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Improving Physical Layer Secret Key Generation in
Fast Fading Environments Using Prediction

Pedro Ivo da Cruz, Alexandre Miccheleti Lucena, Ricardo Suyama and Murilo Bellezoni Loiola

Abstract— Physical layer security (PLS) is an alternative to
traditional information security mechanisms. Physical layer se-
cret key generation (PSKG) is a PLS technique that uses channel
randomness to generate keys for encryption algorithms. Although
several works investigated PSKG in slow fading channels, fast
fading scenarios remain a challenge. We propose two predictors
to deal with such scenarios, one based on the Recursive Least
Squares (RLS) and another based on the Dual Extended Kalman
Filter (DEKF). The aim is to mitigate the channel variation effects
during PSKG, reducing the errors between keys generated by
legitimate users.

Keywords— Physical layer security, wireless communications,
signal processing

I. INTRODUCTION

Wireless communications systems are well known to be
susceptible to security issues, such as eavesdropping, due
to their broadcast nature. Nowadays, the security of the
transmission relies on cryptography techniques, such as the ad-
vanced encryption system [1] and the Rivest–Shamir–Adleman
(RSA) algorithm [2]. These techniques, however, rely on the
assumption that it is difficult for an eavesdropper to guess
the key used to encrypt the message. However, with the
advance of technology, this might not hold for much longer.
Furthermore, the distribution and management of such keys
become exponentially difficult as networks increase in the
number of nodes, for instance [3].

Physical layer security (PLS) has been a promising tech-
nique to work as an alternative or jointly with traditional
cryptography-based algorithms. PLS techniques take advantage
of the random characteristics of the wireless channel, such
as fading, to provide secure communication. Physical layer
Secret Key Generation (PSKG) is a PLS technique that uses the
channel state information (CSI) to generate encryption keys.

PSKG highly depends on the assumption that the channel
reciprocity between legitimate users [4], [5]. This has been
widely investigated for slow fading channels, where the main
reason for channel non-reciprocity is noise. The work in [6],
for instance, uses a low pass filter to remove high frequencies
components that are predominantly noise. The authors in [7]
employ the Discrete Cosine Transform, while the works in
[8] and [9] investigate the Discrete Wavelet Transform and
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Principal Component Analysis (PCA), respectively, for noise
removal.

However, in fast fading channels, the hypothesis that the
non-reciprocity is caused only by noise is no longer valid due
to the increase in the Doppler frequency, which can happen
by increasing the relative velocity between the transmitter and
receiver or increasing the carrier frequency. It is important
to consider higher relative velocity due to the increasing
use of wireless networks in vehicular communications [10].
Additionally, technologies, such as mmWave, use higher carrier
frequencies that can go from 30 GHz up to 300 GHz [11]. The
802.11ad Wi-Fi standard, for instance, uses a frequency of 60
GHz.

Therefore, this work proposes a new approach to deal
with fast fading environments. The methods presented in this
paper explore prediction techniques, based on Recursive Least
Squares and the Dual Extended Kalman Filter (DEKF), to
increase the cross-correlation between the channel measure-
ments of the legitimate users to be used to generate encryption
keys. We evaluate the proposed techniques in fast fading
environments, considering the final cross-correlation obtained
and the encryption key disagreement ratio (KDR).

II. SYSTEM MODEL

A. Channel Model

In this work, the wide sense stationary uncorrelated scattering
channel model is considered [12]. The channel autocorrelation
function provides the correlation between channel gains sepa-
rated by a ∆t time interval, which, for a Jakes Doppler power
spectrum, is given by

r(∆t) = J0(2πfd∆t), (1)

where J0(·) is the zeroth-order Bessel function of the first kind
and

fd =
2vfc
c

(2)

is the Doppler spread, which describes how fast the channel
changes over time, v is the relative velocity between transmitter
and receiver, fc is the carrier frequency and c is the speed of
the electromagnetic wave.

As it can be seen from (1) and (2), the correlation between
channel measurements depends on ∆t, v and fc.

