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An Improved Spectrum Sensing for Cognitive PLC
Systems

Alam S. Menezes, Yan F. Coutinho, and Moisés V. Ribeiro

Abstract— This paper introduces an improved spectrum sens-
ing technique that exploits the existing information in the signals
received from both electric power grids and wireless media to
allow power line communication systems to monitor the spectrum
occupancy/holes in the frequency band between 1.7 and 100 MHz.
The applied procedure for implementing the proposed technique
is organized in time-frequency mapping, selection and extraction
of quanta, features extraction and selection, and detection. The
attained results based on a measured data set show that the
performance of techniques based on neural networks is far
superior when compared to the techniques based on Bayes.

Keywords— Power line communication, smart grids, spectrum
sensing, digital communication.

I. INTRODUCTION

Power Line Communication (PLC) is being pointed out
as one of the technologies to meet the data communication
demands related to Smart Grids (SG), Smart Cities (SC),
Internet of Things (IoT), and Industry 4.0 [1]. Also, the
capillarity of the electric power systems allows the integra-
tion of several sensor devices into the utility’s supervision
and control platform through PLC networks [2]. However,
it is well-established that electric power systems have been
designed for power transmission and distribution at very low
frequencies (e.g., 60 Hz in Brazil). For signals with spectral
content at high frequencies, electric power circuits consider-
ably attenuate the signal propagation in a dynamic manner. In
addition, electromagnetic interference and compatibility with
other telecommunications equipment operating in the same
frequency range as the PLC device – both physically connected
to electric power circuits – constitute severe concerns for the
use of electric power systems for data communication purposes
[3]. The hostile characteristics of electric power systems
for transmitting carrying-signals information and the existing
regulatory constraints motivate flexible spectrum access, which
is based on the cognitive radio (CR) concept [4], for dealing
with the unique characteristics of PLC systems [5].

In this sense, several researches investigated the CR tech-
niques in PLC systems. The power line was used as a sensor in
[6] to detect spectrum holes and to avoid possible interference
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in the radio communication systems. Based on measured data,
[7] applied the time-frequency analysis of the monitored signal
in the power line, as well as a detection threshold based on
the average power of the noise in the monitored frequency
bandwidth to detect the occupied frequency bands. Also, in [8],
a spectral monitoring technique using an adaptive threshold
for the detection of holes in the spectrum was formulated.
In general, spectral monitoring in the PLC system uses only
signal extracted from a power line. However, [9] analyzed the
use of signals extracted from power line and air, which is
accomplished with the use of an antenna, for spectrum sensing
purposes [10].

Thus, aiming to improve the spectrum sensing for cognitive
PLC systems, this paper introduces an improved spectrum
sensing analysis. For this purpose, sensors are used to acquire
both wireless and power line signals using, respectively, an
omnidirectional antenna and a PLC coupler, which is con-
nected to the low-voltage electric power circuit. In this sense,
we propose the time-frequency analysis of the signal extracted
from both power line and antenna, and the spectrograms
formed from such analysis are subdivided into small portions
called, in the present work, quanta. Using feature extraction
and selection techniques, as well as detection techniques based
on Bayes and multilayer perceptron (MLP) neural networks,
spectrum holes are detected in each quantum. Finally, we
present a comparative evaluation of the proposed technique,
based on the use of measured data from PLC coupler and
antenna as sensors, covering the frequency band between 1.7
and 100 MHz. Numerical results show that the MLP-based
configurations offer better performance than the Bayes-based
ones. Also, the performance discrepancy is relatively high
when comparing the quanta corresponding to the PLC coupler
and the ones corresponding to the antenna in some technique
configurations.

