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Deep Neural Network Parameterization for Channel
Estimation in MUSA Systems

Mariana Baracat de Mello and Luciano Leonel Mendes

Abstract— Multi-user shared access is a non-orthogonal mul-
tiple access technique that has been considered as a potential
solution for 5G and beyond wireless networks. However, its per-
formance is affected by the propagation of the channel estimate
error in the SIC algorithm in the multi-user detector. Deep neural
networks can be used to improve the initial channel estimate and
this paper analyzes how the adjustment of hyperparameters and
randomness affect the performance of the proposed estimator.

Keywords— hyperparameters, MUSA, deep learning, NOMA.

I. INTRODUCTION

The applications foreseen for massive machine type commu-
nications (mMTC) scenario require high spectrum and energy
efficiency and non-orthogonal multiple access (NOMA) tech-
niques are possible candidates to meet these requirements [1].
Unlike traditional orthogonal multiple access (OMA) schemes,
NOMA allows signals from multiple users to share the same
time-frequency resource via superposition at the cost of higher
complexity at the receiver.

Multi-user shared access (MUSA) is a NOMA technique
designed for the mMTC scenario, which can support a large
number of connections and, at the same time, minimize
signaling overhead and energy consumption [2]. MUSA is
based on grant-free access and employs non-orthogonal short-
length complex sequences to spread user data. Since no pilot
is used in the frame structure, the receiver performs blind
detection based on successive interference cancellation (SIC)
to obtain the channel state information (CSI).

CSI has a high impact on the performance of the MUSA
system since poor channel estimation reduces the capability
of the SIC to remove the multi-user interference from the
received signal [3]. Deep learning (DL) is a powerful tool
for solving nonlinear problems and can be used to improve a
channel estimate. In this paper, a deep neural network (DNN)
is trained with a set of channel gains estimated by least squares
(LS) under high signal-to-noise ratio (SNR) and with a low
overload factor, as proposed in [4]. Once trained, the DNN
can be used to improve the channel estimation for different
overload factors.

One of the biggest challenges when working with neural
networks is to define what is the best configuration of the
model [5]. Hyperparameters are configurations of the machine
learning (ML) model that can be adjusted to improve the
performance and quality of the learning algorithm [6]. The
main goal of this paper is to show how the hyperparameters
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adjustment and the randomness present in neural networks can
affect the performance of the channel estimation.

The paper is organized as follows. Section II presents the
principles of the MUSA scheme and blind detection based
on SIC. Section III presents the DNN employed to improve
channel estimation and how the hyperparameters affect DNN
performance. Section IV presents the evaluation of numeri-
cal results for different DNN parameterizations. Finally, the
conclusions are provided in Section V.

II. PRINCIPLES OF MUSA
MUSA is a NOMA scheme that employs complex spreading

sequences to accommodate a large number of users sharing a
limited number of time-frequency resources. A ternary short
complex sequence is used to spread the users information.
The codes can be obtained from two-dimensional constella-
tions, where the center of complex plane is included in the
basis sequence. For example, based on the rectangular 8-
QAM constellation, the elements of the complex sequence
are {0, 1, 1 + i, i,−1 + i,−1,−1− i,−i, 1− i} [2]. There-
fore, 9L complex spreading sequences of length L can be
obtained from this alphabet.

A codebook G (L×Q) is generated with Q pre-selected
spreading sequences. This codebook is available to users to
spread the data and also to the base station (BS) receiver.
Since the users choose the sequence autonomously, i.e., grant
free access, two or more users can choose the same spreading
sequence, resulting in a collision. This problem can be min-
imized by increasing Q, at the cost of higher complexity at
the BS. The relatively low cross-correlation between spread-
ing sequences can reduce the interference among users and,
improving the detection robustness [2].

On the transmitter side, the vector of data bits bk (U × 1)
generated by the kth user is encoded by a channel encoder
with code rate R = U

V . The coded bits ck (V × 1) are
modulated by a M -QAM modulator, where M is the order of
the constellation, resulting in the modulated symbols vector
mk (J × 1), with J = V

log2(M) . The vector mk is spread
over the complex spreading sequence sk (L× 1), chosen
randomly from G by the user. Finally, the spreading sym-
bols xk (LJ × 1) are transmitted using the time-frequency
resources shared by users, e.g., orthogonal frequency division
multiplexing (OFDM) subcarriers [7]. For this, N < LJ
OFDM subcarriers are allocated using the inverse fast Fourier
transform (IFFT) and LJ

N OFDM symbols are required for the
transmission of xk. Thus, the OFDM frame for the kth user
is represented by Xk

(
N × LJ

N

)
.

