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Low-Complexity Algorithm for Full-Array Antenna
Selection based on Matching Pursuit

Jonathan N. Gois, Tadeu N. Ferreira

Abstract— Massive MIMO systems have received a growing
interest since the apogee of 5G and the perspective of 6G.
Massive MIMO allows an efficient usage of spectral resources
and provides higher data rates. When the number of antennas
increases, the energy consumption and the hardware cost in the
base station also increase. The high energy consumption and
processing may be addressed through the selection of antennas.
Among various possible structures in the literature, the present
work proposes the combination of full-array architecture to make
a virtual sectorization and antenna selection using matching
pursuit. The algorithm was tested in different channels with
complexity reduction in our tests while maintaining bit-error
rate in most scenarios.

Keywords— Massive MIMO, Antenna Selection, Matching Pur-
suit.

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) systems
have achieved importance by improving the spatial multiplex-
ing gain and system energy efficiency [1]. Some emerging
wireless systems have used the millimeter-wave range to
achieve higher data throughput in a less occupied frequency
range. Nevertheless, millimeter wave frequencies are affected
by high path loss, scattering, and penetration loss [2].

To overcome a higher path loss in the millimeter-wave
frequency range, a large array of antennas can be used to
increase the directionality of the beam. In spite of these
benefits, the large number of antennas also results in a large
number of radio-frequencies (RF) chains, and a high cost to
estimate all channels between each antenna and terminal [3].

In a massive MIMO system, using all available antennas
provides a higher spectral efficiency. On the other hand, this
approach results in a maximum energy consumption. While
still taking advantage of this system, a possible manner to save
energy is to use only some of the antennas for transmitting.

In the literature, some architectures are used to transmit
with a large number of antennas. Fully connected architectures
are characterized by the connection of each antenna element
to the RF chain [1]. This approach provides a good spectral
efficiency in spite of the high complexity. On the other hand,
we have partially connected architectures that are defined by
the connection of groups of antennas into the same RF chain.
In this scheme, some antennas are connected to simplify the
choice of the transmitting set [4].

One of the methods that exploits the group connection to a
single RF chain is the antenna selection method proposed by
Gharavi-Alkhansari et al. [5], which decomposes the channel
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capacity expression in the contribution of each antenna. Opti-
mal and Sub-optimal solutions suggested by Gao et al. [6] also
decompose the channel capacity performing additional steps
to improve their results.

For both aforementioned structures [5], [6] , increasing the
number of antennas also results in an increase in the number
of RF chains, which could be costly. To reduce the required
hardware of the RF chain, some architectures of massive
MIMO systems share the RF chain with a group of antennas to
reduce the cost. Then, to reduce the complexity and the costs,
the virtual sectorization [3] is proposed to adjust the full-array
antennas into a reduced-complexity architecture without any
hardware improvement.

The traditional methods of antenna selection (AS) focus on
optimizing the channel capacity constrained to a limited power
of each antenna. This can be treated as a convex optimization
problem [7], but its solution is considered computationally
expensive. To reduce the computational cost, a family of
greedy methods which exploits the sparsity structure of the
transmitting antenna vector has been used [8], [9], [10]. The
use of these methods varies according to the architecture.
Those methods decompose a representation of the entire
antenna set in sparse components [11].

With the aim of reducing energy consumption, Ubiali et
al. [12] propose an energy-efficient flexible antenna selection
method. The Fixed Sub-array Selection (FSS) [12] divides
the antenna array into disjoint sub-arrays and maximizes the
channel capacity according to the chosen subset. An idea
used in this work is based on the adjustable-flexible antenna
selection (FAS). By varying the number of selected antennas
along the time, it is possible to reduce the energy consumption.

In this paper, we propose a low-complexity AS algorithm
based on a Matching Pursuit (MP) channel decomposition [9].
The joint implementation of virtual sectorization and greedy
algorithm reduces the computational cost. To test the pro-
posed Sub-array Matching Pursuit Antenna Selection (SM-
PAS) method, it is evaluated in different channels and obtain
a reduction of computational complexity in comparison to
benchmark algorithms with a close bit-error rate.

Section II describes the system modeling used in the de-
duction of the algorithms, while highlighting the full-array
system and the antenna selection. In Section III, we detail the
benchmark Greedy Antenna Selection algorithm [9]. In Sec-
tion IV, our proposed channel-level AS algorithm is described
based on the matching pursuit decomposition. In Section V,
we show the simulation results and Section VI presents the
main conclusion of this work.

