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Stochastic Modeling of the KCLMS Algorithm
in the Context of Adaptive Beamforming

Khaled Jamal Bakri, Eduardo Vinicius Kuhn, Marcos Vinicius Matsuo,
Ciro André Pitz, Rui Seara, and Jacob Benesty

Abstract— This paper presents a stochastic model for the
Kronecker product constrained least-mean-square (KCLMS) al-
gorithm applied in adaptive beamforming. Such an algorithm
considers that the beamforming vector can be expressed as a
Kronecker product of two smaller vectors, thus yielding improved
convergence and less computational complexity (in comparison to
the CLMS). The proposed model entails expressions describing
the mean behavior of the beamforming vectors, the evolution
of the output signal-to-interference-plus-noise ratio (SINR), and
the correlation matrices related to the beamforming vectors.
Simulation results are shown confirming the accuracy of the
model.

Keywords— Adaptive beamforming, antenna arrays, CLMS
algorithm, Kronecker product, mobile communications.

I. INTRODUCTION

Mobile communication systems have used adaptive beam-
forming techniques to dynamically adjust the radiation pat-
tern of an antenna array, aiming to reduce interferences and
strengthen the signal-of-interest (SOI); as a result, an improved
signal-to-interference-plus-noise ratio (SINR) is achieved at
the array output [1, 2], thus increasing both spectral and
energy efficiency of the system [3]. Among the beamforming
algorithms (e.g., [4–9] and references therein), the constrained
least-mean-square (CLMS) [4] has been widely used, due to
its low computational complexity and dependence only on
knowledge of the angle-of-arrival (AOA) of the SOI [10].
However, this algorithm shows poor convergence character-
istics as the number of antennas increases [7], limiting its
use in modern massive MIMO (multiple-input multiple-output)
applications (such as in 5G networks [11, 12]). So, aiming to
overcome this drawback, the beamforming problem has been
reformulated in [13] (based on [14]) by assuming that the
beamforming vector can be expressed as a Kronecker product
of two smaller beamforming vectors, thus giving rise to a

Khaled Jamal Bakri and Rui Seara are with LINSE—Circuits and Signal
Processing Laboratory, Department of Electrical and Electronics Engineering,
Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
(e-mails: khaled@linse.ufsc.br; seara@linse.ufsc.br).

Eduardo Vinicius Kuhn is with LAPSE—Electronics and Signal Pro-
cessing Laboratory, Department of Electronics Engineering, Federal Uni-
versity of Technology - Paraná, Toledo, PR, 85902-490, Brazil (e-mail:
kuhn@utfpr.edu.br).

Marcos Vinicius Matsuo and Ciro André Pitz are with GEPS—Electronics
and Signal Processing Group, Department of Control, Automation, and
Computation Engineering, Federal University of Santa Catarina, Blumenau,
SC, 89036-004, Brazil (e-mails: marcos.matsuo@ufsc.br; ciro.pitz@ufsc.br).

Jacob Benesty is with the INRS-EMT—National Institute of Scien-
tific Research–Energy, Materials, and Telecommunications Research Cen-
ter, University of Quebec, Montreal, QC, H5A-1K6, Canada (e-mail: ben-
esty@emt.inrs.ca).

joint optimization problem. Such a joint optimization problem
has then been solved by using an alternating optimization
strategy along with the steepest-descent method, which leads
to the development of the Kronecker product CLMS (KCLMS)
algorithm [13]. Simulation results (shown in [13]) have been
used to confirm the robustness of the algorithm for different
operating scenarios.

Considering its practical applicability and the improved
performance achieved, a theoretical study of the KCLMS
algorithm through a stochastic model can be useful to gain
a deeper understanding of the algorithm behavior [as an
alternative to the use of extensive Monte Carlo (MC) sim-
ulations]. Such a model aims to describe the algorithm behav-
ior under different operating conditions, allowing to obtain
fair performance comparisons, to establish cause-and-effect
relationships, and to identify anomalous algorithm behavior
[6, 9, 15–18]. Nevertheless, despite the inherent importance,
the stochastic modeling of the KCLMS algorithm has not been
discussed so far in the literature. In this context, focusing on
adaptive beamforming applications in mobile communications,
the present research work has the following goals:

i) to develop a stochastic model characterizing the behavior
of the KCLMS algorithm;

ii) to derive expressions for predicting the mean behavior
of the beamforming vectors, the evolution of the SINR,
and some correlation-like matrices; and

iii) to verify and discuss the accuracy of the model for
different operating scenarios.