On the receiver side, the SIC algorithm is used to decode
the K users’ data bits of the received superimposed signal Y
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(
N × LJ

N

)
. Assuming that the entire OFDM frame has been

received at the BS, the signal on the nth subcarrier of the ith
OFDM symbol is given by [4]

yn,i =
K∑

k=1

xn,ik hn,ik + wn,i, (1)

where n = (1, · · · , N), i = (1, · · · , LJ
N ), xn,ik is the element

of the nth row and ith column of the matrix Xk, hn,ik is the
channel response between the kth user and the BS and wn,i

is the additive white Gaussian noise (AWGN).
SIC algorithm is used on the BS side to remove the multi-

user interference. The SIC performance improves when the
SNR varies due to the near-far effect [2]. The SIC uses the
information retrieved from a reliable link, i.e., a higher SNR,
to remove the interference introduced in the data transmitted
by other users with a lower SNR. Therefore, this algorithm
is executed K times, starting from the user signal with the
highest SNR to the user signal with the lowest SNR.

Initially, the data from the user with the highest SNR must
be retrieved correctly. Thus, (1) can be rewritten as

yn,i = xn,iϕ hn,iϕ +
K∑

k=1,
k 6=ϕ

xn,ik hn,ik + wn,i (2)

where xn,iϕ represents the data transmitted by the user with
highest SNR at the nth subcarrier of the ith OFDM block
and

∑K
k=1, k 6=ϕ x

n,i
k hn,ik is the multi-user interference. The

first detection step is to decouple the OFDM subcarriers by
applying the fast Fourier transform (FFT) and organize the
result into a vector x̂ϕ. The cross-correlation between x̂ϕ and
all sequences of G is performed to find the spreading sequence
used on the transmit side. Then, the Q versions of the despread
signal m̂ϕ are detected, resulting in vectors of coded bits
ĉϕ. After demodulation, each version of ĉϕ is decoded by
the forward error correction (FEC), and the cyclic redundancy
check (CRC) is verified. The spreading sequence that results
in error-free data is considered the chosen sequence by the
user during transmission. Therefore, the received SNR must
be high enough to assure the proper recovery of the transmitted
bits b̂ϕ.

Assuming that sϕ is the sequence used on the transmission
side, the vector b̂ϕ is encoded, modulated, spread, and the
IFFT is applied to generate the feedback matrix X̂ϕ. This
signal is considered equal to that transmitted by the user with
highest SNR and must be subtracted from the signal received
to cancel its interference on the other users. To perform the
subtraction is necessary to weigh X̂ϕ by the channel response.
As the CSI is not known, the channel gain can be estimated
from X̂ϕ and Y. Assuming the LS estimation, the estimated
channel response is given by [4]

ĥi =
(
x̂iH x̂i

)−1
x̂iHyi, (3)

where i = 1, 2, · · · , LJ
N , (·)H is the Hermitian matrix, and

x̂i and yi are vectors (N × 1) formed by the ith column of
X̂ϕ and Y, respectively. The LS estimator provides a poor
channel estimation because of the noise [4]. Thus, the error in

Input Layer Output LayerHidden Layers

Fig. 1. Deep neural network structure.

Ĥ
(
N × LJ

N

)
propagates through the SIC receiver, reducing

its performance.

