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Fair Adaptive Power Allocation for Cell-Free
Massive MIMO Systems

Juno V. Saraiva, Roberto P. Antonioli, Gábor Fodor, F. Rafael M. Lima, Walter C. Freitas Jr. and Yuri C. B. Silva

Abstract— This paper investigates cell-free massive multiple
input multiple output systems with a particular focus on down-
link power allocation strategies. Our analysis considers channel
estimation errors, where the access points (APs) acquire channel
state information by means of uplink pilots sent by the users.
In particular, we focus on the downlink power optimization for
the maximization of the minimum signal to interference-plus-
noise ratio (SINR) subject to per-AP power constraints. First, we
present an existing optimal iterative solution for benchmarking
purposes. Then, we propose an efficient solution with low
computational cost to tackle the considered optimization problem.
Interestingly, the proposed solution has a scalar parameter that
can be controlled to adjust its main objective to either maximize
the minimum SINR or to maximize the spectral efficiency. Sim-
ulations show that our solution is effective in providing fairness
and achieving high spectral efficiency in the system. Furthermore,
unlike existing solutions, our solution can be executed in a non-
iterative fashion with negligible performance loss.

Keywords— Cell-free massive MIMO, conjugate beamforming,
power allocation, fairness, iterative optimization.

I. INTRODUCTION

In contrast to traditional cellular networks, in cell-free sys-
tems there is no partitioning of geographical regions to define
the concept of cells or cell boundaries and, therefore, users
are not associated to a specific base station or cell. Instead,
the network architecture known as cell-free massive multiple
input multiple output (MIMO) combines two important and
efficient concepts in mobile communications, namely massive
MIMO and ultra-dense networks [1]. A cell-free massive
MIMO network consists of a large number of access points
(APs) distributed over a geographical area and connected to
a central processing unit (CPU), in which the APs coherently
serve a much smaller number of users.

In general, in cell-free massive MIMO systems, adaptive
power allocation is essential to optimize/improve a certain
system utility, e.g., energy and spectral efficiencies, fairness,
while considering power constraints and/or quality of service
(QoS) requirements. In the literature, there is a large body of
important research on cell-free systems [1]–[13].

This work was supported in part by Ericsson Research, Technical Co-
operation Contract UFC.48, in part by the Brazilian National Council for
Scientific and Technological Development (CNPq), in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001, in part by CAPES/PRINT Grant 88887.311965/2018-00 and in part
by FUNCAP.

Juno V. Saraiva, Roberto P. Antonioli, F. Rafael M. Lima, Walter C.
Freitas Jr. and Yuri C. B. Silva are with the Wireless Telecom Research
Group (GTEL), Federal University of Ceará, Fortaleza, Brazil. E-mails: {juno,
antonioli, rafaelm, walter, yuri}@gtel.ufc.br. Gábor Fodor is with Ericsson
Research and KTH Royal Institute of Technology, Stockholm, Sweden. (e-
mails: gabor.fodor@ericsson.com, gaborf@kth.se).

In this context, several significant optimization problems
have been investigated with different purposes. For example,
subject to per-user QoS constraints and assuming conjugate
beamforming precoder design, different strategies to minimize
power consumption were addressed in [2]–[4]. However, un-
like [3] and [4], the authors in [2] also investigated other
objective functions, such as maximizing the sum of the signal
to interference-plus-noise ratio (SINR). Although minimizing
the power consumption is important from the energy efficiency
point of view, it does not guarantee a fair resource allocation.

Taking into account fairness issues, approaches such as
the max-min power control problem that inherently leads
to uniform service provision to all users were discussed
in [5]–[7]. Specifically, the downlink performance of cell-
free massive MIMO systems was studied in [5] in terms of
maximizing the minimum data rate among all users. Within
this framework, the authors assumed and compared the well-
known conjugate beamforming and zero-forcing precoders,
and thereby efficient iterative solutions based on the bisection
method were proposed. Analogously, the max-min power con-
trol problem was also considered with conjugate beamforming
in [6], where the authors investigated both downlink and uplink
cases. Iterative solutions via the bisection method were also
proposed therein. The authors compared the performance of
cell-free systems and architectures based on traditional cells,
particularly small-cell networks and showed that cell-free
massive MIMO systems can significantly outperform small-
cell systems in terms of throughput. Furthermore, it was shown
that cell-free systems are much more robust to shadow fading
correlation than small-cell systems.