The remainder of this paper is organized as follows. Sec-
tion II revisits the operating scenario and the KCLMS al-
gorithm. Section III presents the mathematical development
followed to obtain the proposed model. Section IV shows
simulation results for assessing the accuracy of the model.
Lastly, Section V presents concluding remarks.

Throughout this paper, the adopted mathematical notation
follows the standard practice of using lower-case boldface
letters for vectors, upper-case boldface letters for matrices,
and both italic Roman and Greek letters for scalar quantities.
Superscripts H and ∗ stand for the Hermitian transpose of a
matrix and the complex conjugate, respectively, E( · ) denotes
the expected value, and ⊗ stands for the Kronecker product.

II. PROBLEM STATEMENT

Here, the operating scenario considered is introduced and,
then, the general expressions of the KCLMS algorithm are
revisited.

SBrT 2021 1570726552
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A. On the Operating Scenario

Considering a scenario with K single-antenna mobile ter-
minals (co-channel users) and a base station equipped with an
array of M antennas, the baseband input vector (at a given
time instant n) can be expressed as [10]

x(n) =
K∑

k=1

sk(n) + z(n) (1)

with sk(n) and z(n) ∈ CM×1 representing, respectively, the
baseband signal vector related to the kth user and the complex
additive white Gaussian noise with power σ2

z present at each
antenna of the array. Then, assuming L multipath components
for each user, sk(n) can be written as

sk(n) =
√
ρk

L∑
l=1

βk,l(n)d(θk,l) (2)

where ρk denotes the transmission power of the kth user,
βk,l(n) models the complex envelope corresponding to the lth
multipath of the kth user, and d(θk,l) ∈ CM×1 is the steering
vector of the lth multipath from the kth user that arrives at
the base station with AOA θk,l. Note that d(θk,l) depends on
the array geometry (e.g., see [14, Sec. 2.1 and 6.1]).

Now, defining ŵ(n) ∈ CM×1 as the adaptive beamforming
vector, the antenna array output can be obtained as [10]

y(n) = ŵH(n)x(n). (3)

As a result, the mean power of y(n) becomes

E[|y(n)|2] = ŵH(n)Rŵ(n) (4)

where
R = E[x(n)xH(n)]

=

K∑
k=1

ρkDk + σ2
zIM

(5)

is the autocorrelation matrix of the input data [5], in which
IM represents an M ×M identity matrix and

Dk =
1

L

L∑
l=1

d(θk,l)d
H(θk,l) (6)

is the spatial autocorrelation matrix of the kth user. So, using
(4) and assuming in (5) the ith user as the SOI, the output
SINR can be expressed as

γ(n) =
ŵH(n)Rsoiŵ(n)

ŵH(n)Rintŵ(n)
(7)

where
Rsoi = ρiDi (8)

denotes the autocorrelation matrix of the SOI and

Rint =
K∑

k=1
k ̸=i

ρkDk + σ2
zIM (9)

is the autocorrelation matrix of the interference-plus-noise
signal. Note that the numerator and denominator of (7) char-
acterize, respectively, the mean power of the SOI and of the
interference-plus-noise signal in the beamforming output.

B. Revisiting the KCLMS Algorithm

Instead of designing the M -dimensional (global) beamform-
ing vector ŵ(n), it is assumed in the KCLMS algorithm [13]
that1

ŵ(n) = ŵ1(n)⊗ ŵ2(n) (10)

with ŵ1(n) ∈ CM1×1 and ŵ2(n) ∈ CM2×1 being two smaller
(virtual) beamforming vectors, whose dimensions satisfy the
condition M = M1M2. As a consequence, substituting (10)
into (3), the antenna array output becomes

y(n) = [ŵ1(n)⊗ ŵ2(n)]
Hx(n) (11)

which is a bilinear form in ŵ1(n) and ŵ2(n) as in [19, 20].
Then, solving a joint optimization problem by using an alter-
nating optimization strategy (see details in [13]), an update
rule for adjusting ŵ1(n) is derived as

ŵ1(n+ 1) = P̂2(n)[ŵ1(n)− µ1x2(n)y
∗(n)] + f̂2(n) (12)

where µ1 > 0 denotes a step-size parameter,

P̂2(n) = IM1 − Ĉ2(n)[Ĉ
H
2 (n)Ĉ2(n)]