B. OFDM and Channel Estimation

This work considers the orthogonal frequency division
modulation (OFDM) modulation [13], in which the n-th sample
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of the time domain OFDM symbol is given by

x (n) =

Nc−1∑
k=0

Xke
j2πkn/Nc , (3)

where Xk are the quadrature modulated symbols in the k-
th subcarrier and Nc is the number of subcarriers. The sum
on the right side of the equation corresponds to the inverse
discrete Fourier transform (IDFT). The time-domain OFDM
symbol is formed by adding the cyclic prefix by copying the
last Ncp samples obtained from the IDFT and adding them to
the beginning. The resulting OFDM symbol is then transmitted
through the channel, undergoing fading. After removing the
cyclic prefix and evaluating the Discrete Fourier Transform
(DFT) of the received signal in the time domain, the received
signal in the frequency domain is given by

Yk = HkXk + Vk, (4)

where Hk is the channel response associated with the k-th
subcarrier,

Vk =

Nc−1∑
k=0

v (n) e−j2πkn/Nc (5)

is the noise experienced at the k-th subcarrier and v (n) is
the additive white Gaussian noise (AWGN) with v (n) ∼
CN (0, σ2

v), where σ2
v is the variance of v(n).

This work assumes that pilot symbols are transmitted using
the block-type structure [13], in which the OFDM symbol
contains pilots in all subcarriers, called the OFDM pilot symbol.
Thus, it becomes possible to estimate the channel gains Hk in
all subcarriers by

Ĥk =
Yk
Xk

. (6)

A quantization algorithm converts these channel response
into a random stream of bits.

III. CHANNEL PROBING AND PREDICTION

In the fast fading scenario, the channel estimated by both
legitimate users may not be sufficiently correlated due to the
channel non-reciprocity. In this work, the AWGN is not the
single cause for the cross-correlation reduction, since the CSI
changes significantly over time. In such a scenario, a technique
that only removes the noise from the signal is not enough to
sufficiently increase the cross-correlation.

Thus, this work proposes prediction techniques to increase
the cross-correlation between the measurements at the legiti-
mate users, here called Alice and Bob. However, one of the
users must collect a series of measurements that the prediction
algorithms will use.

To do this and also collect enough channel measurements
to generate long enough encryption keys for both Alice and
Bob, they employ the following mechanism:

1) Alice sends N OFDM pilot symbols to Bob, where the
first symbol is transmitted at the time t0, the second at
time t1 and, therefore, the N -th symbols are transmitted
at time tN−1.

2) Bob then sends one OFDM pilot symbol to Alice.
Assuming that the delay between Bob receiving the last

symbol transmitted by Alice and sending its own is small
enough to be considered zero, this symbol is transmitted
at time tN .

3) Alice estimates the channels in each subcarrier at time
tN .

4) Bob estimates the channel gains in each subcarrier at
times t0, t1, · · · , tN−1, obtaining a set of N channel
estimates for each subcarrier.

5) Bob predicts the channel at the instant tN using the sets
obtained in the previous step.

Alice and Bob can repeat this procedure until they have
enough measurements to generate an encryption key whose
length complies with the chosen standard requirements.

As the time instants tm in which the channel were estimated
are discrete, the channel estimates will be represented as
Ĥk(m), where tm = mTOFDM , with m ∈ N, and TOFDM is
the time necessary to transmit one OFDM symbol.

We present the prediction algorithms studied in this work
in the sequel.

A. RLS Prediction

The time behaviour of the channel in fast fading environ-
ments decreases the cross-correlation between the channel
estimates of Alice and Bob. In this case, the prediction goal is
to produce a channel gain using the set of estimates in Bob
that is closer to the channel estimate obtained in Alice and,
therefore, has a higher cross-correlation with the measurement
in Alice.

Predicting the channel using the RLS algorithm can be
made by defining a window of length Lp, which is going
to be the length of the predictor and also the number
of taps of the linear filter, and by defining the vector

Hk(m) =
[
Ĥk(m), Ĥk(m− 1), · · · , Ĥk(m− Lp + 1)

]T
containing the Lp most recent estimated channel samples at the
k-th subcarrier. As the predictor runs independently for each
subcarrier, the subscript k will be suppressed in the following
equations for simplicity. The prediction, then, can be carried
out by

H̃(m+ 1) = wTH(m), (7)

where w =
[
w0, w1, · · · , wLp−1

]T
are the predictor taps.