II. SYSTEM MODEL

This work is proposed in a single cell of a massive MIMO
system. We consider that the neighboring cells do not generate
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significant co-channel interference (CCI) in the interest cell.
The downlink system is composed of M antennas and K
terminals. In full-array architecture, each antenna is linked
with an RF chain. The power η used in each antenna may
be controlled. In some of the simulated scenarios, the target
BS has knowledge of the downlink Channel State Information
(CSI). In others, there is only an estimate of the channel
between each antenna for each receiver. With this estimate,
a precoder can be defined. The precoder is responsible to
mitigate the effects of the channel in the symbol stream
between neighbors cells and the close users.

In the transmission model, we are interested in sending only
one symbol for each terminal. The symbol message can be
written as q ∈ CK×1. To minimize the channel and user
effects in this symbol, we consider the precoding before the
transmission. In this work, it was performed using a linear
precoding scheme as [9]:

x = Pdiag(η)(1/2)q, (1)

where P ∈ CM×K is the linear precoding matrix and diag(η)
is the power allocation for each terminal. Here, we use the
same transmission power for all terminals. The normalized
energy [13] for each terminal is given by 1/K. Using this
formulation, the received signal in each terminal can be written
as:

yk = gkx+ ωk. (2)

In each terminal, the received message yk is built by the
channel response between all M antennas and the kth terminal
(gk ∈ CM×1) applied to the sent signal. Besides the channel
effect, each terminal is struck by additive noise ωk. Each
ωk is a realization of circularly symmetric complex Gaussian
distribution CN (0,σ2).

Equation (2) can be rewritten in the matrix form for all
terminals. Firstly, we will define the full channel matrix
between all M antennas and the K terminal as follows:

GM×K =

 g11 g12 . . . g1K
...

...
. . .

...
gM1 gM2 . . . gMK

 , (3)

=
[
g1 g2 . . . gK

]
. (4)

Then, the received signal for all K terminals is given by:

y = GTx+w, (5)

where w is the noise vector. We can also define the received
signal according to the symbol message q and precoding
matrix P:

y = GTPq+w. (6)

In this work, we use the zero-forcing (ZF) [14] scheme. The
ZF precoding matrix is defined as:

PM×K = G∗(GTG∗)−1 (7)

In order to illustrate the described system, Figure 1 shows
the full-array architecture. Instead of a vector message q, we
use a block data stream K×NS . The received block data can
be computed as the aforementioned description.

Baseband

Precoder

RF Chain

RF Chain

RF Chain

RF Chain

Data Stream M Antennas

NS

Fig. 1: Full-Array Architecture.

Baseband

Precoder

RF Chain

RF Chain

RF Chain

Data Stream

M Antennas

NS

Ss

Fig. 2: Reduced-Complexity Architecture.

A. System with Antenna Selection
Using all available antennas, the maximum energy con-

sumption is achieved. To exploit the redundancy of spatial
diversity of massive MIMO antenna array, we can activate only
S out of M antennas to save power. The respective channel
matrix response is described as Gs ∈ CS×K.

The choice of activated antennas can be made using several
criteria, including [6]:

1) Exhaustive search over all antennas:
Performing all combinations of activated antennas, we
can find the best subset that results according to the
desired metric. However, this solution is infeasible.

2) Maximizing the MIMO Channel Capacity [15]
The MIMO channel capacity is given by:

C(Gs) = log2det(IS +GH
s ηGs). (8)

By optimizing Equation (8), we can achieve the best
throughput with S selected antennas.

3) Sparse Recovery:
In this approach, the main idea is to construct a sparse
dictionary and select the best antennas according to the
input dictionary.

We denote the selected or not antennas using the vector
z1×M (zi ∈ {0,1}). If the ith-antenna was selected, then zi
equals 1.

Eliminating the disconnected antennas from full-array, we
can describe the reduced channel matrix Gs as:

GS×K
S = rem(diag(z1×M)G) (9)

=

g11 g12 . . . g1K
...

...
. . .

...
gS1 gM2 . . . gMK

 (10)
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where S ≤ K.
With a smaller number of antennas, the precoded data x

is also reduced. The power for each antenna is scaled by the
number of terminals, so the reduced data x also represents
the energy saving. Therefore, we can write the new received
signal as:

y = Gs
TPsq+w (11)

where Ps is the zero-forcing precoding matrix considering the
reduced MIMO channel Gs.

III. GREEDY ANTENNA SELECTION

In order to evaluate the antenna selection algorithm, the lit-
erature shows some methods to compute without an exhaustive
search. Instead of selecting S out of M antennas and compute
the channel capacity (Equation 8) for all

(
M
S

)
possibilities, we

can remove the contribution of each antenna from the capacity
of the channel and choose the most relevant ones [6].