−1ĈH
2 (n) (13)

Ĉ2(n) = [IM1
⊗ ŵ2(n)]

HC (14)

x2(n) = [IM1
⊗ ŵ2(n)]

Hx(n) (15)

and

f̂2(n) = Ĉ2(n)[Ĉ
H
2 (n)Ĉ2(n)]

−1f . (16)

In turn, for updating ŵ2(n),

ŵ2(n+ 1) = P̂1(n)[ŵ2(n)− µ2x1(n)y
∗(n)] + f̂1(n) (17)

where µ2 > 0 represents a step-size parameter,

P̂1(n) = IM2 − Ĉ1(n)[Ĉ
H
1 (n)Ĉ1(n)]

−1ĈH
1 (n) (18)

Ĉ1(n) = [ŵ1(n)⊗ IM2
]HC (19)

x1(n) = [ŵ1(n)⊗ IM2 ]
Hx(n) (20)

and

f̂1(n) = Ĉ1(n)[Ĉ
H
1 (n)Ĉ1(n)]

−1f . (21)

Note that C ∈ CM×P in (14) and (19) denotes a constraint
matrix, while f ∈ CP×1 in (16) and (21) defines a vector
containing the (fixed) gain assigned to each of the P con-
straints (as in [4]). Lastly, from ŵ1(n+1) and ŵ2(n+1), the
beamforming vector is updated as follows

ŵ(n+ 1) = ŵ1(n+ 1)⊗ ŵ2(n+ 1). (22)

Therefore, the KCLMS algorithm has been completely char-
acterized through (11)-(22).

1The decomposition given in (10) holds for antenna arrays with different
geometries [14, Ch. 1].
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III. PROPOSED MODEL

In this section, the stochastic model characterizing the
behavior of the KCLMS algorithm is derived, entailing ex-
pressions describing the mean behavior of the beamforming
vectors, the evolution of the SINR, as well as recursive expres-
sions for computing some required correlation-like matrices.
To this end, the following assumptions are stated:
A1) The adaptive weight vectors ŵ1(n), ŵ2(n), and ŵ(n)

as well as the input vectors x1(n), x2(n), and x(n) are
assumed statistically independent of each other.

A2) The AOA of the SOI is assumed known a priori and fixed
during the whole adaptation process; hence, C and f are
constant.

Note that some simplifying assumptions are usually required
to make the development mathematically tractable (see details
in [21] and [22]).

A. Mean Behavior of the Beamforming Vectors

An expression describing the mean behavior of the beam-
forming vector ŵ1(n) can be obtained by substituting (11)
into (12), using (15), taking the expected value of both sides
of the resulting expression, and considering Assumption A1);
thus,

E[ŵ1(n+ 1)] =

E[P̂2(n)]{IM1
− µ1R̂2(n)]}E[ŵ1(n)] + E[̂f2(n)]

(23)

where

E[P̂2(n)] ∼=
IM1−E[Ĉ2(n)]{CH[IM1 ⊗ K̂2(n)]C}−1E[ĈH

2 (n)]
(24)

E[Ĉ2(n)] = {IM1
⊗ E[ŵH

2 (n)]}C (25)

R̂2(n) ∼= {IM1 ⊗ E[ŵH
2 (n)]}R{IM1 ⊗ E[ŵ2(n)]} (26)

and

E[̂f2(n)] ∼= E[Ĉ2(n)]{CH[IM1
⊗ K̂2(n)]C}−1f (27)

with
K̂2(n) = E[ŵ2(n)ŵ

H
2 (n)] (28)

denoting the correlation-like matrix of ŵ2(n). Similarly, from
(11), (17), and (20), the mean behavior of the beamforming
vector ŵ2(n) can be described by

E[ŵ2(n+ 1)] =

E[P̂1(n)]{IM2
− µ2R̂1(n)]}E[ŵ2(n)] + E[̂f1(n)]

(29)

with

E[P̂1(n)] ∼=
IM2

−E[Ĉ1(n)]{CH[K̂1(n)⊗ IM2
]C}−1E[ĈH

1 (n)]
(30)

E[Ĉ1(n)] = {E[ŵH
1 (n)]⊗ IM2}C (31)

