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Q-Learning-Driven BP decoding for Polar Codes
Lucas M. de Oliveira, Robert M. Oliveira and Rodrigo C. de Lamare

Abstract— This paper presents an enhanced belief propagation
(BP) decoding algorithm and a reinforcement learning-based BP
decoding algorithm for polar codes. The enhanced BP algorithm
weighs each Processing Element (PE) input based on their signals
and Euclidean distances using a heuristic metric. The proposed
reinforcement learning-based BP decoding strategy relies on
reweighting the messages and consists of two steps: we first weight
each PE input based on their signals and Euclidean distances
using a heuristic metric, then a Q-learning algorithm (QLBP) is
employed to figure out the best correction factor for successful
decoding. Simulations show that the proposed enhanced BP
and QLBP decoders outperform the successive cancellation (SC)
and belief propagation (BP) decoders, and approach the SCL
decoders.

Keywords— Q-Learning, Reinforcement Learning, Belief Prop-
agation, Polar Codes.

I. INTRODUTION

Polar codes, originally introduced in 2009 by Arikan [1],
are a significant breakthrough in coding theory. They are
theoretically proven capacity-achieving codes based on the
general channel polarization phenomenon [1]. As part of the
5G New Radio enhanced mobile broadband (eMBB) standard,
significant research efforts have been made to design satis-
factory decoders to meet low-latency and high-speed require-
ments, ranging from efficient decoding to suitable hardware
implementation.

One of the first decoders that arose was the Successive
Cancellation (SC) decoder [1], which can achieve good error-
correcting capability with low complexity. However, this de-
coder often exhibits low performance due to the type of
SC-based decoding that is characterized by serial message
updating, propagation errors and low capacity for high-speed
real-time applications. Therefore, the successive cancellation
list (SCL) decoding [2] was proposed to improve the error-
correction performance of SC, since it stores the most likely
codewords in a list, reducing error probability and improving
the performance. Moreover, SCL can be further enhanced by
concatenating a cyclic redundancy check (CRC) code [2]. As
can be seen in [3] - [5], CRC-aided successive cancellation
list (CA-SCL) decoding attains promising error-correction
performance.

Furthermore, several attempts have been made to reduce
the computational complexity and increase the throughput of
SC and SCL decoders. Inherited from Low-Density Parity-
Check (LDPC) codes, Belief Propagation (BP) decoders were
introduced in [6], because of their particular advantages with
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respect to parallelism, high throughput, and low latency. Nev-
ertheless, due to their characteristics, BP decoding requires
a large number of iterations to achieve good performance.
Thus, a way to improve the performance is to employ BP
list decoding [7], which operates when the standard polar code
factor graph fails to produce the correct decoding result and the
permuted version of the standard graph may yield the correct
estimate.

In this paper, we propose an enhanced BP algorithm and
a Q-Learning BP (QLBP) approach to enhance BP decoding
of polar codes. Initially, a weighting technique based on the
Euclidean distance and the signal of the Processing Element
inputs is presented and incorporated into a BP strategy to
devise the enhanced BP algorithm. Then, based on the fact
that a correction factor can enhance the weighting process,
the QLBP is devised to compute the best factor and to ensure
an optimized decoding performance. Numerical results show
that the proposed QLBP algorithm outperforms the proposed
enhanced BP, the existing BP and the SC decoding algorithms.

The remainder of this paper is organized as follows. Section
II introduces polar codes and the decoding problem with BP.
Section III presents the Enhanced BP algorithm and its weight-
ing method. Section IV proposes a Q-learning strategy for
computing BP weights, then presents the Q-Learning driven
BP decoding algorithm. Section V presents the simulated
results. Conclusions are drawn in Section VI.

II. PRELIMINARIES

A. Polar Codes

Polar codes are derived from channel combination and
polarization theory. As the code length N=2n gets larger
through splitting and combining channels, the symmetric ca-
pacity of bit-channels tends to either 1 or 0. In that way,
there are basically two types of channels: noiseless channels,
closer to the capacity of the binary symmetric channels and
denoted by the set A, and noisy channels, denoted by the
set Ac. Let un1 = {u1, u2, ..., un} denote the source vector
and xn1 = {x1, x2, ..., xn} denote the code word vector. For
polar codes with PC(N,K), R= K

N ,the vector u consists of K
information bits in A and N-K frozen bits in Ac. The encoding
process of polar codes, defined by Arikan, can be expressed

by xn1 = un1G
⊗n, where G =

(
1 0
1 1

)
is the n-th Kronecker

power of the polarizing matrix G and n = log2 N.