In [7], differently from [5] and [6], the max–min fairness
problem was addressed also taking into account transceiver
hardware impairments. Interestingly, therein the authors
proved that cell-free massive MIMO can tolerate hardware
impairments without performance degradation. Given the rele-
vance of the topic of fairness-driven resource allocation, recent
works focused on the max-min problem to investigate the per-
formance of cell-free systems from different perspectives [8]–
[12]. In particular, the effects of the users in the system and
antennas at APs on the spectral efficiency (SE) were analyzed
through the use of max-min fairness power control in [8],
while in [9] the objective of designing the optimum beam-
forming for maximizing the minimum instantaneous SINR of
all users was considered. Meanwhile, [10] proposed two fully
distributed precoding schemes and quantitatively compared
them through the max-min fairness power control. Precoding
schemes were also studied in [11], but, in that case, variants of
conjugate beamforming design were proposed, analyzed and
compared in the context of max-min fairness control. In [12],
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the authors addressed the max-min SE and sum-SE power
allocation policies and two new algorithms were proposed for
sum-SE power optimization inspired by weighted minimum
mean square error (WMMSE) minimization and fractional
programming. Moreover, for max-min fairness power alloca-
tion, as an alternative to the bisection method, a new iterative
solution based on fractional programming was also proposed.

Cell-free massive MIMO systems have been extensively
discussed in [1] taking into account several aspects. Therein,
important problems such as the SE maximization and mini-
mum SINR maximization problems were widely investigated.
In particular, in addition to the bisection method, for the
problem of maximizing the minimum SINR, another efficient
iterative approach was proposed. Similar to the bisection
method, that strategy has low computational cost and quickly
converges, but, interestingly, it does not depend on successive
solutions of parametric problems.

Inspired by the above discussion, this paper considers the
downlink of a cell-free massive MIMO system where the
APs employ conjugate beamforming. We focus on max-min
fairness power control algorithms that maximize the minimum
SINR among all users. Unlike common solutions found in the
literature, we propose a non-iterative power allocation policy.
Interestingly, by adjusting a scalar parameter, the proposed
solution can provide different trade-offs between fairness and
total SE in the system. Computational simulations corrobo-
rate that the trade-off between fairness and total SE can be
effectively controlled by using a scalar parameter and that the
proposed solution has a near-optimal performance in terms of
maximizing the minimum SINR.

II. SYSTEM MODEL

We consider the downlink of cell-free massive MIMO
systems, where N APs arbitrarily distributed over the coverage
area coherently serve K users and N � K, as illustrated
in Figure 1. All APs and users are equipped with a single
antenna and grouped in sets N and K, respectively. We adopt
conjugate beamforming, which has a low complexity cost
since it is done locally and no channel state information
(CSI) exchange among the APs is required. Furthermore, we
assume that the APs are connected via backhaul links to edge-
cloud processors, called CPUs that can perform large-stage
processing tasks to detect or decode the signals of the users.
Although backhaul links may be subject to significant practical
constraints, such analysis is outside of the scope of this paper
and, thus, we consider error-free backhaul links.

As it is typically done in massive MIMO, we consider the
time division duplexing (TDD) protocol, in which a first phase
is dedicated for channel estimation (via uplink training) and
the second phase is used for downlink data transmission [6].
Therefore, after channel estimation, the APs can use the ob-
tained CSI for data transmission relying on channel reciprocity.
Each coherence block is divided into τp channel uses for uplink
training followed by τd channel uses for downlink transmission
such that τc = τp + τd, where τc is the coherence block length
in channel uses. We assume, without loss of generality, that
the number of users is K ≤ τp, i.e., the pilot sequences are

CPU

AP

AP

AP AP

AP

AP

user

user

useruser

user

user

Fig. 1: Illustration of a cell-free massive MIMO system assuming N � K.

created such that they are orthogonal until the number of users
in the system is maximum τp. Thereby, we admit an orthogonal
assignment model, where each user can get assigned a pilot
sequence mutually orthogonal to the others.

