
mento de onda multitemporais baseado na arquitetura de redes
neurais convolucionais (CNN - convolutional neural network) do
tipo U-NET. O algoritmo considera filtragem ndo linear para
extrair informacdo de texturas de imagens SAR de amplitude
adquiridas pelo sistema sueco CARABAS-II. Como as deteccoes
de mudancas ocorrem em imagens multitemporais, as texturas
relevantes (entropia e varidncia) podem ser obtidas a partir
dos histogramas das imagens SAR resultantes de operacdes de
soma e diferenca de imagens. As imagens originais e as texturas
obtidas sdo dadas como entrada do algoritmo proposto. Como
resultado, o CDA proposto apresenta desempenho de deteccio
semelhante ao de outros métodos, mas o niamero de falsos alarmes
é significativamente reduzido.

Abstract— This paper presents a change detection algorithm
(CDA) for multitemporal wavelength-resolution synthetic aper-
ture radar (SAR) images based on U-NET convolutional neural
network (CNN) architecture. The algorithm uses non-linear
filtering to extract textural information from amplitude SAR
images. Since we want to detect changes in multitemporal
acquisitions, releva nt textures (entropy and variance) can be
obtained from the histograms of sum and difference SAR images.
The original images and the obtained textures are given as input
of the proposed algorithm. As a result, the proposed CDA has a
similar detection performance compared to other methods, but
the number of false alarms is significantly reduced.

Keywords— CDA, CNN, SAR Images, Textures, Machine Le-
arning, Signal Processing.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) technology is extensively
used for remote sensing of the Earth, providing high-resolution
SAR images for many different applications, such as climate
and environment monitoring and target detection [1], [2].

In multi-temporal acquisitions, we can either access the
information contained in the entire time frame or detect what
has changed between acquisitions. When the latter is the focus,
change detection algorithms (CDA) are traditionally used to
identify the relevant changes [3], [4].

Change detection algorithms aim to provide a high percen-
tage of true positives with as low as possible false positives.
Those can be relevant in many applications, such as detecting
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hidden objects over a large area, where a small number of
false positives is vital in the quality of the final data for
operation application. Before the popularization of Machine
Learning algorithms, CDAs were mainly based on traditional
statistical decision theory, e.g., traditional hypothesis testing
criterion methods, such as maximum a posteriori criterion [6],
likelihood ratio test [7], [8], [9], generalized likelihood ratio
test [10], [11], [12], or Bayesian theory approaches [13], [14].
Several of those CDAs have achieved high accuracy in terms
of true positives, but most show unsatisfactory performance in
terms of false positives percentage [3], [4], [18], [19].

In the last few years, aiming at overcoming this limitation
of traditional CDA approaches, many studies have been de-
veloping considering the use of machine learning algorithms
for target and change detection applications [15], [16]. Ba-
sically, there are two types of machine learning algorithms:
supervised and unsupervised. They differ mainly on whether
a classification reference is used to guide the algorithm for the
classification of the targets [5]. When working with machine
learning algorithms, it is important to define the relevant
parameters to assess performance. Mainly, they are a subset
of the number of true positives, false positives, true negatives,
and false negatives [17]. As those quantities are usually not
independent, their prioritization comes with trade-offs, so it
is keen to establish which one better fits the nature of the
problem. For instance, when dealing with forest monitoring,
one is typically concerned with the number of true positive
detections (where each positive detection would represent a
tree or forest pixel) and the number of false positives [3].
We consider these metrics to assess the performance of the
proposed algorithm.

We propose a CDA based on U-NET CNN for detecting
cars hidden under tree foliage. A similar change detection
approach was presented in [21] to conventional SAR images,
i.e., for images acquired for higher frequencies (microwave
systems). Aiming to reduce the number of false positives, we
propose using textural information to improve these methods
as done in [20], keeping in mind the trade-off between the
number of false positives and the number of true positives.
Throughout statistical processing methods, local information
(textural information) can be extracted and selected as additi-
onal information for machine learning algorithms. Moreover,
since CNNs use convolutions, which are based on linear
filters, to achieve better classifications, we do not use linear
textural information as input to the CNNs since they could be
redundant. When comparing the proposed technique with other
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algorithms on the same dataset, we show that the results show
similar detection performance but presenting a significant false
alarm rate improvement.

The remainder of the paper is organized as follows. Section
IT presents the basics of textural feature extraction. Section
IIT presents the proposed method and discusses its advantages
against false alarms. Section IV presents the dataset and the
proposed algorithm. Section V provides the results and some
discussions. Finally, Section VI gives some conclusions and
final remarks.

