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Low Overhead Beamtraining for Millimeter-Wave
MIMO Systems: Machine Learning Approach

Based on Path Parameters
A. R. L. Paiva, W. C. Freitas. Jr. and Y. C. B. Silva

Abstract— Machine learning has been widely used as a solution
to deal with beam management training overhead for 5th
generation wireless communication systems. However, the types
of information adopted for the training base have not been
sufficient to achieve a robust intelligent system. Channel path
parameters provide valuable information that can increase the
accuracy of this type of solution. In this work, we present initial
results of the application of the Kalman filter to estimate path
parameters aiming at a robust training base. Simulated results in
3D ray-tracing show promising results on obstruction conditions.

Keywords— Beamtracking, Kalman Filter, Machine Learning,
NLOS, Millimeter Wave.

I. INTRODUCTION

High data rates up to several Gbps and low-latency are
expected to be feasible with the 3rd generation partnership
project (3GPP) 5G new radio (NR) using a variety of fre-
quency bands, including millimeter wave (mmW) bands.

Due to the short wavelength, mmW propagation is subject to
high path losses, atmospheric absorption and weak penetration
due to poor diffraction [1]. On the other hand, mmW enables
the design of small-size antennas, which allows the construc-
tion of larger arrays. Then, it is possible to obtain high-
gain directional beamforming, which partially compensates for
propagation losses and reduces the interference effect.

However, beam misalignment due to displacement of a
mobile terminal in dynamic scenarios, such as vehicle-to-
everything (V2X) scenarios, decreases the signal-to-noise ratio
(SNR) and can lead to failure in communication. The high-gain
directional transmission is possible with beam alignment pro-
cesses, which generally rely on the accuracy of channel state
information and extensive training. Such a process is known
as beamtraining. In practice, it is necessary that the alignment
be adjusted periodically in a process of low training overhead.
In this context, the beamtraining is called beamtracking.

Recently, machine learning has been applied to the prob-
lem of low overhead beamtraining [2]–[6]. Models such as
convolutional neural network (CNN) and deep neural network
(DNN) use information such as received pilot power, position
of mobile terminals and rough channel estimates to determine
aligned beam pairs and estimate channels with low overhead.
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The use of the angular information of the paths as training
base for machine learning can provide a powerful intelligent
beam management framework for providing a more detailed
description of the channel, being able to deal with non-line
of sight (NLOS) condition. In [6] the angle of arrival (AoA)
estimate based on the MUltiple SIgnal Classification (MUSIC)
algorithm and received power of users have been used as
features and the beamforming vector (BV)/combining vector
(CV) pairs indexed as labels in supervised learning models
in order to determine the best BV/CV configuration. The
challenge for this type of solution is to reduce the training
overhead of the angles at the information estimation process.

In [7], [8], Kalman filter (KF)-based mmW channel pa-
rameters tracking methods have been proposed, where high
estimation accuracy even under low SNR has been achieved.
However, the high accuracy depends on a wide beamtraining
size. As a consequence, the computational complexity is cubic
given by O(N3), where N is the total number of BV/CV scan
pairs [7].

In this article, we present a supervised learning strategy
based on angular channel data estimated by KF as a solution
to reduce mmW channel parameters estimation and beam-
tracking overhead. The proposed method decides for the best
BV/CV pair given channel parameters estimated with reduced
beamtraining in NLOS conditions. We consider the scenario
of a single-user analog multiple input multiple output (MIMO)
system and narrowband channel.

The rest of this paper is organized as follows. Section II
introduces channel models for KF implementation. Section III
presents the proposed dataset (DS). The simulation results are
included in Section IV and the conclusions in Section V.

II. SYSTEM MODEL

This section will formulate the channel variables as well as
their temporal evolution models.