II. PLC SPECTRUM SENSING MODELING

Let the baseband frequency range 0 ≤ f ≤ B Hz be
occupied by a PLC system. In order to map the sub-bands
occupied by the primary user (PU) and to monitor the spectrum
access dynamics, the cognitive power line (CPLC) system
must be able to perform a time-frequency analysis of the
monitored signal. To do so, we consider that the formulation
of the spectral monitoring problem from both PLC coupler and
antenna sensors is the same. Thus, without loss of generality,
the signal at the input of only one sensor element can be
expressed as

y(t) =
K∑
k=1

sk(t) + v(t) , (1)
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where sk(t) is the kth signal from a PU, whereas y(t) is a sig-
nal in the time domain corrupted by the additive noise v(t) at
the input of the sensor element (e.g., antenna or PLC coupler).
The acquisition process of the y(t) signal can be performed
by different acquisition devices (transducer operating with an
acquisition board and analog-to-digital converter) associated
with a given sensor (antenna or PLC coupler). In this sense,
the acquisition of the signal can be modeled by

y = Tm{y(t)}

= Tm

{
K∑
k=1

sk(t)

}
+ Tm{v(t)}

= s + v ,

(2)

where Tm ∈ {Ta, Tc} denotes the used sensor, which encom-
passes all components from the transductor up to the digitizer,
used for the acquisition of a signal from the air or the power
line. Also, y ∈ RN×1, s ∈ RN×1, and v ∈ RN×1 are vectors
consisting of N elements, which are N consecutive samples
obtained by digitization of the signals y(t), sk(t), and v(t)
(i.e., y[n], sk[n] and v[n]), respectively. The sampling rate is
2B Hz since |f | ≤ B.

In this work, (2) is rewritten in a matrix form as follows:

My = Ms + Mv , (3)

in which Ms = [s1s2 · · · sN−M ], Mv = [v1v2 · · · vN−M ],
and the column vectors of each matrix are defined as yn ,[
y[n] y[n+1] · · · y[n+N−1]

]T
, sn ,

[
s[n] s[n+1] · · · s[n+

N − 1]
]T

, vn ,
[
v[n] v[n + 1] · · · v[n + N − 1]

]T
for

n = 0, 1, · · · , N−M+1. Note that column vectors represent
segments that are stacked side by side to form the matrices
My, Ms, and Mv of order N × (N −M). Also, n can be
replaced by an expression to allow us to cover a long time
interval while the choice of N allow us to control the spectrum
resolution, which is given by 2B/N .

III. IMPROVED PLC SPECTRUM SENSING

The block diagram in Fig. 1 schematically shows the
proposed technique for spectrum monitoring in CPLC systems
using antenna and PLC coupler sensors. It is organized in
time-frequency mapping, selection and extraction of quanta,
features extraction and selection, and detection. The detailed
description of each one of the blocks are presented from
Section III-A to Section III-E.

Fig. 1. Block diagram of the spectrum sensing technique.

A. Time-frequency Mapping

In order to perform the time-frequency analysis, the first
step is to take the information from the monitored signal in the

time domain to the time-frequency domain by means of time-
frequency transform. Such procedure can be mathematically
expressed as

MY = AMy

= AMs + AMv

= MS + MV ,

(4)

where A is a time-frequency transformation matrix, and
MY ∈ CN×(N−M), MS ∈ CN×(N−M) and MV ∈
CN × (N−M) are the monitored signals represented in the
time-frequency domain. Note that each column of the matrix
MY represents a time window of the monitored signal, while
each line represents a spectral component. The time-frequency
transforms considered in the present work are the Discrete
Fourier Transform (DFT), the Discrete Hartley Transform
(DHT), the Modulated Complex Lapped Transform (MCLT),
the Multitaper Method (MTM), and the Hartley Multitaper
Method (HMTM).

In this sense, the stochastic energy spectral density (ESD) of
the monitored signal represented in the time-frequency domain
can be obtained by using

ΨY = M∗
Y �MY

=
(
MS + MV

)∗ � (MS + MV

)
= ΨS + ΨC + ΨV ,

(5)

where � is the Hadamard operator and (·)∗ denotes the
complex conjugate operator. Note that ΨS = M∗

S�MS is the
spectrogram of the monitored signal MS, ΨC = M∗

S�MV+
M∗

V �MS is the cross-spectrogram, and ΨV = M∗
V �MV

is the spectrogram of the noise MV.