R̂1(n) ∼= {E[ŵH
1 (n)]⊗ IM2

}R{E[ŵ1(n)]⊗ IM2
} (32)

and

E[̂f1(n)] ∼= E[Ĉ1(n)]{CH[K̂1(n)⊗ IM2
]C}−1f (33)

where
K̂1(n) = E[ŵ1(n)ŵ

H
1 (n)] (34)

represents the correlation-like matrix of ŵ1(n). Finally, the
mean behavior of the beamforming vector ŵ(n) can be
determined by taking the expected value of both sides of (22)
and considering Assumption A1), which yields

E[ŵ(n+ 1)] ∼= E[ŵ1(n+ 1)]⊗ E[ŵ2(n+ 1)]. (35)

Therefore, assuming that expressions characterizing (28) and
(34) are known, the mean behavior of the beamforming vectors
ŵ1(n), ŵ2(n), and ŵ(n) can be predicted through (23), (29),
and (35), respectively.

B. Evolution of SINR

Taking the expected value of both sides of (7), assuming that
the numerator varies slowly with respect to the denominator
[due to the constraint on ŵ(n) ensuring fixed gain towards the
SOI] in such a way that the averaging principle (AP) [23] can
be invoked, and using the cyclic property of the trace operator
[24], an approximate expression characterizing the SINR is
obtained as

E[γ(n)] ∼=
E[ŵH(n)Rsoiŵ(n)]

E[ŵH(n)Rintŵ(n)]

=
tr[K̂(n)Rsoi(n)]

tr[K̂(n)Rint(n)]

(36)

where
K̂(n) = E[ŵ(n)ŵH(n)] (37)

is the correlation-like matrix of ŵ(n). So, the evolution of the
SINR can be predicted if K̂(n) is known.

C. Correlation-like Matrices

A recursive expression characterizing the evolution of
K̂1(n) can be derived by substituting (11) into (12), calcu-
lating ŵ1(n+1)ŵH

1 (n+1), taking the expected value of both
sides of the resulting expression, using the Assumption A1),
and approximating

E[̂f2(n)f̂H2 (n)] ∼= E[̂f2(n)]E[̂fH2 (n)]. (38)

Thereby, we have

K̂1(n+ 1) ∼=
E[P̂2(n)][K̂1(n)− µ1K̂1(n)R̂2(n)− µ1R̂2(n)K̂1(n)

+ µ2
1{IM1

⊗ E[ŵH
2 (n)]}R̂3(n){IM1

⊗ E[ŵ2(n)]}]E[P̂H
2 (n)]

+ E[P̂2(n)][IM1
− µ1R̂2(n)]E[ŵ1(n)]E[̂fH2 (n)]

+ E[̂f2(n)]E[ŵH
1 (n)][IM1

− µ1R̂2(n)]E[P̂H
2 (n)]

+ E[̂f2(n)]E[̂fH2 (n)]
(39)

with

R̂3(n) = E[x(n)xH(n)ŵ(n)ŵH(n)x(n)xH(n)]. (40)

In turn, substituting (11) into (17), determining the outer
product ŵ2(n + 1)ŵH

2 (n + 1), taking the expected value of

3
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both sides of the resulting expression, using Assumption A1),
and assuming

E[̂f1(n)f̂H1 (n)] ∼= E[̂f1(n)]E[̂fH1 (n)] (41)

a recursive expression characterizing the evolution of K̂2(n)
is derived as

K̂2(n+ 1) ∼=
E[P̂1(n)][K̂2(n)− µ2K̂2(n)R̂1(n)− µ2R̂1(n)K̂2(n)

+ µ2
2{E[ŵH

1 (n)]⊗ IM2
}R̂3(n){E[ŵ1(n)]⊗ IM2

}]E[P̂H
1 (n)]

+ E[P̂1(n)][IM2 − µ2R̂1(n)]E[ŵ2(n)]E[̂fH1 (n)]

+ E[̂f1(n)]E[ŵH
2 (n)][IM2

− µ2R̂1(n)]E[P̂H
1 (n)]

+ E[̂f1(n)]E[̂fH1 (n)].
(42)

Note that the factorization theorem of a fourth-order moment
of complex Gaussian variables [21, 22] can be considered to
rewrite (40) as

R̂3(n) ∼= RK̂(n)R+Rtr[RK̂(n)]. (43)

Finally, a recursive expression characterizing the correlation-
like matrix of ŵ(n) is obtained by calculating the outer
product ŵ(n + 1)ŵH(n + 1) from (22), taking the expected
value, and considering Assumption A1); thereby,

K̂(n+ 1) ∼= K̂1(n+ 1)⊗ K̂2(n+ 1). (44)

Therefore, given the initial conditions ŵ1(0) and ŵ2(0), the
mean behavior of the beamforming vectors can be predicted
from (23), (29), and (35), while the evolution of the SINR can
be determined through (36). So, the behavior of the KCLMS
algorithm has now been completely characterized.