A wireless communication system is considered assuming a
base station (BS) equipped with an uniform planar array (UPA)
with MT antenna elements, indexed by mT = 1, 2...,MT ,
and a mobile terminal equipped with an UPA with MR

antenna elements indexed by mR = 1, 2...,MR. A single panel
mounted on the roof of the vehicle is considered. Further
assumptions include: reciprocal channel, narrowband mmW
channel, single-user MIMO system and analog beamforming
in the radio frequency (RF) domain. We consider that the
antenna spacing is small enough and the distance from the
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array to the clusters is large enough, such that the model
parameters are the same for all antenna elements.

We consider that there are Lray paths with significant power
in the channel, but only the dominant L < Lray paths will
be estimated. The models that will be integrated within the
extended Kalman filter (EKF) are formulated next.

A. State Model

Consider the following vector variables in time-slot k:
θD,k = [θD,1,k, . . . , θD,L,k], θA,k = [θA,1,k, . . . , θA,L,k],
ϕD,k = [ϕD,1,k, . . . , ϕD,L,k], ϕA,k = [ϕA,1,k, . . . , ϕA,L,k],
αRe,k = Re

([
α1,k, . . . , αL,k

])
and αIm,k =

Im ([α1,k, . . . , αL,k]), where subscript A and D denote
AoA and angle of departure (AoD), respectively, L is the
number of dominant paths and α is the complex path gain.
θ denotes elevation components and ϕ azimuth components.
We define the state vector as:

xk =
[
ϕA,k,ϕD,k,θA,k,θD,k,αRe,k,αIm,k

]T
, (1)

such that xk has dimension DL = 6L. These variables are
considered independent.

The KF evolution model for the AoA and AoD for each path
l and time-slot k, based on [10], is represented by a Gaussian
process model:

θl,k = θl,k−1 + uθ,l,k , ϕl,k = ϕl,k−1 + uϕ,l,k , (2)

where uθ,l,k ∼ N (0, σ2
θ,l) and uϕ,l,k ∼ N (0, σ2

ϕ,l). Such
models can be seen as a simplification of 3GPP spatial
consistency models where changing rate of angles σ2

θ,l and
σ2
ϕ,l are slopes which depend on mobile terminal speed and

Transmission Time Interval (TTI) duration [9].
The normalized complex gain αl for each path l, based on

[10], considering independent paths, assumes the following KF
evolution model:

αl,k = ραl,k−1 + uα,l,k , (3)

where ρ is the time correlation coefficient of the channel and
uα,l,k ∼ CN

(
0, σ2

α

)
, such that σ2

α = 1 − ρ2. The time
correlation coefficient ρ can be formulated as a function of
mobile terminal speed and beamwidth [11].

In short, the adopted EKF state evolution model is a
Gaussian linear model given by:

xk = Axk−1 + uk , (4)

where A = diag([11×4L, ρ11×2L]) and u ∼ N (0,Qu), such
that Qu = diag([σϕ,σϕ,σθ,σθ,σα]), σθ = [σ2

θ,1, . . . , σ
2
θ,L],

σϕ = [σ2
ϕ,1, . . . , σ

2
ϕ,L], and σα = σ2

α11×2L. Note that the
linear model (4) is effective for short time predictions. The
faster the channel variation, the closer the state prediction must
be. If the channel changes slowly, a more distant state can be
estimated with low error.

B. Channel Model

A time-varying geometric narrowband mmW channel
model, at time slot k, is given by:

H (xk) =
L∑

l=1

αl,kaR (θA,l,k, ϕA,l,k)a
H
T (θD,l,k, ϕD,l,k) ,

(5)
where H (xk) ∈ CMR×MT is the channel impulse response
(CIR) of a narrowband MIMO-mmW channel at time k,
aR(θ, ϕ) ∈ CMR×1 and aT (θ, ϕ) ∈ CMT×1 are the steering
vector (array response) of the receiver and transmitter, respec-
tively. Note that (5) can be seen as a simplified model of 3GPP
that does not consider the dimensions of the antenna panel and
cross polarization power [9].