The goal of the exponentially weighted RLS algorithm is to
find the best taps w that solves [14]

arg min
w

λNwHΠw

+
N−1∑
m=0

λN−m−1|H̃k(m+ 1)−wTH(m)|2
, (8)

where (·)H denotes the conjugate transpose, (·)T denotes the
transpose, λ is a weighting variable called forgetting factor
and Π is the regularization matrix.

The recursive algorithm to find the best solution w to (8) is
summarized in Algorithm 1, where (·)∗ denotes the conjugate
of each element of a vector.

After the end of the recursions, the prediction of the channel
at instant tN in Bob is, thus, carried out by

H̃(N) = wTH(N − 1). (9)

2
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Algorithm 1 RLS for prediction.
Initialization
w = 0Lp×1

0 << λ ≤ 1
P = Π−1 = ILP

for m ≥ 0 do
γ = 1/(1 + λ−1HT(m)PH∗(m))
g = λ−1PH∗(m)γ
H̃(m+ 1) = wTH(m)
e(m) = Ĥ(m+ 1)− H̃(m+ 1)
w = w + ge(m)
P = λ−1P− ggH/γ

end for

B. Dual Extended Kalman Filter Prediction

The DEKF [15] allows the simultaneous estimation of
states and unknown parameters of the model, by running two
Extended Kalman Filter [16] concurrently, one for the state
estimation (state filter) and another for parameter estimation
(parameter filter). The idea is that the DEKF can also estimate
a possible autoregressive (AR) model through the parameter
estimation that describes the channel variation over time.
To do this, a reformulation of the problem as a state-space
representation is necessary. The state filter equations are given
by

ξ(m) = f(ξ(m− 1),θ) + z(m− 1) (10)

Ĥ(m) = Cξ(m) + ε(m). (11)

For a AR(Lp) modeling of the prediction
problem, ξ(m) is the state vector composed of a
window of past Lp channel coefficients ξ(m) =[
Ĥ(m), Ĥ(m− 1), · · · , Ĥ(m− Lp + 1)

]T
. In addition,

the term f(ξ(m− 1), θ) in (10) can be replaced by Fξ(m− 1)
where the transition matrix F is an Lp×Lp matrix containing
the unknown AR weights αi that model the channel variation
over time, given by

F =



α1 α2 · · · αLp−2 αLp−1 αLp

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


. (12)

The vector θ is a parameter vector containing the unknown
AR weights θ(m) =

[
α1, α2, · · · , αLp−1, αLp

]T
to be

estimated by the parameter filter. The observation matrix is
defined as C = [1, 0, · · · , 0], Ĥ(m) is the observed signal
(estimated channel coefficient) and z(m) and ε(m) are the
process and the observation noises, respectively, both with zero
mean Gaussian distribution. The state-space equations of the
parameter filter are then

θ(m) = θ(m− 1) + q(m− 1), (13)

Ĥ(m) = g(ξ(m− 1),θ(m)) + r(m), (14)

where q(m) and r(m) are the zero mean Gaussian process and
observation noises, respectively. Using (10)-(14), the DEKF
algorithm can be applied and is summarized in Algorithm 2 [17].
Variables with the ˆ symbol denote their respective estimate,
while the apriori values are denoted by ()̇

−
.

Algorithm 2 DEKF for prediction.
Initialization
ξ̂(−1) = 0, θ̂(−1) ∼ N (0, 0.25), Pξ(−1) = 1e−6I, Qξ =
1e−3I, Rξ = 1e−2I,
Pθ(−1) = 1e−6I, Qθ = 1e−4I, Rθ = 1e−6I
for m ≥ 0 do

- State Filter
ξ̂−(m) = Fξ̂(m− 1)
P−
ξ (m) = FPξ(m− 1)FT + Qξ(m− 1)

Kξ(m) = P−
ξ (m)CT

[
CP−

ξ (m)CT + Rξ(m)
]−1

ξ̂(m) = ξ̂−(m) + Kξ(m)
[
Ĥ(m)−Cξ̂−(m)

]
Pξ(m) = [I−Kξ(m)C]P−

ξ (m)
- Parameter Filter
θ̂−(m) = θ̂(m− 1)
P−

θ (m) = Pθ(m− 1) + Qθ(m− 1)