In other words, this procedure consists in decomposing
a representation of the entire channel model into known
components. If we choose a representative dictionary for our
problem, the matching pursuit algorithm can find the best
projection of b in there. The vector b must also be defined
as representative for the entire array. Considering z the array
that indicates which antennas are selected, the problem to be
solved is [9], [10]:

minimize
z∈CM×1

||Dz − b||22,

subject to ||z||0 = S.
(12)

The dictionary D must be sparse and overcomplete [16] in
order to represent the best set of elements in z that minimizes
the `2-norm as described in Equation 12. In this approach, the
dictionary has the function to adapt the vector b in the problem
context. Therefore, an appropriate choice for the dictionary is
essential. Gharavi-Alkhansari et al. [5] suggested the pair D
and b as:

D =
(
IM −GHG

)−1
(13)

bj = gHj gj (14)

Rather than only one vector b, the authors proposed a set
of vectors in order to be decomposed in the dictionary. The
dictionary is part of the channel capacity expression given by
Equation (8).

Mendonça et al. [9] propose an antenna selection algorithm
denoted as ZF-GAS (Zero-Forcing Greedy Antenna Selection)
that minimizes the distance between only the vector that
represents the full-array MIMO channel b and the dictionary.
In their work, the dictionary D was defined as:

DZF =
[
vec{p1p

H
1 } vec{p2p

H
2 } . . . vec{pMpH

M}
]

(15)

where each pi is a column of the zero-forcing precoding
matrix P. The operator vec{·} is responsible to resize the
matrix P ∈ CM×K in to a MK × 1 vector. For the same
reasons that the dictionary was defined in this form, the vector
b is defined as:

b = vec{PTP} (16)

Using this representation, only one decomposition should be
performed, reducing considerably the number of operations to
select the antennas in the BS.

IV. CHANNEL-LEVEL PROPOSED METHOD

The proposed method was based on the Reduced-
Complexity Architecture [4]. When we reduce the number of
RF Chains, the computational cost of the chosen configuration
decreases, and the energy is less used in the BS. However,
the spectral efficiency also decreases. The maximum spectral
efficiency is achieved with all antennas selected.

The arrangement in the Figure 2 is our target to select
subsets of antennas. In order to obtain a flexible architecture,
Molisch et al. [3] show a structure named Virtual Sectoriza-
tion. The joint choice of antennas reduces the computational
cost of the choice, that is, it saves energy and gives flexibility
to the entire structure.

The Greedy Antenna Selection proves to be computationally
efficient [9] and gives similar results when compared to others
in terms of error metrics. To perform a flexible algorithm with
the same characteristics as ZF-GAS, we propose to divide
the entire array into subsets. Firstly, the search occurs in the
same way as in ZF-GAS. The principal decomposition of the
vector b is found in the dictionary D. Both variables are
constructed equally described in the Equations 15 and 16.
To virtually sectorize the array, when the ith antenna is
selected, the adjacent antennas are also selected, according to
definition of the sub-array size (Ss). The contribution of that
dictionary position is removed from vector b as described in
the Algorithm 1.

Algorithm 1 Sub-array Matching Pursuit Antenna Selection -
SMPAS

• Input Parameters: G,DZF,b,S and Ss.
1: Initialize variables: z ← 0M, i ← 1, r(1) ← b and I ←

1,2, ...,M
2: • Loop into Sub-array Space:
3: for (i← 1 ; i ≤M ;i← i ∗ Ss) do
4: max_ip← −∞
5: closest_id← 0 . Index of the best Antenna Selection
6: • Matching Pursuit Algorithm:
7: j ← 1 . Aux. variable
8: for (col← I(1); I is not empty; col← next index ) do
9: ip← 〈r(j),DZF(col)〉

10: if ip > max_ip then
11: max_ip← ip
12: closest_id← col
13: end if
14: end for
15: • Update Residue:
16: κ← closest_id−mod(closest_id,Ss)
17: r(j + 1)← r(j)−

∑κ+Ss
k=κ DZF(k)

18: j ← j + 1
19: • Update Valid Indexes:
20: Remove used indexes from I.
21: end for

V. RESULTS

A. General Parameters
Concerning the evaluation tests, the environment is defined

with M = 128 antennas disposed in a full-array architecture
serving K = 16 terminals/users. Sent data is encoded with
BPSK (Binary Pulse Shift-Keying) and the binary data is
produced randomly. Each block of message has length equals
to Ns = 200. The data is transmitted in a channel imposed by
Gaussian noise, as referenced in Section II varying the SNR
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(signal-to-noise ratio) between -15 dB and 5 db or 10 dB
and 40 dB, according the channel. A Monte Carlo simulation
was performed to estimate the bit error rate (BER) average
per user. The number of Monte Carlo runs was fixed at 500,
resulting in a total of 105 bits tested for each user. With
respect to the proposed algorithm, we defined the sub-array
size Ss = {1,2,4,8,16}.

