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Low-Rank Hankel Signal Model: Numerical Results
Lucas Abdalah, Walter Freitas Jr, Pedro Marinho R de Oliveira, Vicente Zarzoso

Abstract— Hankel matrices arise in several applications of sig-
nal processing, such as tensor decompositions, biomedical signal
processing, etc. In general, these techniques rely on digital signals
that can be modeled as a linear combination of exponential
polynomials. Hence, the Hankel matrix built from these signals
presents full rank, equal to the number of poles, ensured under
mild constraints. The present work observes other features of
the low-rank Hankel model, using singular value decomposition
(SVD) to assess rank deficiency. The effects observed may impact
blind source separation (BSS) problems.

Keywords— Vandermonde Decomposition, Hankel Matrix, Sin-
gular Value Decomposition, Low-Rank.

I. INTRODUCTION

One of the challenges in signal processing is the estimation
of a set of source signals based on the observation of a set
of mixed signals. A blind source separation (BSS) approach
can be applied aiming to isolate the source signals and
usually relies on matrix decompositions. Nevertheless, strong
mathematical constraints are necessary to assure uniqueness
of the decomposition, such as mutual orthogonality between
spatial factors and statistical independence [1], [2]. The best-
known matrix methods are based on principal and independent
component analysis. In order to overcome these limitations,
tensor decompositions are powerful tools, ensuring unique-
ness and outperforming matrix-based methods under milder
constraints [3].

A celebrated tensor-based method is the block term decom-
position (BTD) [4], [5]. This technique takes advantage of
discrete-time signals that can be modeled as linear combi-
nations of exponentials (all-pole models). Since the sources
can be expressed as low-rank Hankel matrices, the signal
separation can be performed via BTD. The Hankel matrix
built from such source signals accepts the Vandermonde de-
composition [6], a well-known result in problems of matrix
analysis and telecommunications. Different fields in signal
processing take advantage on low-rank Hankel source models
for speech analysis [7], black-box polynomial analysis [8], and
tensor decompositions [4], some applied to biomedical signal
analysis [5], [9].

The theoretical baseline relies on a strong assumption: since
a Vandermonde matrix generated by distinct poles has full rank
equal to the number of poles [4], the Hankel matrix mapped
from a finite signal with enough samples presents its rank
equal to the number of poles. This notion can be used to assess
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signal complexity, since the more poles a signal contains, the
more complex it can be considered. The rank of a matrix can
be computed with a popular and reliable method based on
the singular value decomposition (SVD), that considers the
rank as the number of singular values larger than a tolerance
parameter [10].

However, the present work shows that numerical features
such as the distance between the poles that generate the signal
may impact the computed rank. Aiming to observe clearly the
behavior described, we propose three different experiments:
1) Vandermonde matrix built from two vectors, to illustrate
how the distance between poles hampers the construction of a
full-rank matrix, and consequently how it impacts the singular
values and the Hankel matrix rank; 2) multiple signals with
various distances between poles vs. the amount of samples
necessary to obtain the Hankel matrix rank equal to the number
of poles contained in the signal; 3) scenario using the previous
framework but with noisy signals with different signal-to-noise
ratio (SNR).

The rest of this work is structured as follow: Section II
presents the problem statement, whereas numerical exper-
iments are presented in Section III. The discussions and
conclusions based on the experimental results are given in
Sections IV and V, respectively.

II. PROBLEM STATEMENT

A. Low-Rank Hankel Model

Assume that if a discrete time signal s(n) is a linear
combination of L damped complex exponentials, say:

s(n) =
L∑

l=1

clz
n
l , 0 ≤ n ≤ N − 1 (1)

where cl, zl ∈ C, are coefficients and poles, respectively.
The sequence s(n) can be mapped onto an (M×M) Hankel

matrix denoted Hs, where each sample is placed along the
anti-diagonal of Hs as shown in Fig. 1, with mapping function
Hs(i,j) = s(i+j−1), for ith row, and jth column. We assume
N is odd without loss of generality, hence:

M =
N + 1

2
. (2)

A major result in signal processing states that Hs accepts
the following Vandermonde decomposition [4], [6]:

Hs = Vs D Vᵀ
s (3)
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Fig. 1. Visual representation of a Hankel matrix Hs built from a signal
s(n).

where Vs is the Vandermonde matrix

Vs =



1 1 . . . 1

z1 z2 . . . zL

...
...