B. Tiles Extraction and Selection

With the purpose of detecting PUs, we divide the spectro-
gram ΨY into small portions Ψq

Y ∈ RNF×NT , forming a
mosaic, where Ψq

Y is a two-dimensional geometric figure, as
shown in Fig. 2 considering three different sizes of quanta.
After the size of the quanta is chosen, the whole spectrogram
is filled with several quanta. Note that Ψr

Y∩Ψs
Y = 0, ∀ r 6= s

and ΨY =
⋃Q
q=0 Ψq

Y. In this mosaic, each portion Ψq
Y ⊂ ΨY

is called the detection quantum. Each quantum is an NF ×NT
dimension matrix representing a small area of the spectrogram.
The choice of quantum size is directly related to the spectrum
usage time and the bandwidth of the monitored signal.

After dividing the spectrogram into a quanta mosaic, the
problem of detecting the PUs in the qth quantum may be
formulated in two hypotheses

θ̂ =

{
H0 → Ψq

Y = Ψq
V

H1 → Ψq
Y = Ψq

S + Ψq
C + Ψq

V

, (6)

where H0 and H1 represent, respectively, the hypotheses of
the absence or presence of PUs within the analyzed quantum.
It can be seen that the quantum dimension NF represents the
frequency resolution of the monitored band. Once the PU is
identified, the range corresponding to the evaluated quantum
is set as occupied.
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Fig. 2. Spectrogram with quanta.

C. Features Extraction

In order to extract a representative set of the monitored
signal, it is possible, from the quantum of the monitored signal,
to extract a vector given by

rq = Υz{Ψq
Y} , (7)

where rq ∈ RK×1 and K = NFNT . The operator Υz{·}
represents a set of ways of forming the vector rq with the
elements of the matrix formed by the quantum Ψq

Y.
Considering that spectrum monitoring can be performed via

antenna or PLC coupler, which, in general, implies the pres-
ence of Gaussian and non-Gaussian noise [11]–[13], second
order as well as higher-order statistical features are used. Let
us consider {rq[k]}NFNT−1

k=0 , where rq[k] is the kth element
of the vector rq , which is formed by the concatenation of
a quantum Ψq

Y. Therefore, the considered features are as
follows:
• Cumulants: if E{rq[k]} = 0, where E{·} is the mean

operator, the second, third, and fourth order cumulants,
are expressed, respectively, as

c2,rq [l] = E{rq[k] rq[k + l]} , (8)

c3,rq [l] = E{rq[k] r2q [k + l]} , (9)

c4,rq [l] = E{rq[k] r3q [k + l]} − 3c2,rq [l] c2,rq [0] , (10)

where l refers to the lth delay in the evaluated data
sequence. Their stochastic estimates are given by

c̃2,rq [l] ' 2

K

K/2−1∑
k=0

rq[k] rq[k + l] , (11)

c̃3,rq [l] ' 2

K

K/2−1∑
k=0

rq[k] r2q [k + l] , (12)

c̃4,rq [l] ' 2

K

K/2−1∑
k=0

rq[k] r3q [k + l]

− 12

K

K/2−1∑
k=0

rq[k] rq[k + l]

K/2−1∑
k=0

r2q [k] , (13)

where l = 0, 1, · · · ,K/2− 1, and ĉ2,rq [l], ĉ3,rq [l] and
ĉ2,rq [l] are the stochastic approximations of the second,
third and fourth order cumulants, respectively.

• Skewness: the skewness is given by

γ3,rq =
E{(rq[k]− µrq )3}

[E{(rq[k]− µrq )2}]3/2
, (14)

where µrq = E{rq[k]}.
• Kurtosis: the Kurtosis is given by

κ4,rq =
E{(rq[k]− µrq )4}(

E{(rq[k]− µrq )2}
)1/2 . (15)

• Energy: the quantum energy is expressed as

Erq =
K−1∑
k=0

|rq[k]|2 . (16)