B. Belief Propagation Decoding

The BP decoder is a message-passing decoder with iterative
processing over the factor graph of any polar code PC(N,K).
The factor graph is based on corresponding polarization matrix
G⊗n, composed of n = log2N stages, each one with N/2
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processing elements (PEs), and (n + 1)N nodes. Two types
of LLRs are transmitted over the factor graph: the left-to-right
message R

(t)
i,j and the right-to-left message L

(t)
i,j , where i, j

denotes the j-th node at the i-th stage whereas t denotes the
t-th iteration.

Considering a binary phase-shift keying (BPSK) modulation
and an additive white Gaussian noise (AWGN) channel model,
the noisy received code word is given by

y = (1− 2x) + z (1)

where 1 is an all-one vector, z is the AWGN noise vector with
variance σ2 and zero mean. In LLR domain, the LLR inputs
for BP decoding of polar codes are initialized as:

L
(0)
n+1,j = ln

Pr(xj = 0|yj)
Pr(xj = 1|yj)

=
2yj
σ2

(2.1)

R
(0)
1,j =

{
0 if j ∈ A
∞ if j ∈ A

(2.2)

where xj and yj denote the j-th bit of modulated and received
codeword, respectively.

The forward and backward propagation of the LLRs over
the PEs, shown in Fig. II-B, is based on the following iterative
updating rules:

L
(t)
i,j = g(L

(t−1)
i+1,j , L

(t−1)
i+1,j+N/2i +R

(t−1)
i,j+N/2i)

L
(t)
i,j+N/2i = g(L

(t−1)
i+1,j , R

(t−1)
i,j ) + L

(t−1)
i+1,j+N/2i

R
(t)
i+1,j = g(R

(t−1)
i,j , L

(t−1)
i+1,j+N/2i +R

(t−1)
i,j+N/2i)

R
(t)
i+1,j+N/2i = g(L

(t−1)
i+1,j +R

(t−1)
i,j ) +R

(t−1)
i,j+N/2i

(3)

where g(x, y) is referred to as the operator:

g(x, y) = ln
1 + ex+y

ex + ey

≈ 0.9375 · sign(x) · sign(y) ·min(|x|, |y|)
(4)

Fig. 1. Processing element update

When the maximum number of iterations, Tmax, is reached,
the information bit ûj and the transmitted codeword x̂j are
estimated based on their LLRs using the following hard
decision criteria:

ûj =

{
0, if LTmax

1,j +RTmax
1,j > 0

1, otherwise
(5.1)

x̂j =

{
0, if LTmax

n+1,j +RTmax
n+1,j > 0

1, otherwise
(5.2)

III. ENHANCED BP DECODING

In this section, we propose a weighting technique for BP
decoders. This technique will lay the foundation for the Q-
learning algorithm, which will be discussed later. As can be
seen in Eq. (3), the propagation of the messages requires four
parameters for each direction, which is, L(t)

i+1,j , L
(t)
i+1,j+N/2i ,

R
(t)
i,j and R

(t)
i,j+N/2i for L messages and R

(t)
i,j , R(t)

i,j+N/2i ,

L
(t)
i+1,j and L(t)

i+1,j+N/2i for R messages. Moreover, as the PEs
updates can be summarized in signal and modules successive
operations defined by Eq. (3), our proposed weighting tech-
nique is built on how those four LLRs evolve in terms of
signal and module over time.

Thus, we introduce four weighting factors, ρ1, ρ2, ρ3, and
ρ4, which will modify how the LLRs are updated, as can be
seen below.

L
(t)
i,j = g

(
ρ1 · L(t−1)

i+1,j , ρ1

(
L
(t−1)
i+1,j+N/2i +R

(t)
i,j+N/2i

))
L
(t)
i,j+N/2i = g

(
ρ2 · L(t−1)

i+1,j , ρ2 ·R
(t)
i,j

)
+ ρ2 · L(t−1)

i+1,j+N/2i

(6)
where

ρ1 = 1 + β ·

[
||L(t)

i,j | − |L
(t−1)
i,j ||

(|L(t)
i,j |+ |L

(t−1)
i,j |)

]
·∆1

ρ2 = 1 + β ·

 ||L(t)
i,j+N/2i | − |L

(t−1)
i,j+N/2i ||

(|L(t)
i,j+N/2i |+ |L

(t−1)
i,j+N/2i |)

 ·∆2

∆1 = sign(L
(t)
i,j + L

(t−1)
i,j )

∆2 = sign(L
(t)
i,j+N/2i + L

(t−1)
i,j+N/2i)

(7)

The weighting method is based on the distance between
the LLRs at the time t and t − 1 and whether their signals
have changed over the iterations. Note that when |L(t)

i,j | and
|L(t−1)
i,j | are close to each other, ρ1 is approximately equal to

1. Consequently, the node update is similar to the Eq. 3. Thus,
as these values deviate, the greater the weighting. Moreover,
the signal deviations are considered by ∆1. It should also be
pointed out that the same idea is applied to the subsequent
weighting factors.