A. Channel Model

The channel gain between APs and the users are represented
by a complex matrix G = [g1,g2, . . . ,gK ], where gk =
[g1,k, . . . , gN,k]

T ∈ CN×1 is the collective channel vector
from all APs to user k. The channel coefficient between AP
n and user k is modelled as follows [4], [6]:

gn,k = β
1/2
n,khn,k, ∀n ∈ N and ∀k ∈ K, (1)

where hn,k corresponds to small-scale fading and βn,k rep-
resents the large-scale propagation losses, including path loss
and shadowing. We assume that {hn,k}∀n,k are independent
and identically distributed CN (0, 1).

B. Uplink Pilot-Based Channel Estimation

As briefly discussed earlier, before transmitting data, i.e.,
during the training phase and in a distributed way, each
AP acquires CSI knowledge via uplink pilot-assisted channel
estimation. Typically, the communication in TDD-based cell-
free massive MIMO networks starts with the users simultane-
ously sending known orthogonal pilot sequences to allow the
channels to be estimated at each AP. Assuming synchroniza-
tion across the network, the received uplink signal at AP n,
corresponding to the pilot transmissions is given by [6]

ypilot
n =

√
τpρp

∑
k∈K

gn,kϕk + n, ∀n ∈ N , (2)

where ϕk, with
∣∣∣∣ϕk

∣∣∣∣2= 1, denotes the τp×1 orthogonal pilot
sequence assigned to user k, ρp is the pilot’s transmit power
and n ∈ Cτp×1 is the Gaussian noise vector whose elements
follow CN (0, σ2), in which σ2 is the noise power.

In the context of cell-free systems, different approaches can
be employed at the APs for channel estimation. When channel
estimation is based on minimizing the mean squared error
(MSE) among all possible estimations, the minimum mean
squared error (MMSE) estimate can be obtained as presented
in the following result [6]:

2
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Corollary 1: The MMSE estimate of gn,k, i.e., {ĝn,k}∀n,k
based on the received pilot signal at AP n is:

ĝn,k(y
pilot
n ) =

√
τpρpβn,k

τpρp
∑
i∈K

βn,i
∣∣ϕH

kϕi

∣∣2+σ2
ϕH
k ypilot

n . (3)

C. SINR and Achievable SE

Assuming that conjugate beamforming is employed in the
downlink, the received SINR at user k is expressed as [4]:

SINRk (ρ) =
η2ρk

∣∣∣ĝH
k gk

∣∣∣2∑
i∈K\{k}

η2ρi

∣∣∣ĝH
k gi

∣∣∣2+σ2

, ∀k ∈ K, (4)

where η =
∣∣∣∣∣∣ĜH

∣∣∣∣∣∣−1
F

is the normalization factor and ρ =

[ρ1, . . . , ρK ]
T is the vector of transmit power coefficients for

all the K users. The transmit powers are non-negative, i.e.,
ρk ≥ 0,∀k ∈ K, represented by ρ � 0K . Based on the
definition of SINR in (4), we can also define the SE expression
for a given user k according to the following result [1]:

Theorem 1: The achievable SE of user k in the downlink
is given by

SEk (ρ) =
τd

τc
log2 (1 + SINRk (ρ)) , [bit/s/Hz] . (5)

III. PROBLEM FORMULATION

Aiming at obtaining uniform and good service to all users
based on the achieved SINR, we formulate the max-min power
control problem under per-AP power constraints as:

maximize
ρ�0K

min
k∈K

SINRk (ρ) (6a)

subject to aT
nρ ≤ ρmax, ∀n ∈ N , (6b)

where the fixed vector an ∈ RK≥0, ∀n ∈ N specifies the
weighting coefficient for each user’s power coefficient and
ρmax is the power budget of each AP. In summary, the aim
in (6) is to find the optimal power allocation vector, ρ?, which
maximizes the lowest SINR among all users in the network.
At this optimum point, all users achieve the same SINR value.