D. Features Selection

Features selection is the step of choosing the most relevant
features for the detection process, contributing to reduce the
dimensionality of the features vector, which is given by

cq|Hi
=
[
ĉ2,rq ĉ3,rq ĉ4,rq γ3,rq κ4,rq Erq

]T
, (17)

where i = 0, 1.
Assuming that each characteristic of a quantum is obtained

from a sum of random variables, one can model cq as a vector
of independent random variables, with Gaussian distribution.
In this way, for the two quantum states, the following proba-
bility density functions (PDFs) can be modeled:

pcq|H0
= N

(
E{cq|H0

},Kcq

)
, (18)

pcq|H1
= N

(
E{cq|H1

},Kcq

)
, (19)

where Kcq
is the autocovariance matrix of cq , whose diagonal

is composed by the vector σ =
[
σ2
1 · · ·σ2

Lf

]
, in which σ2

n is
the variance of the nth feature, with 1 ≤ n ≤ Lf , and Lf
is the total number of features. Based on this assumption, the
Fisher Determinant Ratio (FDR) is used for the selection as
follows:

υc = (E{cq|H0} − E{cq|H1})�

[
1

2σ2
1

· · · 1

2σ2
Lf

]
, (20)

where υc =
[
υ1 υ2 · · · υLf

]T
. The elements of the vector υc

with the highest values indicate the features that will form the
characteristic features vector gq with reduced dimensionality
for the qth quantum, as formulated below:

gq = Sζmaxυc
{cq} , (21)

in which Sζmaxυc
{·} represents the operation for selecting the

ζ features associated with the highest values of the FDR vector
υc.

In order to explore the diversity of the means of propagating
signals through the air and the electric power cable, we
propose to use the signals from the antenna sensors and PLC

3
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coupler. For this, we use the most relevant features from both
the antenna and the PLC coupler combined as follows:

zq ,

[
gaq
gcq

]
, (22)

where zq ∈ RLzq×1 is a vector composed of selected features
obtained from monitoring both the antenna (gaq ) and the PLC
coupler (gcq), concomitantly.

E. Detection

Quanta detection is the last stage of the cognitive cycle. For
each set of features extracted from the quantum, represented
by the vector zq with reduced dimensionality, a classification
technique is used to determine whether the analyzed quantum
is occupied or not. The two states are represented by the
hypotheses H1 and H0, respectively. For that, we use the
detection technique based on the Bayes’ theorem and the
PDF of the data to obtain an analytical expression with the
purpose of determining, with maximum likelihood, which of
the hypotheses (H1 or H0) the vector zq is more related.

Thus, the rule for classifying a quantum in hypotheses H1

or H0 is expressed as

p(zq|H0)P (H0) > p(zq|H1)P (H1) , zq → H0 , (23)

or

p(zq|H0)P (H0) ≤ p(zq|H1)P (H1) , zq → H1 . (24)

As formulated in [14], assuming that zq presents a Gaussian
distribution, the conditional PDF is given by

p(zq|Hj) =
1

(2π)ρ/2|KHj |1/2

e
− 1

2 (zq−uHj
)TK−1

Hj
(zq−uHj

)
, (25)

where uHj
= E{zq|Hj}, | · | denotes the determinant operator,

and KHj
is the autocovariance matrix, which can be expressed

as
KHj

= E{(zq − uHj
)(zq − uHj

)†} , (26)

where (·)† is the Hermitian operator.
The second technique employed in this work to detect the

status of the quanta is a MLP neural network [15]. This class of
artificial neural network (ANN) was chosen due to its ability to
separate regions with nonlinear borders, which can be applied
without the knowledge of the statistics of the analyzed data.
Therefore, the state-space formulation of the MLP with one
hidden layer is given by

uq = αT
[

zq
1

]
, (27)

y = βT
[

tanh(uq)
1

]
, (28)

in which zq is the vector of features associated with the
qth quantum, obtained from the procedure presented in (22);
uq = [u0 u1 · · ·uLN−1

]T is the domain of the activation
function; LN is the number of neurons in the hidden layer
of the network; α ∈ R(zq+1)×LN is the matrix of synaptic

weights between the network entrance and the hidden layer;
and β ∈ R(LN+1)×1 is the matrix of synaptic weights between
the hidden layer and the output of the MLP. The procedure
proposed in [16] was used for training the MLP.