IV. SIMULATION RESULTS

Here, the accuracy of the model is verified by comparing
MC simulation results (50 independent runs) with model pre-
dictions. To this end, we consider a base station equipped with
a uniform linear array, having M omnidirectional antennas
spaced by a half wavelength. The scenario is formed by a
SOI located at 30o and six interfering signals located at {−60o,
−50o, −30o, 0o, 40o, 70o}. The signal transmitted by each user
travels through L = 12 independent fading paths with azimuth
spread of ∆θk around the mean AOA θk. The signal-to-noise
ratio (SNR) is 30 dB (related to the SOI power). The step-size
values are µ1 = µ2 = 0.001, while the beamforming vectors
are initialized as ŵ1(0) = [1 0 . . . 0]T with M1 = 4 and
ŵ2(0) = [1 0 . . . 0]T for M2 = M/M1; as a consequence, an
omnidirectional radiation pattern is observed at the beginning
of the adaptation process [5], since ŵ(0) = ŵ1(0) ⊗ ŵ2(0).
For the sake of simplicity, we consider only one constraint
(P = 1) ensuring unity gain towards the SOI; thereby, C =
d(θi) and f = 1.

A. Example 1

This example aims to verify the accuracy of the proposed
model vis-à-vis an array with M = 32 antennas (as discussed
in [25] for the IEEE 802.11ad standard), different values of
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Fig. 1. Example 1. Results obtained by MC simulations (gray lines) and
from the proposed model (dark-dashed lines). (a) Evolution of the real part
of five weights of the beamforming vector. (b) Evolution of the imaginary
part of five weights of the beamforming vector. (c) Evolution of the SINR.
[The case of ∆θk = 10o leads to similar results and has been omitted in
(a) and (b).]

∆θk (i.e., ∆θk = 5o and ∆θk = 10o for all k), and an input
SINR2 of 0 dB.

B. Example 2

This example assess the accuracy of the proposed model
considering an array with M = 128 antennas (as discussed
in [11] for very large MIMO systems), different input SINR
values (i.e., −7.8 dB and 0 dB), while the azimuth spread is
made equal to ∆θk = 5o.

Figs. 1 and 2 show the results obtained from MC sim-
ulations and model predictions considering the scenarios
described in Examples 1 and 2, respectively. Specifically,
Figs. 1(a) and 2(a) depict (for the sake of clarity) the evolution
of the real part of five adaptive weights, Figs. 1(b) and 2(b)
present the evolution of the imaginary part of five adaptive
weights, while Figs. 1(c) and 2(c) illustrate the evolution of

2The input SINR is defined as the ratio between the SOI power and the
interference-plus-noise power at the input of the antenna array.
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Fig. 2. Example 2. Results obtained by MC simulations (gray lines) and
from the proposed model (dark-dashed lines). (a) Evolution of the real part of
five weights of the beamforming vector. (b) Evolution of the imaginary part
of five weights of the beamforming vector. (c) Evolution of the SINR. [The
case of input SINR equal to −7.8 dB has been omitted in (a) and (b) since
very similar results are obtained.]

the SINR. Notice from these figures that the model predictions
exhibit a very good match with the results obtained from the
MC simulations irrespective of the azimuth spread ∆θk [see
Fig. 1(c)], the input SINR [see Fig. 2(c)], and the number of
antennas in the array [compare Figs. 1 and 2], which is mainly
because of the reduced number of simplifying assumptions
used. So, since the model characterizes well the algorithm
behavior, it can be used as a theoretical basis to study the
algorithm without relying on MC simulations.

V. CONCLUDING REMARKS

In this paper, a stochastic model was derived describ-
ing the behavior of the KCLMS algorithm operating in an
adaptive beamforming application. Specifically, model expres-
sions were obtained for predicting the mean behavior of
the beamforming vectors and the evolution of the SINR.
Simulation results confirming the accuracy of the proposed
model were shown and discussed. Further research could
address the derivation of stability bounds for the step size

and/or the development of model expressions characterizing
the algorithm behavior in steady state.
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