IV. PROPOSED SOLUTIONS

A. Optimal Solutions Based on Iterative Optimization

Based on the SINR structure, a fixed-point algorithm can
be implemented to obtain the optimal solution of problem (6)
as proposed in [1]. In this case, the SINR expression should
satisfy certain additional conditions as stated in Lemma 1 [1].

Lemma 1: Suppose that {SINRk (ρ)}∀k satisfy the follow-
ing conditions:

1) SINRk(ρ) > 0 if ρ ≥ 0K and SINRk(ρ) = 0 if and
only if ρk = 0, ∀k ∈ K;

2) SINRk(ρ) is strictly increasing with respect to ρk and
is strictly decreasing with respect to ρi, for i 6= k, when
ρk > 0, ∀k ∈ K;

3) For λ > 1, ρk > 0, SINRk(λρ) > SINRk(ρ), ∀k ∈ K;
Clearly, the SINR expression in (4) complies with Lemma 1

and, thereby, Algorithm 1 can be used to optimally solve

Algorithm 1 Fixed-point algorithm for solving problem (6).

1: Input: Set arbitrary ρ ≥ 0K and the accuracy ε > 0;
2: Output: ρ?;
3: while max

k∈K
SINRk (ρ)−min

k∈K
SINRk (ρ) > ε do

4: ρk ← ρk
SINRk(ρ)

, ∀k ∈ K;
5: ρ← ρmax

max
n∈N

aT
nρ

ρ;

6: end while

problem (6) [1]. Particularly, Algorithm 1 is interesting be-
cause it does not depend on successive solutions of other
problems to obtain an optimal solution to problem (6). Besides,
it quickly converges and has low computational cost since it
only involves iterative closed-form updates of the variables.

Indeed, it is possible to explore other strategies to achieve
the optimal solution of problem (6). However, although these
other strategies are based on more generic approaches, in
general, they depend on solutions of parametric problems. In
this context, first note that problem (6) can be expressed in
the epigraph form as

maximize
ρ∈Ω, ε∈R∗+

ε (7a)

subject to
fk (ρ)

gk (ρ)
≥ ε, ∀k ∈ K, (7b)

where set Ω is the optimization domain or the solution
space of problem (6), and fk and gk are continuous, affine,
differentiable and real-valued functions of ρ ∈ Ω and consist
in the numerator and denominator of the SINR expression
in (4), respectively. Due to the considered constraints, Ω is a
compact and nonempty set.

However, the formulation in (7) is not jointly convex in ρ
and ε. Nevertheless, for a fixed value of ε, we obtain a linear
programming (LP) problem and, furthermore, we arrive at a
classical feasibility problem in ρ that can be optimally solved
by the classical bisection method. As an alternative, we can
rearrange constraint (7b) and obtain:

fk (ρ)− εgk (ρ) ≥ 0, ∀k ∈ K. (8)

Therefore, note that problem (7) is feasible if

F (ε) = max
ρ∈Ω

min
k∈K
{fk (ρ)− εgk (ρ)} ≥ 0. (9)

From the generalized fractional programming theory [14],
there is a powerful relationship between the optimal value of
parameter ε, i.e., ε?, and F (ε) as stated in Theorem 2 [14]:

Theorem 2: ε? = min
k∈K

fk(ρ?)
gk(ρ?) = max

ρ∈Ω

{
min
k∈K

fk(ρ)
gk(ρ)

}
, where

ρ? ∈ Ω solves problem (7) if and only if

F (ε?) = max
ρ∈Ω

min
k∈K
{fk (ρ)− ε?gk (ρ)} = 0. (10)