Kθ(m) = P−
θ (m)GT

[
GP−

θ (m)GT + Rθ(m)
]−1

θ̂(m) = θ̂−(m) + Kθ(m)
[
Ĥ(m)−Cξ̂−(m)

]
end for

The nonlinear function g(ξ(m−1),θ(m)) can be linearized
to Gθ(m) where G is obtained through the partial derivative
of the state vector ξ(m) with respect to the parameter vector
θ as in

G =
∂g(ξ(m− 1),θ(m))

∂θ

∣∣∣∣
θ̂−(m)

. (15)

which, for this particular case, can be replaced by G =
ξ−T(m). The matrices Qξ and Rξ are the covariance matrices
of the State filter process noise z(m) and measurement noise
ε(m) respectively, while Qθ and Rθ are the covariance matri-
ces of the parameter filter noises q(m) and r(m), respectively.
Since, in this case, the interest is the predicted value, the
prediction performance was given by the evaluation of the a
priori values ξ−(m) obtained by the algorithm, where F is
constantly updated through the parameter estimation process.

IV. QUANTIZATION

Once Alice and Bob collects enough channel estimates and
predictions, respectively, these samples are organized according
to the fine-grained CSI extraction for key generation [6],
forming a vector,

Xa = [<{Ĥ(mo)},={Ĥ(mo)}, · · · ,
<{Ĥ(mT−1)},={Ĥ(mT−1)}],

(16)

Xb = [<{H̃(mo)},={H̃(mo)}, · · · ,
<{H̃(mT−1)},={H̃(mT−1)}],

(17)

in Alice and Bob, respectively. < and = denotes the real and
imaginary part of their arguments, respectively. These vectors
go through a quantization algorithm to generate a sequence of

3



XXXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2021, 26–29 DE SETEMBRO DE 2021, FORTALEZA, CE

50 100 150 200
0.92

0.94

0.96

0.98

1

Fig. 1. Impact of N on the correlation coefficient. SNR = 60 dB and
fd = 4.8 kHz.

bits to be used as an encryption key. The algorithm used here
is the mean based quantization [18], that generates the key at
the user u = {a, b}, with a denoting Alice and b denoting
Bob, and can be described by

Ku(i) =

{
0, Xu(i) ≤ µ
1, Xu(i) > µ

, (18)

where µ is the mean of the input Xu.

V. SIMULATIONS AND RESULTS

We carried out simulations considering an OFDM system
with 128 subcarriers with a cyclic prefix of 16 samples. The
sample rate is 20 MHz, and the channel impulse response has
five taps generated by the sum of sinusoids method [12]. The
total number of trials in each simulation is 104.

The cross-correlation between Xa and Xb will be evaluated
by the correlation coefficient, which can be computed, given
that Xa ∼ N (0, σ2

a) and Xb ∼ N (0, σ2
b ), as

ρ =
E{XaX

H
b }

σaσb
. (19)

The KDR provides the ratio of mismatched bits between the
keys generated at Alice and Bob. It is defined as

KDR =

∑
i |Ka(i)−Kb(i)|

Nk
, (20)

where Nk is the length of the keys.
We include the cross-correlation when the measurements

correspond to the estimated channels at Alice and Bob, i.e.,
Ĥk(N), estimated at Alice, and Ĥk(N − 1) for comparison
purposes. Figures 1 and 2 show the correlation obtained
according to the number of OFDM symbols sent by Alice
N , which produces the same number of channel estimates
used to perform the prediction at Bob. The signal-to-noise ratio
(SNR) is set to 60 dB and 20 dB, respectively. We chose these
SNR values to evaluate a noisy and almost noiseless scenario,
where only the maximum Doppler spread will affect the system
performance. For this simulation, the carrier frequency was
set to 120 GHz, and the relative velocity between Alice and
Bob was 6 m/s, which results in a maximum Doppler spread
of around 4.8 kHz. The predictors’ length was set to Lp = 5.
The RLS forgetting factor was set to λ = 0.998.

Figures 1 and 2 shows the correlation coefficient increases
as N increases, achieving a plateau in N = 60 of around
ρ = 0.997 for the RLS, and around ρ = 0.996 for the DEKF

50 100 150 200
0.92

0.94

0.96

0.98

1

Fig. 2. Impact of N on the correlation coefficient. SNR = 20 dB and
fd = 4.8 kHz.