B. Simulation Scenario
As in any communication system, the previous system

model is completely dependent on the channel. Here, we
analyze the algorithm using two different channels. The first
one is an uncorrelated Rayleigh fading channel, widely used
in the literature. Basically, the channel is a realization of a
circular normal random variable independent and identically
distributed (i.i.d.) for each antenna. To perform a realistic
scenario, the SMPAS was also tested in the DeepMIMO
Dataset [17]. The used scenario in this work is referred by
the dataset as “O1_60”, which is an outdoor scenario. It is
composed by two main streets with one intersection. The main
street is 600 meters long and 40 meters wide, the other one
is 440 meters long and 40 meters wide. In each street, they
positioned 18 base stations and more than 1 million possible
users. The buildings along the street have different shapes and
height. To complete the simulation, various materials were
used in the ray-tracing to determine the response for each
antenna and each user. In our test, the users are located around
10 meters from the BS. A summary of the used parameters in
this simulation were described in the Table I.

TABLE I: DeepMIMO channel parameters used in the simu-
lations.

Parameter Value
Input Scenario Name O1_60

Central Frequency 60 GHz
Actived Base Station BS-3

Antenna Spacing 0.5λ
Geometry of the Array ULA (Uniform Linear Array)

Number of OFDM Subcarriers 1
Number of paths 5

Number of Antennas M = 128
Number of Terminals K = 16

C. Perfect Channel Knowledge
Considering a CSI perfect estimation, we applied the pro-

posed method in both aforementioned channels.
In Figure 3, the Rayleigh channel was employed. In a simple

environment, the SMPAS achieves almost the same bit-error
performance, for all sub-array sizes. An important note is
the decreasing number of operations on the ascending size
of the sub-array in a direct proportion. To illustrate the full-
complexity algorithm, the ZF-GAS is performed when the sub-
array size (Ss) equals 1.

The SMPAS is also tested in the DeepMIMO Channel
previously described. In Figure 4, for Ss = 2, that is, with
50% fewer operations and 50% less energy used, a slight loss
of performance is observed.

D. Imperfect Channel Estimation
Using an imperfect CSI knowledge, we test our algorithm by

applying an MMSE channel estimation. We consider an uplink
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Fig. 3: Results achieved in Rayleigh channel using the pro-
posed method considering a perfect channel estimation in BS.
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Fig. 4: Results achieved in DeepMIMO channel using the
proposed method considering a perfect channel estimation in
BS.

channel with 15 dB of SNR for Rayleigh and 30 dB of SNR
for DeepMIMO and its estimation is used as the estimated
downlink CSI. The results are shown in the Figure 5 and 6.

The difference in the SNRs imposed on uplink channels
is motivated by the estimation impairment due to the more
severe characteristics of time and frequency dispersion of a
Deep MIMO channel. With a rough estimation, we can observe
that Rayleigh channel maintains the BER of a configuration
without sub-arrays.

Nevertheless, for the DeepMIMO channel, the error im-
posed by the channel estimation completely impairs the an-
tenna selection algorithm. When we increase the sub-array
size, the bit-error rate increases even further.

We realize that the proposed algorithm presents a very
good compromise between bit-error rate and computational
complexity for the tested range of sub-array size for exact
CSI. In the estimated CSI scenario, for a Rayleigh channel,
the BER remains the same. For a DeepMIMO channel, there
is a good compromise for Ss = 2, whereas the bit-error rate
is excessive for other sizes of sub-arrays.

VI. CONCLUSION
In this paper, we propose a low-complexity algorithm based
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Fig. 5: Results of the SMPAS using a imperfect channel
estimation of the Rayleigh channel.
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Fig. 6: Results of the SMPAS using a imperfect channel
estimation of the DeepMIMO channel.

on matching pursuit for full-array antenna selection to apply
in massive MIMO systems. The concept of an array composed
by sub-arrays was virtually implemented using virtual sector-
ization. An extension of ZF-GAS [9] was suggested to reduce
the number of operations in the base station. Moreover, with
the reduction of necessary power to transmit, the base station
also saves energy.

The present paper brings two types of channel models. The
Rayleigh channel and a realistic scenario using DeepMIMO
tool [17] to perform the ray-tracing between each antenna and
the user. DeepMIMO allows imposing more difficulties and a
different scenario for this type of algorithm.

Since the proposed algorithm is non-optimum, the measured
BER is also underperforming when compared to other meth-
ods. However, using the lowest sub-array value, it is possible to
reduce computational cost by 50% with also reducing energy
consumption. With an imperfect CSI, the performance of the
system with sub-arrays presents a similar bit-error rate for a
Rayleigh channel, whereas there is a higher degradation for
DeepMIMO channels.

At last, the present paper demonstrates the possibility to
extend the virtual sectorization in existing full-array architec-

tures to save energy reducing the operations performed in the
BS. An extension of this work for other greedy algorithms is
also considered as a future work, as well as, using a non-linear
precoding to address DeepMIMO channels.
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