III. DNN FOR CHANNEL ESTIMATION

The DNN as a non-linear processing unit can improve the
channel estimation. Due to the superior ability to approximate
abstract and non-linear functions, DNN is applied on top of
the LS estimate to reduce error on of LS estimate. DNNs are
neural networks with one or more hidden layers to improve
the representation capacity, as shown in Fig. 1. The layers are
composed of several processing units called neurons, which
connect to the neurons of the next layer. Each neuron has an
output that is a nonlinear activation function of a weighted
sum of neurons from the previous layer. Assuming a DNN
with D layers and A neurons per layer, the output of a neuron
is given by

z̃(d)a = f
(
w̃(d)T

a z̃(d−1) + b̃(d)a

)
, (4)

where (.)T is the transpose, d = (1, · · · , D) is the layer
index, a = (1, · · · , A) is the neuron index in layer d, f (.)

is the activation function, b̃(d)a is the bias, w̃(d)
a is the weight

vector, and z̃(d−1) is the input vector given by the output of
the previous layer. Thus, z̃(0) is the input vector, given by the
concatenated real and imaginary parts of the LS estimate. The
DNN output is a nonlinear cascade transformation of the input
data.

This paper considers the training of the DNN, where the
weights of the neural network are updated iteratively to
minimize a specific loss function, such as the mean squared
error (MSE) between the estimated value at its output and the
actual value. Thus, the MSE loss function can be expressed
as

ε =
1

Nt

Nt∑
i=1

∥∥z̃TD − z̃PD∥∥2 , (5)

where z̃PD is the channel estimated by DNN, z̃TD is the true
channel and Nt is the number of training samples. The DNN
should be trained from known pairs of input and output data,
allowing it to learn the weight vector. One of the problems
faced in the training of neural networks is the definition of its
hyperparameters. Small differences in the adjustment of these
hyperparameters can lead to substantial differences in training
time and the generalization obtained. Also, ML involves
storing and organizing parameters and results, ensuring that
they are reproducible.
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A. Neural Network Fine-tuning Hyperparameters
In machine learning, most algorithms have hyperparameters

that can be adjusted to control the algorithm’s behavior [5].
However, there is a difference between the parameters and
hyperparameters of a learning model. The model parameters
can be defined as internal configuration variables, which can
be estimated from the data. An example of a parameter is
the weights of neural networks that have their values derived
from training. Hyperparameters are variables whose values
are adjusted to control the learning process. In other words,
hyperparameters are the variables that determine the model’s
structure and how it is trained, for example, the number
of hidden layers and learning rate. Therefore, the choice of
hyperparameters affects the speed and quality of the learning
process.

Tools such as Grid Search can assist in adjusting the
model’s hyperparameters. However, DNN can have many
hyperparameters to be adjusted, and training for a large data
set takes a long time. This means that only a part of the
hyperparameter space can be explored within an acceptable
time frame. Therefore, it is essential to be aware of what
values would be reasonable for the initialization of each
hyperparameter to restrict the search space [8].

Next, the main hyperparameters of a neural network and the
good practices that can help the choice of these configurations
will be presented.

1) Number of Hidden Layers: In many problems, it is pos-
sible to obtain acceptable results with a single hidden layer, as
long as there are enough neurons. However, it is fundamental
to note that neural networks with many hidden layers have a
much higher parameter efficiency than neural networks with
few layers. They use exponentially fewer neurons than low-
layer networks to model complex functions, making training
much faster. Also, computational models composed of many
hidden layers learn to represent data at multiple levels of
abstraction.

So for many problems, only one or two hidden layers work
very well [8]. While for more complex tasks, the number of
hidden layers can be increased gradually until the model starts
overfitting and the training data set must be large enough.
However, it is common to reuse parts of a pre-trained network
that performs a similar task. This makes training faster and
requires a much smaller data set [8].

2) Number of Neurons in the Hidden Layers: The number
of neurons in the input and output layers depends on the
input data and the type of output the task requires. Regarding
hidden layers, it is important not to use too many neurons, as
this causes the model to memorize the training data and lose
its ability to generalize, causing overfitting. Neither should
neurons be used too little, as it ends up forcing the network to
spend too much time trying to find an optimal representation,
which can result in underfitting.

A common practice is to use the same number of neurons
in all hidden layers, this makes it necessary to adjust only
one hyperparameter instead of one per layer. This allows to
gradually increase the number of neurons in all layers until
the model starts overfitting. Another approach would be to
configure an overfitted model with more layers and numbers

of neurons than necessary and, then, use the early stopping
technique of training. Unfortunately, this increases the com-
putational costs associated with the model. In summary, many
neurons in a hidden layer with regularization techniques can
increase accuracy. Fewer neurons can result in underfitting.