0 50 100 150 200
0.02

0.04

0.06

0.08

Fig. 3. Impact of N on the KDR. SNR = 60 dB and fd = 4.8 kHz.

for a SNR regime of 60 dB. For 20 dB, the RLS achieves the
plateau in N = 80 with ρ = 0.986, while the DEKF achieves
its plateau in N = 40 with ρ = 0.973. The number of OFDM
symbols N spans from 10 to 200 in both figures. According
to Fig. 1 the RLS improves the cross-correlation for all N ,
compared to the cross-correlation between the direct channel
estimates. The DEKF decreases the cross-correlation when
N = 10 in 60 dB regime. For a 20 dB SNR, on the other hand,
the RLS reduces its improvement because of the higher level
of noise. The DEKF provided a cross-correlation below the
one obtained by the direct estimated channels for all values of
N .

The KDR produced for SNR = 60 dB is shown in Figure 3.
It is possible to see that the RLS obtains the lowest KDR and,
although the correlation achieves a plateau in N ≥ 20, the
KDR reaches a floor in N ≥ 120. The DEKF reaches this floor
around the same value of N but provides a slightly higher
KDR. For N = 10, the KDR obtained using the DEKF is
higher than the one obtained using the direct channel estimates,
without prediction. The RLS, on the other hand, provides a
lower KDR even for N = 10.

The following scenario evaluates the impact of the maximum
Doppler spread on the predictors. In this evaluation, we set N to
50 and the SNR to 60 dB. Fig. 4 shows the correlation obtained
when the maximum Doppler spread spans from 2.4 kHz to 24
kHz. Those values come, for instance, from a relative velocity
of 6 m/s (equivalent to 21.6 km/h) in a carrier frequency of
60 GHz, and from a relative velocity of 30 m/s (equivalent to
108 km/h) in a carrier frequency of 120 GHz.

As can be seen, the general behaviour is that the correlation
decreases as fd increases. The reason behind that is that it is
more difficult for the predictors to obtain a reasonable solution
for w, in the case of the RLS, and for F in the case of the DEKF,
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Fig. 4. Impact of maximum Doppler spread on the correlation coefficient.
SNR = 60 dB and N = 50.
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Fig. 5. Impact of maximum Doppler spread on the KDR. SNR = 60 dB
and N = 50.

for higher values of fd. A possible solution to that would be to
increase N to provide more data to the algorithms. They could
then converge to a better solution. Another possibility would
be increasing Lp. The RLS, however, is still able to obtain
a solution that provides highly correlated measurements. For
the highest maximum Doppler spread evaluated, fd = 24 kHz,
the RLS attained approximately ρ = 0.875, while the DEKF
obtained ρ = 0.77. For comparison purposes, the correlation
between the directly estimated channels is slightly above ρ =
0.7, as shown in Fig. 4.

Fig. 5 shows the impact of this behaviour on the KDR. It is
possible to see that the RLS obtained the best performance for
higher fd values. For fd = 24 kHz, the KDR obtained was just
above 0.15, while the DEKF attained a KDR around 0.2. An
additional step of key reconciliation can then be employed to re-
duce the bit mismatch to zero. The work in [6] shows that a key
reconciliation technique using Bose–Chaudhuri–Hocquenghem
code with the parameters BCH(15, 3, 3) can correct up to
20% mismatch. For low fd values, the gain of the RLS over
the DEKF is not significant.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes to use predictors to increase the
correlation between channel measurements used for encryption
key generation in the physical layer in scenarios with high
mobility and, possibly, higher carrier frequencies. We designed
two algorithms, one based on the RLS and another based on
the DEKF.

The RLS has shown significantly better performance in
extreme cases, where the maximum Doppler spread is high.
For lower values, the RLS slightly outperforms the DEKF. The
DEKF does not outperform the RLS in any scenario, which
would make the RLS the best choice for this problem, since it
has a lower computational cost.

Nonetheless, as this is a work in progress, further evaluations
are going to be carried out. For instance, the impact of Lp on
the predictor’s performance, as well as the randomness of the
generated encryption key. Furthermore, the authors intend to
obtain the theoretical expressions for the correlation based on
the error, mainly for the RLS algorithm that shows the best
performance.
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