Briefly, Theorem 2 states that solving the original problem,
i.e., problem (6), is equivalent to finding the root of function
F (ε) defined in (9). Many iterative algorithms can be em-
ployed for finding the root of F (ε). Among these algorithms,
we highlight the Dinkelbach’s approach, which is based on the
application of Newton’s method. In general, the Dinkelbach’s
approach is quite efficient because the sequence converges to
the optimal point with a superlinear convergence rate [14].
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B. Alternative Solutions Based on Linear Optimization

Fundamentally, resource allocation solutions to provide fair-
ness among users should inherently direct efforts towards the
users with low SINR values. Certainly, the use of this strategy
must also be taken into account in any effective sub-optimal
solution. In this sense, to develop sub-optimal solutions for
problem (6), we first classify all users of the system according
to the following criterion:

%k =
η2
∣∣∣ĝH
kgk

∣∣∣2∑
i∈K\{k}

η2
∣∣∣ĝH
kgi

∣∣∣2+σ2

, ∀k ∈ K. (11)

By exploiting the definition of the SINR in (4), the values
{%k}∀k defined in (11) act as an important metric to classify
the users regarding their difficulties in obtaining SINR gains
in power-constrained systems. More specifically, the lower the
value of %k for a given user k, the more costly it is for
the system, in terms of used resources, to increase its SINR.
Therefore, from the point of view of the achieved SINR, the
user with the lowest %k value is the worst user of the system.

Through the definition in (11), we can develop a resource
allocation policy to direct power to the users with the greatest
difficulties in obtaining SINR gains. This strategy depends on
the following optimization problem:

maximize
ρ≥0K

min
k∈K

ρk (%k)
θ (12a)

subject to aT
nρ ≤ ρmax, ∀n ∈ N , (12b)

where θ ∈ R is a fixed parameter, which can change the user
priority on the resource allocation as described next.

Specifically, in problem (12) a higher value of θ tends
to allocate more power to users with a lower value of %k.
Consequently, θ is an important parameter for the system as it
may lead to different levels of fairness in terms of SINR floor.
This is interesting because the choice of θ can be exploited in
order to achieve other important goals in the context of mobile
networks. Particularly, by adjusting θ, it is possible to allocate
resources to improve SE at the cost of higher unfairness in
the system. Unlike previous solutions, for a given value of θ,
our sub-optimal solution to problem (6) is obtained in a single
instance, i.e., it is not iterative. For this, note that problem (12)
can be written in epigraph form as an LP problem as follows:

maximize
ρ∈Ω, ξ∈R∗+

ξ (13a)

subject to ρk (%k)
θ ≥ ξ, ∀k ∈ K. (13b)

Therefore, given a fixed value θ, a sub-optimal solution of
problem (6) can be obtained in a single instance through the
solution of problem (13).

However, instead of setting a specific initial value of θ,
we can also exploit an iterative procedure to provide a bet-
ter solution for problem (6) through successive solutions of
problem (13) as shown in Algorithm 2. Algorithm 2 should
be initialized with the set Θ containing all values of θ that
must be employed to solve problem (13). By varying θ,
Algorithm 2 is able to show the impact of this parameter on

Algorithm 2 Iterative approach to the proposed sub-optimal solu-
tion

1: Input: l← 0; set arbitrary Θ;
2: Output: ρ? ← argmax

ρ∗

{
min
k∈K

SINRk
(
ρ∗(l)

)}
;

3: for θ ∈ Θ do
4: Solve optimally LP problem (13) and find ρ∗(l) for fixed θ;
5: Update: l← l + 1;
6: end for;

the performance of the solutions and thereby it addresses the
important trade-offs that may be obtained in the system.

V. PERFORMANCE EVALUATION

In this section, we demonstrate via numerical results the ef-
fectiveness of the proposed sub-optimal power control design.