II. TEXTURE INFORMATION EXTRACTION

Texture Information [22], [23], [24] has been demonstrated
several times to provide important information about the spa-
tial dependency of neighboring pixels when interpreting SAR
images [25], [20]. Throughout this paper, textural information
is extracted from the backscatter content present in the SAR
images, and it is used as additional input to the machine
learning algorithm. There are several methods for extracting
textural information. In this paper, we focus on the Sum and
Difference Histogram (SADH) method [25].

For a given region in a SAR image, we consider that the
amplitude of the backscatter can be modeled as the realization
of a bi-dimensional stationary processes represented by the
random variables wu; ). The first step is to quantize the
random variable u to have N, discrete possible values. The
second step is to obtain the joint probability distribution
function of the random vector [u[y ), U[z+62,y+5y)] Which
is given by a N, x N, bi-dimensional matrix. This matrix
is called Gray Level Co-Occurrence Matrix (GLCM) [22].
Notice that the GLCM matrix contains the information about
the relationship of two neighboring pixels, identified by the
displacement vector § = (dx,dy). Furthermore, since the
GLCM is the direct result of comparing two neighboring
pixels, it then describes the spatial relationship between them,
i.e., the pattern that appears between two neighboring pixels
throughout the image.

Textural information is then obtained directly from the
GLCM through transformations such as, sum of elements,
trace of the matrix, Frobenius norm of the matrix, etc. A
drawback of this method is the computational time needed to
obtain the GLCM. The time complexity to obtain the GLCM
matrix is O(N7), which can grow fast when the number
of gray levels is increased, therefore it is not a reasonable
algorithm for real world applications.

To overcome this problem, we can use the SADH method.
This method makes an estimation of the GLCM matrix,
as presented in [24]. The SADH method assumes that the
VECLOr [U[y,y], Ufz+-52,y+5y)] 15 Modeled as a random Gaussian
process, and therefore a linear transformation can be applied
to this vector to create another random Gaussian vector, which
has uncorrelated components. The new vector is [s[myy] , d[wﬁy]]
and is obtained as follows

S[z,y]
[=,9]

Ulz,y) T Ulz+5z,y+5y] ) (1)

= Ua,y] — Uztoz,y+6y]
By taking advantage of the fact that [s[, ,,d[z,y]] has
uncorrelated Gaussian and, therefore, independent variables,

we can estimate the joint probability distribution of the original
random Vector [u[y 4], Uy15z,y+6y]] as follows

P(u[z’y] = u17u[m+5z’y+5y] = ’1,62) =
P(S[x,y] = U1 + u27d[w,y] =u; — UQ) — (2)
P(S[Ivy] = U + UQ) . P(d[.L,y] = Uy — u2)

With this formulation, the joint distribution is fully
encoded in the two 1-dimensional probability distributi-
ons P(s[;,) and P(d,)). The original random vector
[U[z,y] Ulz+62,y+5y)] MAY NOt be Gaussian, since this is only an
approximation. However, for most applications, SAR images
predominantly contain homogeneous areas, such as lakes and
forests, which can be well-approximated to a Gaussian dis-
tribution. The advantage of the SADH technique arises from
the fact that the probability density functions P(s(,,)) and
P(d|y,y)) are one-dimensional arrays with N, elements each,
i.e., the time complexity is reduced from O(NZ) to O(2N,),
that is, from a quadratic to a linear time complexity, making
the process adequate for real-world applications.

After obtaining the probability density functions P(s; )
and P(d[,,), a set of textural information can be extracted as
follows (for better readability, we define Py(i) = P(s[z,y] =
1) and Py(j) = P(d[z,y] = j)):

1) Mean(u): describes the mean value of the co-
occurrences and is given by
1 &
MEAN = o le - P(i) (3)

2) Cluster prominence: describes the fourth moment of the
random variables and is given by
NQ
CLP = (i —2p)* - Py(i) &)
i=1
3) Cluster shade: describes the third moment of the random
variables and is given by
N{I
CLS =Y (i—2p)*- Py(i) )
i=1
4) Contrast: measure the difference of intensities of co-
occurrences in the image and is given by

Ng
3

CON= > (j) Paly) (6)

-N
- g
J="2

5) Correlation: describes the linear correlation of intensities
of co-occurrences in the image and is given by