The steering vector describes the phase delays of each flat
wave generated by an element of the array. By definition, the
steering vector for a UPA with M antenna elements can be
expressed by:

a(θ, ϕ) = [a1(θ, ϕ), a2(θ, ϕ), . . . , aM (θ, ϕ)]
T
, (6)

with

am(θ, ϕ) =
1√
M

ejk(θ,ϕ)rm , (7)

k(θ, ϕ) =
1

λ̄
[cos θ cosϕ, cos θ sinϕ, sin θ] , (8)

where k is the wave vector, θ ∈ [−π/2, π/2] and ϕ ∈ [−π, π]
are the elevation and azimuth components of the transmission
direction, respectively, rm is the column vector of relative
coordinates of the mth antenna of the array, and λ̄ is the
angular wavelength.

C. Measurement Model

Consider a Discrete Fourier Transform (DFT)-based code-
book W = {wq}NW

q=1 and F = {fp}
NF
p=1, which correspond

to the CV and BV, respectively, assuming the number of
phase shifts is equal to the number of beam patterns, which
is equal to the number M of element. So, we would have to
NW = MR, NF = MT and MT = MR.

A received symbol yq,p from a pilot symbol s (assumed to
be s = 1), transmitted with the p-th BV and received by the
q-th CV at time k, is given by:

yq,p,k = wH
q H (xk)fp +wH

q vk. (9)

such that v ∼ CN
(
0MR×1, σ

2
vIMR

)
is i.i.d. circularly sym-

metric complex Gaussian with noise power σ2
v at receivers.

A beam sweep is given by the following KF measurement
model:

Yk = WH
RFH(xk)FRF +Vk , (10)

where WRF = [w1, . . . ,wNW
], FRF =

[
f1, . . . ,fNF

]
,

such that FRF ∈ CMT×NF and WRF ∈ CMR×NW are RF
codeword matrices, Yk = [yq,p,k]NW×NF

is the matrix formed
by the training pilots of each beam pair for an instant k and
V ∼ CN (0NW×NF

,Qv), such that Qv = σ2
vINWNF

, is the
noise at the receiver. Therefore, the measurement model for
implementing EKF is:

G(x̂k) = WH
RFH(x̂k)FRF , (11)
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where x̂k are the estimated channel parameters obtained from
(4).

D. Kalman Filter Application

For EKF implementation, it is necessary to linearize
the observation model (11). A first-order linear approxima-
tion is made by calculating the Jacobian matrix C(x̂k) ∈
CNWNF×DL of (11):

C(x̂k) = [cn,d(x̂k)]NWNF×DL
, cn,d(x̂k) =

∂gn(x̂k)

∂xd
(12)

where gn(x̂k) is an element of the matrix function (11), n 7→
{q, p} is the index of the beam pairs and d is the subscript
within variable xk in (1).

For implementation purposes, we also consider the mea-
surement vector g(x̂k) for an estimated state x̂, given by the
vectorization g(x̂k) = vec(G(x̂k)). In order to deal with com-
plex state values, we restructured the vectors g(Re|Im)(x̂k) =[

Re(g(x̂k))

Im(g(x̂k))

]
and C(Re|Im)(x̂k) =

[
Re(C(x̂k))

Im(C(x̂k))

]
. In addition,

the received pilots (observed variable) are divided into real
and imaginary components and arranged in a vector, such that

yk = vec(Yk) and y(Re|Im),k =

[
Re(yk)

Im(yk)

]
and consequently

the covariance matrix of the measurement noise becomes
Qv = σ2

vI2NWNF
The EKF pseudo-code as in [7] and [8],

is described in Algorithm 1.

Algorithm 1 EKF pseudo-code
1: INITIAL VALUES:

x̂0|0 ← x0, P0|0 ← 0DL×DL

2: INPUT:
x̂k−1|k−1, Pk−1|k−1, y(Re|Im),k

3: PREDICTION:
x̂k|k−1 ← Ax̂k−1|k−1

4: ANALYZE:
Pk|k−1 ← APk−1|k−1A

T +Qu

5: GAIN:
Ĉk ← C(Re|Im)

(
x̂k|k−1

)
Kk ← Pk|k−1Ĉ

T
k

(
ĈkPk|k−1Ĉ

T
k +Qv

)−1

6: ESTIMATOR:
ŷk ← g(Re|Im)