R
(t)
i+1,j = g

(
ρ3 ·R(t)

i,j , ρ3

(
L
(t−1)
i+1,j+N/2i +R

(t)
i,j+N/2i

))
R

(t)
i+1,j+N/2i = g

(
ρ4

(
L
(t−1)
i+1,j +R

(t)
i,j

))
+ ρ4 ·R(t)

i,j+N/2i

(8)
where

ρ3 = 1 + β ·

[
||R(t)

i+1,j | − |R
(t−1)
i+1,j ||

(|R(t)
i+1,j |+ |R

(t−1)
i+1,j |)

]
·∆3

ρ4 = 1 + β ·

 ||R(t)
i+1,j+N/2i | − |R

(t−1)
i+1,j+N/2i ||

(|R(t)
i+1,j+N/2i |+ |R

(t−1)
i+1,j+N/2i |)

 ·∆4

∆3 = sign(R
(t)
i+1,j +R

(t−1)
i+1,j )

∆4 = sign(R
(t)
i+1,j+N/2i +R

(t−1)
i+1,j+N/2i)

(9)
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Furthermore, it is worth noting that β is a general correction
factor for all processing elements, whose simulations have
shown that it must belong to the range [-0.50, 0.50]. Thus,
an open problem is how to set up the best β for a specific
input, a task in which the Q-learning algorithm, proposed in
the next section, tries to solve.

A high-level description of the enhanced BP decoding
algorithm is illustrated in Algorithm 1. The algorithm takes the
received codeword yn1 , the code block length N, the maximum
number of iterations Tmax, and the information set A and
calculates the estimated free bits ûA as an output vector.

Algorithm 1 Enhanced BP Algorithm
Input: yn1 , N, Tmax, A
Output: ûA

1: for each node (i,j) do
2: if (i==1) & (j 6∈ A) then
3: R

(0)
1,j ←∞

4: else if (i==n+1) then
5: L

(0)
n+1,j ←

2yj
σ2

6: else
7: L

(0)
i,j ← 0 , R(0)

i,j ← 0
8: end if
9: end for

10: for (1<t< Tmax) & each node (i,j) do
11: if (t==1) then
12: Update L(1)

i,j and R(1)
i,j according to Eq. (3)

13: Store L(1)
i,j and R(1)

i,j

14: else
15: Update L(t)

i,j and R(t)
i,j according to Eqs. (6) and (8),

respectively
16: Store L(t)

i,j and R(t)
i,j

17: end if
18: end for
19: Compute û according to Eq. (5.1)
20: Select A positions of û to compose ûA
21: return ûA

IV. PROPOSED Q-LEARNING BP DECODING

A. Reinforcement learning and Q-Learning

Reinforcement Learning, RL, is an area of machine learning
in which an agent learns how to take actions from its action
space, within a particular environment, in order to maximize
rewards over time. At each time step, the agent, which is
undergoing the learning process, is in a state st, selects an
action at and moves to the next state st+1, while obtaining a
reward rt. The aim of learning is to train the agent to find an
optimal policy, which is a mapping between states and actions,
and will return the maximum cumulative rewards from taking
a series of actions in one or more states.

A Markov Decision Process [8], MDP, is a mathematical
framework for fully observable sequential decision making
problems in stochastic environments. Defined as a 5-tuple,
(S,A,R,P (s, a, s′),R(s, a, s′)), S represents a set of states,
where st ∈ S is the state at time-step t, A is a finite set

of actions, where at ∈ A is the action executed at time-step
t, P (s, a, s′) is the probability that action a in state s at time
t will lead to state s′ at time t + 1, and R(s, a, s′) is the
immediate reward received after a transition from state s to s′

due to action a.
Q-Learning [9], a model-free reinforcement learning algo-

rithm, is used to learning the optimal policy of an agent
without using or estimating the dynamics of the environment.
For every state-action pair, a Q-value, Q(s,a), measures the
total amount of discounted rewards expected over the future
when the agent moves from the state st to the state st+1 with
at and sticks to its policy afterwards. The Q-learning update
rule assumes the following general form:

Qn(st, at) = Qo(st, at) + αδ

δ =
[
rt + γ ·max

a
Q(st+1, a)−Q(st, at)

] (10)

where α is the learning rate, and affects how the Q-values are
altered after taking an action. The constant γ is the discount
factor, and determines how much influence the future rewards
have on the updates of the Q-values. α = 0.1 and γ = 0.6
were chosen because they presented better results.