N, 5
1 IS
COR = 23 (i—2u) Pu(i)—5 »_ () Pals)
= johe

6) Energy: describes the energy of the received signal and

is given by
N, o
ENE =Y P.(i)*- Y Pu(j)’ ®)
i=1 _—Ng

)=
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7) Entropy: describes the uncertainty of the co-occurrence
matrix and is given by

Ng
2

NH
ENT = — ZPs(i) log(Py(i))— Y Pa(j)log(Pa(j))

—-N,
S g
JI=73

€))
8) Homogeneity: describes the degree of similarity between
images and is given by

Ng
2 .
Pa(j)
HOM = — E 10
.__—Ng 1+j2 ( )
J=—3

9) Variance: describes the degree of dispersion of intensi-
ties between two images and is given by

N Ng
1 g 1 2
VAR = = i — 20)2 P, (i) + = i2Py(4) (11
2;(2 ) Pa(i) + 5 z_; 72 Pa(j) (11)
- jo 2

III. MATERIALS AND METHODS

CARABAS-II is a SAR system, operating in the VHF band
(20-90 MHz), in HH polarization, and is the second generation
SAR system from the Swedish CARABAS radar. The system
was used to acquire SAR images over a forest area in northern
Sweden during a campaign in 2002. The set of 24 images
was made publicly available for the scientific community after
being preprocessed, i.e., geocoded, calibrated, equalized, and
co-registered, before the dataset was made available [3]. It
is worth mentioning that all phase information was removed
from the dataset, remaining only amplitude information, so
interferometric and coherence techniques cannot be executed
on this dataset.

Each magnitude SAR image covers an area of 2 x 3km?. For
the CARABAS-II system, the resolution in range and azimuth
is approximately 2.5m, as reported in [3], and the final pixel
resolution is 1m. Therefore, each image consists of 6 million
pixels, organized in a matrix of 3000 rows by 2000 columns.
In each image, 25 military vehicles were hidden under the tree
foliage. As mentioned before, detecting those military vehicles
while trying to lower the number of false alarms is the goal
of this study. In Figure 1, it is shown an example of image
acquired with the CARABAS-II SAR system.

The targets, i.e., military vehicles, are not all of the same
size. There are 10 TGB11, with dimensions 4.4x1.9x2.2m, 8
TGB30, with dimensions 6.8 x 2.5 x 3.0m and 7 TGB40, with
dimensions 7.8 x 2.5 x 3.0m. Also, the images were acquired
with different flight headings. There were two missions with
a flight heading of 225 degrees, two with a flight heading
of 135 degrees and two with a flight heading of 0 degrees.
The reference for the flight heading is 0 degree toward north,
increasing clockwise.

IV. PROPOSED ALGORITHM FOR CHANGE DETECTION

In [21], it is presented a UNET-based change detection
algorithm that relies on classifying the differences between
two acquisitions. We chose to use this idea in our method

Fig. 1. Example of a SAR image acquired by the CARABAS-II system.
The red circle shows the position of the cars hidden under a canopy of trees.

with some modifications to better suit our change detection
problem. In [21], the algorithm can detect changes when there
are multiple different classes in the input images. In this paper,
there are only two classes of interest: forest and cars hidden
under the foliage. Considering only two classes makes the
method more robust against false alarms when the input image
has only two classes.

The first step of the algorithm is to calculate the textures
for each SAR image. Multiple textures can be generated and
used as information for machine learning algorithms. However,
we selected only two textures — entropy and variance — to
use as additional information to the algorithm. These two
textures were chosen based on the fact that linearly dependent
textures will be naturally fitted by the convolution filters of the
CNNS, and thus will not provide much additional information.
Moreover, we have decided to use only two textures since we
do not want to increase too much the total computational cost
for the algorithm.

Figures 2 and 3 show the SAR images after obtaining the
chosen textures, i.e., the variance and entropy.

Fig. 2. Entropy image. The red circle shows the position of the vehicles.

Next, the textures are combined with the original image to
create a three-channel tensor, which is also used as input of
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Fig. 3. Variance image. The red circle shows the position of the vehicles.

UNET convolutional neural network. After creating 24 image
tensors, the dataset was divided into 12 tensors for training
purposes and other 12 tensors for validation purposes. The
first 12 tensors from the first 12 images were used for training
purposes and the last 12 were used to validation purposes.

After performing the training of the UNET network we use
these trained UNETS as part of the change detection algorithm.
The CDA work as follows: in order to detect what has changed
between two images there is a 4 step process:

1) Feed the first tensor as a input to the UNET and get the
classification

2) Feed the second tensor as input to the UNET, and after
that alternate the classes from the final image (switch
all car classification pixels by forest classification pixels
and vice-versa)

3) Take the absolute value of the difference of the tensors,
perform a bias correction (the value for the bias correc-
tion was adjusted manually). After that feed this tensor
as input to the UNET.