(
x̂k|k−1

)
ỹk ← y(Re|Im),k − ŷk innovation process
x̂k|k ← x̂k|k−1 +Kkỹk state estimation

Pk|k ←
(
IDL

−KkĈk

)
Pk|k−1

The observation period between beam sweeps depends on
the variation of the channel. The faster the channel, the shorter
the observation period, so that more pilots are transmitted, thus
reducing data transmission. However, the channel estimation
accuracy increases, making beam alignment more effective.
The increase in overhead is balanced by the increase in the
accuracy of the beam alignment, so that the transmission rate
can be compensated.

Since the EKF is fed back to the previously estimated state,
the estimation error propagates over subsequent estimates,
which can cause a decrease in accuracy over time. In addition,
EKF considers smooth variations of the target variable, such
that sudden changes can invalidate the current state of the filter.

A viable solution to this problem is to detect sudden drops
in the estimation of the variables and then restart the filter.
Sudden variation is tested by the likelihood function [7]:

L(y) > λ , (13)

such that

L(y) = (y − g(x̂))
H
Q−1

v (y − g(x̂)) , (14)

where λ is a predefined threshold which can be found heuris-
tically, aiming at a certain probability of failure and the size
of the beam sweeping.

III. BEAM ALIGNMENT OVERHEAD REDUCTION BASED
ON SUPERVISED LEARNING

The mmW narrowband channel is well described by 6 ×
Lrays parameters: θD × Lrays, θA × Lrays, ϕD × Lrays,
ϕA × Lrays, αRe × Lrays and αIm × Lrays. The estimation
of L < Lrays dominant path parameters is performed by an
EKF with reduced training of NE < N = NWNF pilots.
We assume that for each channel realization there is a beam
pair that maximizes the received power determined by beam
sweeping (exhaustive search) in a discrete domain of size N .
Therefore, it is possible to relate an instance of the channel
parameters x̂ to the index of the best beam pair no. We
find the best beamforming f̂o and best combining ŵo from
B = W×F by solving the following problem:

{ŵo, f̂o} = max
{wq,fp}∈B

|wH
q H(x)fp| . (15)

Thus, for N beam pairs, each one is labeled with an index n ∈
{1, 2, 3, ..., N}. The learning problem is finding the relation fΦ
such that:

n̂o = fΦ(Θ̂; Φ) (16)

where Θ̂ is a sample of the estimated channel parameter set
by a EKF with reduced training of NE < N pilots, n̂o is the
index of the best sample-related beam pair and Φ contains the
classifier parameters.

A. Dataset Building

The proposed DS is assembled with the channel parameters
estimated periodically with an EKF using few pairs of beams
in the beamtraining, which are used as training data for ML,
and with the indices of the best beam pairs, which are used
as training labels (target).

Using the DS acquisition methodology based on trials in
[4] for vehicular communication scenarios with traffic, the
scenario under study is observed in episodes with a pause
of 30-seconds between each one. Within each episode, some
few hundreds of channel instances are observed every 10 ms
between a fixed BS and 1 to 10 mobile receivers, where the
Lrays = 7 main paths are considered. As each episode or
trial runs during a short period of time in which the invariant
context can be considered, the samples of an episode are
somewhat correlated with each other. Thus, a DS of grouped
data is generated.

Channel parameters can be reported to the DS in the event of
a beam pair change, when there are strong channel variations,
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and in sequential slots to provide temporal resolution. In this
work, periodic reporting is adopted. Every 10 ms a beam
sweep is performed with all N = NWNF beam pairs from the
codebook. An EKF on the receiver side uses NE < N received
pilots to estimate the L ≤ Lrays path parameters. At the same
time, the index n̂o of the pair of beams of greatest power
among the N tested pairs is recorded. Then, the estimated
parameters and the index of the best pair of beams are reported
to the DS. In this model, the n̂o indexes represent classes that
are recorded throughout the acquisition of data for a given
scenario. Therefore, the number of classes in the Machine
Learning (ML) model can be much less than N .