IV. NUMERICAL RESULTS

The performance evaluation of the proposed spectral mon-
itoring technique is based on the use of measured signals,
which were obtained from a measurement campaign carried
out in several homes in the city of Juiz de Fora, Brazil
[17], when the frequency band between 1.7 and 100 MHz is
considered. Measurements of the noise sensed by an antenna
and by a PLC coupler connected to the indoor and low-voltage
electric power grid were obtained. The data acquisition system
was constituted of an industrial computer, a Peripherical
Component Interconnect (PCI) card with a 14-bit analog-to-
digital converter (ADC) at a rate of acquisition of 200 Mega
samples per second, a PLC coupler, and an omnidirectional
antenna. For the time-frequency mapping, N = 128 and the
following quanta dimensions were considered: NT × NF ∈
{1× 4 , 1× 8 , 4× 4 , 4× 8 , 8× 4 , 8× 8}.

Based on the measured data, we have noted that only the en-
ergy of each quantum is a useful feature for detection purposes
since the other studied features, when compared to energy, did
not present significant FDR values. Such information obtained
from the measured data is rather relevant since it simplifies
the design of a technique for detecting holes in the monitored
spectrum. The numerical results discussed below are based on
the use of zq constituted by the energy values of the signals
obtained from both air and power line.

Therefore, the spectral monitoring technique with its distinct
configurations is evaluated in terms of detection rate (PD) of
the unoccupied quanta, i.e., of holes in the spectrum, as well as
false alarm rate (PF ). In order to analyze the signals monitored
in the time-frequency domain, time-frequency mapping is
used, based on the DFT, DHT, MCLT, MTM, and HMTM
transforms. Thus, monitoring technique configurations are
formed by the combination of time-frequency transforms with
detectors based on Bayes and MLP, presented in Section III-E,
as shown in TABLE I.

TABLE I
CONFIGURATIONS OF THE PROPOSED SPECTRUM SENSING TECHNIQUE.

DFT DHT MCLT MTM HMTM

Bayes BDFT BDHT BMCLT BMTM BHMTM
MLP MDFT MDHT MMCLT MMTM MHMTM

For each sensor element (antenna or PLC coupler), the data
set with 2000 quanta was used, in which 1000 quanta were
used in the training set and the other 1000 quanta were used
to evaluate the performance in terms of the detection rate of
holes in the spectrum and false alarm rate.

Fig. 3 and Fig. 4 show the performance, based on the
detection rate (PD) and the false alarm rate (PF ), of the
monitoring technique using the captured signal with various
quanta orders. First, it is notable that the Bayes-based config-
urations present worse performance values in both detection
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rate and false alarm rate when compared to the MLP-based
ones. Also, regarding the detection rate for the considered
configurations, it is remarkable the contrast of the results
presented by the quanta Ψa

4x8 and Ψa
8x4, which correspond

to the quanta obtained from the antenna. Moreover, it is noted
that BDHT and BHMTM are the configurations most affected
by the reduction in the size of the monitoring quantum. It
is important to emphasize as well the high values of false
alarm rate yielded by the quanta from the PLC coupler,
especially when Bayes-based configurations are considered,
with exception to BMCLT. Finally, note that MDHT and
MHMTM configurations present higher values of false alarm
rate when compared to the other MLP-based ones.
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Fig. 3. Detection rate with several quanta.
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Fig. 4. False alarm rate with several quanta.

V. CONCLUSION

In the present work, an improved spectral monitoring sens-
ing for cognitive PLC systems was proposed and formulated.
In order to evaluate this proposal, a data set obtained from a
measurement campaign containing noise measurements sensed
by an antenna and a PLC coupler was adopted. Results showed

that the performance of the MLP-based technique configura-
tions are superior to the Bayes-based ones. This suggests that
the statistical distribution of the monitoring quanta may not be
modeled by a Gaussian distribution, which is an assumption
made for Bayes detectors. Finally, the PLC coupler quanta
presented considerably higher values of false alarm rate when
compared to the antenna quanta.
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