...

zM−1
1 zM−1

2 . . . zM−1
L


∈ CM×L , (4)

and D = diag(c1, c1, . . . , cL) ∈ CL×L is a diagonal ma-
trix. Symbol (·)ᵀ denotes the matrix transpose operator. We
assume, for simplicity, but without loss of generality, that
cl = 1 , l = 1, 2, . . . , L. As result of the Vandermonde
decomposition (4), matrix Hs has rank at most min{L,M}.
Hence, a first remark is that the more poles a given signal is
composed of, the higher the rank of its Hankel matrix. This
observation underlies the use of rank(Hs) as a measure of
signal complexity. Nevertheless, a Hankel matrix build from a
signal s(n) with L poles needs to map at least Nmin samples:

Nmin = 2L− 1 , (5)

to present its rank R equal to L [4]–[6]. As soon as this
minimum threshold is observed, the rank R should be equal
to the number of poles L for a signal following model (1),
regardless of the sample size.

B. Vandermonde Matrix and Pole Distance

When a signal is a sum of complex exponentials (1),
its poles are closely linked to the columns of matrix Vs,
according to eqn. (4). If the distance between these poles
decreases, the columns of Vs become closer to each other,
having an impact on the Hankel matrix rank.

To illustrate this behavior, we assume two poles z1 =
ejω1 and z2 = ejω2 , and the corresponding Vandermonde
vectors v1 = [1, eω1 , e2ω1 , . . . , e(M−1)ω1 ]ᵀ and v2 =
[1, eω2 , e2ω2 , . . . , e(M−1)ω2 ]ᵀ.

We can observe that each vector norm is equal to M , where

||v1|| = ||v2|| = M

and the columns scalar product leads to:

vᵀ
1v2 =

M−1∑
n=0

e−nω1enω2 .

Finally, replacing ∆ω = (ω2 − ω1) and the exponential
identities we have that the scalar product becomes:

cos(θ) =
v1 · v2

||v1|| ||v2||
=

sin(M ∆ω
2 )

M sin(∆ω
2 )

. (6)

Based on the previous result, we can ensure that when ∆ω
tends to zero for a fixed M , we have that:

lim
∆ω→0

cos(θ) = 1

showing that the columns becomes colinear, as expected, if the
distance between poles (∆ω) become too small. In this case,
if we compare the singular values, the Hankel matrix rank
is equal to one. This shows mathematically that a minimum
distance between poles is required in practical scenarios. In
this case, the equivalent Hankel matrix rank (R) is equal to
one, built from two damped exponentials, resulting in R 6= L.

However, it is relevant to notice the presence of M in the
denominator of eqn. (6). We can deduce that increasing the
value of M used to build Vs may compensate for the poles
proximity. If we replace M using eqn. (2), we have that:

cos(θ) =
2 sin ((N + 1)∆ω)

(N + 1) sin
(

∆ω
2

) .

Therefore, for a small yet nonzero value of ∆ω, but nonzero,
if we increase N then the scalar-product gets closer to zero
(due to N in the numerator), in such a way that colinearity
between v1 and v2 is reduced:

lim
N→∞

2 sin ((N + 1)∆ω)

(N + 1) sin
(

∆ω
2

) = 0 (7)

resulting in R = L, in agreement with the classical result
observed in the literature [6].

C. Singular Value Decomposition

The SVD is a valuable tool in signal processing, a common
technique for multivariate data analysis and provides a foun-
dation for many other techniques such as principal component
analysis (PCA) [11].

The SVD of X ∈ CI×J is given by:

X = UΣVH , (8)

where U ∈ CI×I and V ∈ CJ×J are unitary matrices
with orthonormal columns, and the symbol (·)H denotes the
Hermitian operator. Diagonal matrix Σ ∈ RI×J contains
real, non-negative entries. It can also be represented as Σ =
diag(λ1, λ2, . . . , λJ), where each λj is a singular value, pre-
sented in decreasing order.

In order to compute the rank of X, a reliable SVD-
based method may be applied [12], [13]. It consists in
performing SVD(X), then taking the number of singular
values (λ1, . . . , λJ) that are larger than a tolerance ε =
max(I, J)||X||E , where E is the minimum distance that the
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floating point arithmetic can recognize between two numbers
and ||X|| represents the frobenius norm of X.