Considering S reported samples of the 6L variables, the DS
has size S × 6L and a corresponding label vector with size
S × 1 for a certain scenario.

B. Data Pre-processing

The unscaled and unbalanced data at the DS must be
managed and preprocessed in order to avoid biases in ML
algorithms. Before cross-validation, very minority classes and
groups are removed. We define very minority classes as those
that have less than 0.5% of the S samples.

The following three processes over cross-validation are
considered:

• Dimension reduction: to reduce the noise of the real and
imaginary components of α, we replace these components
for the absolute value of α thus obtaining a DS of S×5L;

• Scaling: in order to maintain angles (in radians) and gain
on the same scale, a log10(.) transformation was applied
to the gain variables and then a Quantile Transformation
(QTF) [12] was applied over all the training variables
aiming to maintain the same normal distribution.

• Balancing: since the variables are labeled by the index of
the beam pairs pair along a track, the DS is unbalanced
by nature, as shown in Table I. There are three main
reasons: the first is the use of a single simulation scenario
(the DS in practice can be divided by BS or access
points) with BS and fixed architecture, which can make,
from the geometrical point of view, a certain beam set
more frequent. Second, episodes may have approximately
constant beam pairs, so periodic reports may increase the
imbalance. The third reason is the beamwidth of the edge
beams, are wider and thus accommodate a larger angular
space. To try to increase the individual accuracy of each
class, the minority classes were oversampled with the
Synthetic Minority Oversampling Technique (SMOTE)
method [13].

TABLE I: Distribution of classes in the dataset.

Class 8 2 0 1 3 5 6 4 7
Suport 24481 5823 2902 1772 1104 960 917 715 177
Rate(%) 63.01 14.99 7.47 4.56 2.84 2.47 2.36 1.84 0.50

IV. SIMULATION RESULTS

The simulation environment was set up with the analytical
model of the mmW channel (5) and channel parameters from

the Raymobtime project, a realistic database for simulating
wireless communications based on Wireless InSite ray tracing
models [4].

A. Training and Testing

The DS for training and testing ML models contains approx-
imately 40 thousand samples, where 47% of the samples have
line of sight (LOS) components, 44 groups and 9 classes. The
EKF was implemented to estimate the parameters of the L = 3
main paths. Therefore, the DS has a total of 15 variables.

Repeated stratified group split cross-validation was adopted
following the 80/20 Pareto principle (training/testing) and 20
repetitions. Scaling and oversampling were performed within
the cross-validation, in which the QTF was adjusted over the
training split and the SMOTE applied only to the training split.

B. Setups

The simulated channels have the following configuration:
UPA 4 × 4, fc = 60 GHz, NF = NW = 16 (N = 256),
SNR = 15 dB, Lrays = 7, 10 ms TTI and 500 ms duration.
Below we present the configuration lists of the algorithms
applied in this work.

• EKF: ideal initial variables, L = 3, uϕ,l = 0.2◦, uθ,l =
0.05◦, ρ = 0.98, σv = 0.0018 , NE = 16, λ = 400
(PFA ≈ 15% : reset probability);

• k-Nearest Neighbor (KNN): number of neighbors K = 7,
maximal absolute scaler and Minkowski distance;

• Random Forest Classifier (RFC): number of trees = 10,
maximum depth = 20, minimum number of samples to
split an internal node = 10, minimum number of samples
to be at a leaf node = 10 and entropy criterion;

• Support Vector Classifiers (SVC): one-vs-rest decision
function, regularization parameter = 1, polynomial kernel
function, degree = 4;

• Decision Tree Classifier (DTC): maximum depth = 20,
minimum number of samples to split an internal node
= 10, minimum number of samples to be at a leaf node
= 10 and entropy criterion;

• Multilayer Perceptron (MLP): number of neurons in the
hidden layer = 30, activation hyperbolic tan function for
the hidden layer, stochastic gradient-based optimizer and
maximum number of iterations = 800.