A. Simulation Assumptions

The setup assumed herein is based on the one introduced
in [10]. In particular, the APs are located on a uniform grid in
the area of D×D, where D = 1 km and the height of each AP
is of 10 meters. Meanwhile, the users are randomly distributed
in this area. In order to avoid boundary effects, this square area
is wrapped-around to imitate an infinite network environment.
Moreover, we consider N = 100, K = 10, τc = 200, τp = 10,
ρp = 200 mW, ρmax = 1 W, and 20 MHz bandwidth.

B. Results and Discussions

In Figure 2, we use Algorithm 2 to show the impact of the
parameter θ on the performance of the obtained solutions in
terms of the minimum SINR. To this end, we plot performance
relative to the solution of two different random channel
instances and vary the value of θ between 0 and 1. It should be
noted in this first figure that θ has an expressive influence on
the solution of problem (13). Note that up to a certain value,
increasing θ provides more power resources to the worst users
and, consequently, minimum SINR is significantly enhanced.
Indeed, this shows that the strategy adopted in Algorithm 2 is
efficient in exploiting the parameter θ to provide fairness in
the system in terms of SINR floor.
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Fig. 2: SINR floor in dB versus θ value for the optimal and sub-optimal (by Algorithm 2)
solutions considering two different random instances.
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Fig. 3: CDFs of minimum SINR for the solutions of Algorithm 1, Proposal (considering
Algorithm 2 and setting specific θ values) and EPA.
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Fig. 4: CDFs of total SE for the solutions of Algorithm 1, Proposal (considering
Algorithm 2 and setting specific θ values) and EPA.

Figures 3 and 4 show the CDFs of the SINR floor and
total SE of the system, respectively. In these figures, we
plot the solutions provided by Algorithm 1, our sub-optimal
scheme proposed in Section IV-B and the equal power allo-
cation (EPA) strategy. Specifically, regarding our sub-optimal
solution, we consider two different approaches: one iterative
approach employing Algorithm 2 and a non-iterative one
considering specific θ values. Therefore, in Figures 3 and 4,
there are four blue curves for our sub-optimal solution, i.e.,
three curves assuming three different specific values for θ
(0.20, 0.30, 0.50) and a last one assuming the solution found
by Algorithm 2 with θ ∈ [0, 1]. For Algorithm 1, beyond
the solution to problem (6), we also consider the best that
Algorithm 1 can provide in terms of total SE (dashed-red line).

Figure 3 shows that, as expected, the proposed sub-optimal
solution is more efficient when used in its iterative form.
However, when we take a mean value in the considered range,
i.e., θ = 0.50, we have a small performance loss compared
to the iterative version. Indeed, this is advantageous because
for a specific θ, the solution is obtained in a single instance
using (13) and, thus, it has a lower computational cost. When
θ < 0.50, from the SINR floor point of view, the solutions
tend to deliver more unfair situations but with a higher total
SE, as shown in Figure 4. In this last figure, although we
do not show the upper bound of the total SE, note that as
we decrease θ, our sub-optimal solution tends to approximate

significantly to classical EPA solution, which is known to be
a good benchmarking for maximizing the total SE. Lastly,
mathematically note that case θ = 0, our sub-optimal solution
converges exactly to the EPA solution. In general, these results
show that, by adjusting θ, our sub-optimal solution can provide
different trade-offs of fairness and total SE.

VI. CONCLUSIONS

We analyzed the performance of cell-free massive MIMO
systems taking into account the effects of channel estimation
and power control design. In particular, we investigated power
allocation policies to the classical max-min fairness problem.
In this context, we initially presented different optimal strate-
gies proposed in the literature to tackle this problem based on
iterative optimization. Then, we proposed a novel sub-optimal
approach that - unlike previous solutions - is not iterative. The
proposed solution also allows for an iterative procedure, which
can improve its performance. Through extensive computa-
tional simulations, we demonstrated that our power allocation
policy is capable of providing different trade-offs between
fairness among users and the total SE. Investigating scenarios
with pilot contamination effect and proposing scalable power
control strategies are interesting topics for future studies.
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