B. Q-Learning BP Decoding

As mentioned in Section III, an open problem is how to
compute the best value of β. However, instead of having a
general value of β to all PEs on the factor graph, we evaluated
different values of β for each PE in order to avoid a huge state
subspace. From this approach, our environment is composed
by each PEl,m, l, m denotes m-th PE at the l-stage, where m
belongs to the range [1, N2 ] and l belongs to the range [1, n].
Thus, the agent, in a given state stl,m , selects an action atl,m
and waits for the decoding process to return to PEl,m to be
ultimately rewarded.

• Reward:
The reward quantifies the desirability of choosing an action

while transitioning to some state. It can be either positive
or negative, the latter being interpreted as a penalty for an
undesirable action. The total reward with the discount factor
that the agent will achieve from the current time step t to the
end of the task can be defined as:

Rt = rt + γrt+1 + ...+ γn−trn = rt + γRt+1 (11)

We have implemented a high positive reward for a suc-
cessful decoding process in order to encourage the agent to
achieve this goal. In addition, the agent should obtain a slight
positive reward if the LLR at time t has the same signal of
the LLR at time t − 1 in a given PE. On the other hand, if
the LLR at time t and t − 1 has not the same signal, the
agent should obtain a slight negative reward. In doing so, we
avoid undesirable actions, which keep away from successful
decoding. The discount factor and the rewards values are
shown in Table I.

Note that when we have successful decoding, the reward
can be either 20, 10, or 0. As can be seen in Section II-B, the
propagation of the LLRs over the PEs involves four numbers
and generates two output LLRs for each propagation direction.

3



XXXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2021, 26–29 DE SETEMBRO DE 2021, FORTALEZA, CE

TABLE I

Event Reward
Successful decoding 20/10/0

LLRs have the same signal 1
LLRs have not the same signal -1

Therefore, if both output LLRs have not changed their signal
over time, we reward the associated PE with 20. If one of them
has changed its signal over time, we reward the associated PE
with 10. On the other hand, if both output LLRs have changed
their signal, we reward with 0. Any other reward values could
be chosen, but they should have the same logic.

• State Space:
The state space is the set of all possible situations a

processing element could have. For each propagation, it is
necessary four numbers to compute the outputs. Thus, there are
24 signal variations and 4! modules variations, which means
a state space with 4! · 24= 384 possible states.

• Actions:
Note that the agent cannot control so far what state it ends

up in, since it can be influenced by choosing some action a.
Thus, focusing on a single state s and action a, we introduce
recursively the Q function, Q(s, a), in terms of the Q-value
of the next state s′, which can be expressed as follows:

Q(s, a) = r + γ ·maxa′Q(s′, a′) (12)

Also known as the Bellman equation, Eq. (12) tells us
that the maximum future reward is given by the reward that
the agent received for entering the current state s plus the
maximum future reward for the next state s′.

In the proposed QLBP algorithm, during the decoding
process, for each PE in the factor graph, the agent encounters
one of the 384 states and it takes an action. The action in our
case can be a value between -0.5 and 0.5. If the signal of the
LLR at time t is different from the LLR at t − 1, the choice
of an action will change how the LLR is weighted according
to Eqs. (7) and (9). Otherwise, it is assumed ρ1,2,3,4 = 1.

An agent could interact with the environment in 2 different
ways. The first one is to use a lookup table with state-action
pairs to store and get information. Each state-action pair is
associated with a Q-value that indicates the quality of the
decision. Thus, in a given state s∗, the agent selects the action
based on the maximum value of Q(s∗, a). This procedure
is known as exploiting since the information that we have
available is used to make a decision.

The second way to take action is to act randomly. This
is called exploring and the exploration method used is the
greedy approach [10]. Instead of selecting actions based on
the maximum future reward, we select an action at random.
Acting randomly is important because it allows the agent
to explore and discover new states that otherwise may not
be selected during the exploitation process. It is possible to
balance exploration and exploitation using ε, which measures
how often you want to explore instead of exploit. It was used
ε = 0.5.