C. Performance Evaluation

By transmitting training pilots for only 16 beam pairs,
we obtain an overhead reduction of 93.7% in comparison to
exhaustive search (N = 256). We execute an intelligent beam
decision considering equiprobable beam pairs. The adopted
performance indicators were accuracy and f1-score. As the
beam pairs to be selected by the classifier are of equal
importance, we aim to achieve the highest possible value for
precision and recall, which is equivalent to maximizing the
f1-score of each class, as well as the macro f1-score.

Table II shows the average KNN performance indicators,
average of the results of the cross-validation for each class in
order to analyze the capacity or feasibility of discriminating
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individual beam pairs. Next, we present two points to consider.
First, the the weighted f1-score is much larger than the macro
f1-score, which means the three major classes have a strong
influence on the final accuracy. This natural imbalance and the
high degree of class overlap are the main challenges arising
from estimation or measurement errors and from the modeling
of the beam management problem based on ML provided in
the literature. Strategies that aim to overcome these challenges
must be studied. Second, since 47.0% of the samples are LOS,
the use of the path angular information as a training base
provides a potential NLOS samples discriminator when it is
observed that the overall average accuracy was 77.0%.

In Table III we compare different algorithms in terms of the
accuracy and macro f1-score, introduced minimum, mean and
maximum values. The SVC performs worse than the others
because it does not work well with very overlapping classes.
The KNN proved to be more suitable for the purpose of fair
selection of beams as it presents the highest mean f1-score, in
addition to registering the highest accuracy (82.0%) within
cross-validation. However, the computational cost of KNN
prediction, O(5SL), can be disadvantageous for intelligent
beam selection applications. Therefore, we highlight the MLP,
which, like the KNN, was robust in terms of accuracy and
macro f1-score, ranging from 71.0% to 81.0% and 37.0% to
49.0% throughout the cross-validation, respectively, and whose
computational cost of prediction depends on the number of
variables 5L and the size of the network.

TABLE II: Average performance indicators for KNN.

class precision recall f1-score support

0 0.72 0.72 0.70 636
1 0.70 0.58 0.55 425
2 0.77 0.61 0.67 1386
3 0.22 0.29 0.24 246
4 0.22 0.28 0.24 162
5 0.38 0.34 0.36 198
6 0.52 0.18 0.20 208
7 0.07 0.30 0.11 43
8 0.86 0.91 0.88 5437

accuracy 0.77 0.77 0.77 -
macro avg 0.50 0.47 0.44 -
weighted avg 0.79 0.77 0.76 -

TABLE III: Average macro performance indicators. Values in
parentheses on the left are minimal, to the right maximum.

model accuracy precision recall f1-score

SVC (0.64) 0.71 (0.78) 0.41 0.43 (0.30) 0.40 (0.52)
RFC (0.65) 0.75 (0.80) 0.45 0.44 (0.30) 0.42 (0.53)
MLP (0.71) 0.76 (0.81) 0.43 0.39 (0.37) 0.40 (0.49)
KNN (0.70) 0.77 (0.82) 0.50 0.47 (0.31) 0.44 (0.55)
DTC (0.67) 0.78 (0.81) 0.48 0.40 (0.25) 0.41 (0.66)

V. CONCLUSION

Modeling the beam management problem for ML requires
an ingenious treatment of the in-band or out-of-band infor-
mation in order to build less overlapping decision boundaries
and more balanced classes. Such problems, if not considered,

generate less robust solutions. The application of the channel
path parameters in the training base was shown to improve
the decision boundaries, being effective for LOS and blocking
conditions (NLOS), besides being able to be used by other
similar applications. It is worth mentioning that the power
differences between the dominant beam pairs should also be
analyzed and taken into account in the decision and in the
performance calculation, since small differences in beamform-
ing gain may have little influence on the throughput. In this
sense, to maintain the main performance indicators in machine
learning, such as accuracy, precision, recall, fβ-score, among
others, one can consider a modeling based on multi-class
and multi-label, such that the classes would be a sequence
of indexes of the best beam pairs. Such observations will be
analyzed in future works.
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