Another possible way to assess rank-deficiency is by the
condition number (σ), taking advantage of the relationship
between singular values. The criterion used in this work is
the equation:

σ =
λmax

λmin
(9)

that provides a quotient between its maximum and minimum
singular values, respectively. A large condition number is
linked to a matrix close to rank-deficiency.

III. EXPERIMENTAL RESULTS

The experiments are divided in 3 parts. The first and second
parts consider noiseless signals, whereas the third part is on
noisy signals. In the first part we build a Vandermonde matrix
from two vectors to illustrate how the distance between poles
in the vector hamper the construction of a full-rank matrix,
and consequently how it impacts the condition number, as
theoretically anticipated in sec. II-B.

In the second part, we test various distances between poles
to assess the minimum amount of samples necessary to obtain
the Hankel matrix rank equal to the number of poles contained
in the signal.

Finally, in the third scenario noisy signals are analyzed with
various SNR values.

A. Condition Number

We assess the relationship between the condition number
(σ) and the number of samples (N) varying the distance be-
tween the poles (∆ω). An example inspired on the theoretical
problem statement is assuming two vectors v1 and v2 as pre-
sented in Section II-B, with ω1 = 0, and ω2 = ∆ω, i.e., v1 =
[1, 1, 1, . . . 1]ᵀ and v2 = [1, e∆ω, e2∆ω, . . . , e(M−1)∆ω]ᵀ,
where v1 and v2 are the columns of the Vandermonde matrix
Vs. Hence, the Hankel matrix Hs ∈ CN×N associated with
this model is built from a simplified form of eqn. (3), where
Vs ∈ CN×2 and D ∈ R2×2 is an identity matrix. After
constructing the Hankel matrix, we compute the SVD(Hs)
for 10 different values of N , rounding logarithmically spaced
values in the interval [101, 102], and considering 7 different
values of ∆ω as shown in Fig. 2.

In the first place, if the distances between poles are so small,
then even increasing the number of samples, σ keeps very
high. This behavior affects rank computation and may prevent
us to obtain R = L. Fig. 2 also shows that σ decreases as
we increase the number of samples to the columns, which
compensates for the poles proximity as expected from the
analysis of Section II-B.

Moreover, for ∆ω = [8.91×10−9, 1.96×10−9], σ indicates
that λ1 � λ2 for all values of N , but it presents R 6= L
until reaching enough samples. Nevertheless, as N increases,
σ tends to 1, i.e., the number of samples compensates for the
insufficient distance between poles, allowing us to find R = L.

Finally, for other values of ∆ω, the condition number still
indicates λ1 � λ2. However, with very few samples it is
possible to find the rank (R) of Hs equal to the number of
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Fig. 2. Computing the condition number (σ) vs. the number of samples (N )
to build the matrix using different values of ∆ω. For each curve, the diamond
marker indicates the minimum value of N to have rank(Hs) = 2.

poles L. It indicates that these are sufficient distances between
poles.

B. Sample Size for a Full-Rank Hankel Matrix

This scenario aims to assess how the poles proximity (∆ω)
in a signal s(n) with L poles, shown in eqn. (1), impacts its
Hankel matrix rank R in the absence of noise.

The experiment consists in constructing Hs from 100 sam-
ples for each s(n). To compare the numerical and theoretical
results, we use a windowed version of s(n) with N ≤ 100
samples to build its equivalent Hankel structure, i.e., just the
window s(1 :N) from the first N samples, is used to map
the signal onto the matrix. Then, we search through each Hs

mapped from the windowed signal for the first value of N
yelding R = L.

We generate s(n), where zl represent equispaced poles, L is
in the [2,8] interval, and distance ∆ω takes 100 logarithmically
spaced values in the [10−4, 10−1] interval. The number of
samples used in window N is a positive integer value between
2 and 100. The simulation of Fig. 3 may be summarized as
follows. For each value of L in the set of positive integers, we
vary ∆ω from very close poles gradually moving them away
from each other at each iteration, noting the value of N for
R = L.

The experiment shows that the theoretical values based on
eqn. (5) are different from those obtained empirically. One
would expect plots with horizontal lines at 2L− 1 regardless
of ∆ω. Nevertheless, the simulation presents a different result:
when the distance gets smaller, the number of samples N
necessary in the windowed signal to build Hs with R = L
increases. This outcome reinforces the hypothesis that the
increase of N may compensate for the distance between poles
to obtain R = L as anticipated by the analysis of Section II-B.
This will increase the computational cost, since a reliable SVD
algorithm (Golub-Reinsch) performs 8M3/3 flops to compute
only the singular values [12], where M is the matrix dimension
following eqn. (2).