A high-level description of the QLBP algorithm is depicted

in Algorithm 2. The algorithm takes the conventional BP
parameters (such as the received codeword yn1 , the code
block length N, the maximum number of iterations Tmax,
and the information set A), the Q-Table and the Q-Learning
parameters (such as learning rate α, discount factor γ, and ε-
greedy parameter), and outputs the estimated free bits ûA and
the actualized Q-Table.

Algorithm 2 QLBP Algorithm
Input: Conventional BP parameters, Q-Table, Q-Learning pa-

rameters
Output: ûA, Q-Table

Define conventional BP initialization
2: for (1<t< Tmax) do

for each node (i, j) do
4: Update L(t)

i,j and R
(t)
i,j according to Eq. (6) and (8),

respectively
Store L(t)

i,j and R(t)
i,j

6: if rand()< ε then
Choose an action randomly

8: else
Choose the action which maximizes the Q-value
for the current state

10: end if
if sign(LLR

(t)
i,j ) 6= sign(LLR

(t−1)
i,j ) then

12: Apply a penalty
else

14: Apply a reward
end if

16: Qn(st, at)=Qo(st, at)+α(rt+γ ·maxaQ(st+1, at))
end for

18: if (x = u ·G) then
Apply a bigger reward

20: Compute Qn(st, at) again
break

22: end if
end for

24: Compute û according to Eq. (5.1)
Select A positions of û to compose ûA

26: return [ûA,actualized Q-Table]

V. SIMULATIONS

In this section, the simulation results are presented to
demonstrate the effectiveness of the proposed enhanced BP
and QLBP algorithms compared to different decoders, namely
Arikan’s original SC, SCL with List-4 and List-8 and Arikan’s
original BP for N=256, N=512 and R=1

2 .
As can be seen in Figs. 2 and 3, for N=256, R=1

2 , both
results have shown that the proposed Q-Learning-Driven BP
decoder outperforms the SC, BP, and Enhanced BP algorithms
by up to approximately 0.5 dB and 0.4 dB in terms of BER and
FER, respectively, at 2 dB, and approaches the performance of
the benchmark decoder in the literature, SCL. However, note
that the performance gain decreases as the signal-to-noise ratio
increases. Thus, the proposed QLBP algorithm is more suitable
to be implemented at lower SNRs at this code length.

4
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Fig. 2. BER comparison between Arikan’s original SC, SCL with List-4 and
List-8, Arikan’s original BP, our proposed BP Enhanced and BP Q-learning
decoders for N=256 and K=128; no CRC used.
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Fig. 3. FER comparison between Arikan’s original SC, SCL with List-4 and
List-8, Arikan’s original BP, our proposed BP Enhanced and BP Q-learning
decoders for N=256 and K=128; no CRC used.

In the second example, we assess the decoders for
N=512 and K=256 in Figs. 4 and 5. As mentioned before,
the proposed QLBP decoder also outperforms the SC, BP,
and Enhanced BP algorithms by up to approximately 0.4 dB
and 0.25 dB in terms of BER and FER, respectively, at 2 dB.
Besides that, although the performance of the SCL decoder has
not been achieved, the proposed QLBP decoder performance
has got even closer to the benchmark decoder and renders
itself more easily to implementation. The performance gain of
BER still maintained constant over the SNRs even though the
FER has not.
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Fig. 4. BER comparison between Arikan’s original SC, SCL with List-4 and
List-8, Arikan’s original BP, our proposed BP Enhanced and BP Q-learning
decoders for N=512 and K=256; no CRC used.
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Fig. 5. FER comparison between Arikan’s original SC, SCL with List-4 and
List-8, Arikan’s original BP, our proposed BP Enhanced and BP Q-learning
decoders for N=512 and K=256; no CRC used.

Future works will consider puncturing techniques [11],
multiple-antenna systems [12], [13].

VI. CONCLUSION

This paper exploits the design of a BP decoder driven
by Q-Learning, which seeks the best action, a weighting factor,
for a specific state, an input in the processing element. More
specifically, from our experience, Q-learning learns the optimal
policy that maximizes the total reward, that is, a successful
decoding. Thus, in the long term, the decoder learns how
to weigh each processing element. Finally, simulations have
shown that the performance of the proposed QLBP decoder
for Polar Codes is better than Arikan’s SC and BP codes, and
approaches significantly the SCL decoders.
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