4) Get the three classifications obtained prior and take the
intersection of all classes (in order to a pixel to be
classified as a car in the final image, it has to be a car
in all of the three images at the same time)

The intuition of the algorithm works as follows: In order
to a car be detected as change in the image number 1 then it
must be able to be detected by itself on the image 1. In order
to a car to have appeared in image 1 then it must not be in the
image 2, by alternating the classes the algorithm eliminates
cars that are detected in image 2 but did not change position.
The final step of the algorithm is to classify the difference
between the images, this is the idea originally proposed by
([21]) and it is also added to the algorithm as a way to make
the algorithm more robust against false detections.

After the final classification image is created by the CDA,
it was still performed a threshold filter selection to eliminate
pixel classification noise that was created by the algorithm -
it was considered only sets of pixel which had 100 or more
connected components.

V. RESULTS

As previously mentioned, the dataset was divided into two
halves: 12 first twelve images were used to train the UNET
CNN and the last 12 were used as validation purposes. It
was selected 24 pairs of images to assess the quality of the
change detection algorithm - the 24 pairs selected followed
the standard selection used for CDA testing and validation of
the CARABAS-II dataset as it was done in ([3], [4], [18]).

The results are shown in Table I, where each image M_P
was labelled in terms of Mission number (M) and flight pass
(P). The compared images have different mission numbers, but
the same flight pass heading. In Table I is presented the results
of the CDA without the textural information to demonstrate
the how the textures contribute as additional information to
machine learning algorithms.

Monitored | Reference Detected | False Detected | False
Image Image Targets Alarms | Targets Alarms
(with (with (without (without
texture) texture) | texture) texture)
21 3_1 25 0 25 0
3.1 4.1 23 1 21 1
4.1 5.1 25 0 25 0
5.1 2.1 25 0 25 0
2.2 42 25 0 25 0
3.2 52 25 0 23 1
4.2 2.2 23 0 25 0
5.2 3.2 22 0 24 0
2.3 5.3 25 0 25 0
3.3 2.3 22 1 21 1
4.3 3.3 25 1 25 1
53 4.3 25 0 25 0
2_4 3.4 25 0 25 0
3.4 4.4 24 0 23 1
4 4 5.4 25 0 25 0
5.4 2.4 24 0 25 0
2.5 4.5 25 0 25 0
3.5 5.5 24 0 21 2
4.5 2.5 25 0 25 0
5.5 3.5 23 0 24 0
2.6 5.6 25 0 25 0
3.6 2.6 23 1 25 0
4.6 3.6 24 0 25 0
5.6 4.6 25 1 25 0
TABLE I

RESULTS OF CDA IN TERMS OF DETECTED TARGETS AND FALSE ALARM
RATE FOR THE SAME IMAGE PAIRS CONSIDERED IN ([3]). IT IS ALSO
PRESENTED THE RESULTS WHEN TEXTURAL INFORMATION IS EITHER

USED OR NOT USED AS INPUT OF THE PROPOSED ALGORITHM.

The performance of the algorithm is measured in terms of
probability detection (Py) which is the number of detected
targets divided by the total targets, and the false alarm rate
(FAR), which is the number of false detections per kilometer
square. Using this algorithm, we achieved a probability of
detection of 97% and a false alarm rate of 0.034/ km?2, while
other algorithms such as [3] presented a P; of 97% and
a FAR= 0.67/km2. More recent algorithms such as [4],
achieved a P, of around 97% and a FAR= 0.28/ km?2, [16]
achieved a P, of about 97% and a FAR= 0.0313/ km?2, and
[15] achieved a P; of around 99% and a FAR= 0.0833/ km?2,
respectively. It worth mentioning that methods presented in
[16], [15] are based on more complex CNN with greater time
complexity.
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Fig. 4. Diagram of the proposed algorithm.

VI. CONCLUSION [11]

A texture based machine learning algorithm for change de-

tection was proposed. The proposed algorithm showed similar

[12]

performance in terms of probability of detection (97%) in
comparison to other CDAs. However, the proposed algorithm

showed excellent performance in terms of false alarm rate

[13]

(0.034), with a UNET based CDA with linear time complexity.
Another approach presented a such small false alarm rate,

however only the proposed method has linear time complexity.
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