Furthermore, one can see that as L increases, the curves
move towards top right corner of the figure, which suggests

3
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Fig. 3. Number of samples N necessary to build a Hankel matrix Hs, with
R = L, versus the distance between poles (∆ω). variation.

that rank depends on number of poles and ∆ω.

C. Noisy Scenario and SNR Threshold

To assess a more realistic case, one may consider a scenario
with additive white Gaussian noise (AWGN), according to the
following data model:

y(n) = s(n) + β(n) . (10)

The simulation framework setup is similar to the presented
in Section III-B, except for the mapped signal y(n), a version
of s(n) as shown in eqn. (1), affected by the AWGN term
β(n), and with a fixed distance between poles ∆ω = 0.05.

Aiming to compare the theoretical values based in eqn. (5)
with the data obtained empirically, we present an experiment
that varies high SNR values, along the [250,320] interval in 10
dB steps. The experiment is performed to search a threshold
SNR value, where the equivalent Hankel matrix Hs presents
a rank R equal to the number of exponentials L, regardless
of ∆ω. We repeat the procedure described in Section III-B
(Fig. 3) for each SNR, and noting the results obtained for
each single run. The scenario with 100 Monte Carlo runs is
computed varying the noise for each realization.

Fig. 4 shows that for values of SNR less than 270 dB, in
general the most commonly encountered in real problems, the
theoretical result is respected. The plots illustrate the expected
result, discussed in previous sections, with horizontal lines at
2L−1, despite the ∆ω variation with a rank R dependent only
on its number of poles. For values greater than 270 dB, the
theoretical values are once again different from those obtained
empirically, but N starts to increase.

Finally, for this case of study, the three largest values of L
present a transition close to 290 dB. We can see that for higher
values of SNR, the trend observed in Fig.3 at ∆ω = 0.05 is
exactly the same for all L. This outcome supports the results
of Section III-B, obtained in the noiseless case.

IV. DISCUSSION

The present work discusses the numerical features of the
low-rank Hankel signal model using Vandermonde decompo-
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Fig. 4. Number of samples N necessary in the windowed signal y(n) to
build Hs, with R = L, versus the SNR values, and fixed distance between
poles ∆ω = 0.05 for 100 Monte Carlo runs.

sition. It explores various parameters as the distance between
poles, and number of poles and samples in the construction of
Hankel structures, mapped from all-pole signals.

Experiments based on the SVD measure the impact of pa-
rameters, taking into consideration two indices: the condition
number, and the amount of samples mapped onto a Hankel
matrix necessary to present a rank equal to the number poles
in the equivalent signal. An unexpected relationship between
the parameters appears in the noiseless case due to numerical
effects, despite the noisy setup that presents the expected
behavior with a limited SNR. Also, evidence was given with
the help of simulations to support two remarks:

(I) As the distance between poles decreases, the number
required to obtain a full rank matrix increases. Further-
more, in the second noiseless scenario, with a low-rank
Hankel signal model, if the poles get too close to each
other, a dependency between the rank, number of poles,
amount of samples, and the distance between poles is
observed.

(II) In the noisy scenario, with SNR values commonly
encountered in practice, the distance between poles
becomes irrelevant. The theoretical minimum value is
observed, i.e., the rank depends only on the number of
poles.

V. CONCLUSION AND FURTHER WORK

This work has studied the numerical features of Hankel
matrices associated with complex exponential signal models.
In the noiseless cases, to assure a full rank matrix and avoid the
numerical problems presented, a minimum distance between
poles is required or the number of mapped samples must
increase to compensate for pole proximity and ensure full
rank. These observations may impact the computational cost
where the Vandermonde decomposition and Hankel structure
are applied. In the noisy case, in real applications: with a
realistic noise level, the Hankel matrix is always full rank,
since the noise acts to balance the linear independence between
the columns in the associated Vandermonde matrix. This can
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reduce significantly the computational cost for problems with
solid ground-truth.

Future work should focus on performing the condition
number experiment for larger Vandermonde matrices, in order
to compare more than two singular values to provide more
relevant statistical information. Furthermore, the experiments
should be in the context of tensor decompositions, such as
BTD, since the model performs the separation of the noise in
a different block of the low-rank Hankel signal model and the
remaining blocks could fall within the noiseless scenario.
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