3) Learning Rate: According to the results, the learning
rate is perhaps the most difficult hyperparameter to adjust.
Since if the learning rate is too low, the learning of the
neural network becomes very slow. And if the learning rate
is too high, it causes fluctuations in training and prevents the
convergence of the learning process. Therefore, an inadequate
learning rate, whether too large or too low, results in a model
with low effective capacity due to optimization failure [5].
In the last few years, optimizers faster than the Gradient
Descent have been used to accelerate the model training. These
optimizers are adaptive learning rate algorithms and, therefore,
require fewer adjustments to the learning rate, making it easier
to use than the Gradient Descent. The main adaptive learning
rate optimizers are AdaGrad, RMSProp, and Adam [8].

B. Randomness in Neural Networks

In addition to adjusting hyperparameters, it is necessary to
ensure that the results and the model are reproducible. The
lack of compatibility and reproducibility of a model makes it
very difficult to correctly interpret the results, especially for
other researchers.

Machine learning algorithms often exhibit stochasticity in-
herent in learning, which can be induced by the randomness
present, for example, in data collection, in the order in which
the examples are exposed to the model, in the initialization of
weights in an DNN and resampling approaches. Randomness
is an important part of many machine learning algorithms,
however it is an obstacle to reproducibility.

Reproducibility is a necessary practice in situations where
it is desired to compare different techniques and algorithms.
For machine learning models to be reproduced, it is necessary
to have the same code, data set, and sequence of random num-
bers. The solution is to use pseudo-random number generators
that take a seed and generate seemingly random numbers in
a deterministic way. In addition, if the seed is defined with
a fixed value, all executions will share the same randomness,
making possible the exact reproduction of the model.

IV. NUMERICAL RESULTS

The MUSA system used in the simulations was generated
as described in Section II with the parameters shown in
Table I. The differential binary phase shift keying (DBPSK)
modulation was chosen because it allows for phase tracking
on the receiver side. As the CSI is not previously known, the
DBPSK modulator inserts a reference symbol in the modulated
symbol block for phase tracking. In addition, a polar code-
based FEC was employed.

To improve the initial LS estimate given in (3), it was
proposed to use a DNN to correct the general estimate error.
Thus, the proposed DNN is fed with the LS channel estimates
and on its output, the improved LS channel response estimates
are obtained. As the LS estimate is complex, it is necessary
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TABLE I
CONFIGURATION PARAMETERS OF THE MUSA SYSTEM.

Parameters of the MUSA System

Block size of data bits (U ) 64
Block size of encoded bits (V ) 191

Block size of modulated symbols (J) 192
Spreading sequence length (L) 4

Number of subcarriers per OFDM block (N ) 12
Number of pre-selected spreading sequences (Q) 64

to transform the LS estimates from complex values to real
values by stacking the real and imaginary parts. Thus, the
DNN input and output layers have a fixed number of neurons
equal to 2N . The DNN output values are converted back to
the complex values.

The data set used for training has 10000 samples generated
considering SNR equals 40 dB, divided into 8000 training
samples and 2000 validation samples. A high SNR was used
for the training to reduce the impact of the noise, which allows
DNN to learn more about the characteristics of the channel.
To evaluate the performance of the proposed estimator, the
trained DNN was tested with a set of test data with different
SNR values in the set {4, 11.2, 18.4, 25.6, 32.8 and 40} dB.
The dataset used in the test to evaluate the generalization of
the trained neural network is different from the dataset used
during the training and validation process. Since supervised
learning is used to train the model, the training set includes the
LS estimates of the channel response and the corresponding
true channel responses. The MSE was used as a loss function
during training and a performance metric during the testing
process.

The performance of the DNN was evaluated under the fol-
lowing hyperparameter adjustments:number of hidden layers,
number of neurons per hidden layer and, learning rate. The
hyperparameters used in Figs. 2, 3, 4, and 5 are shown in
Table II. The other configurations, which do not change in
the DNNs simulated in this section, are shown in Table III.
In addition, due to space restrictions, the loss function curves
were omitted during the training stage since the training and
test curves converged to low loss values, and overfitting was
not observed in any of the simulations presented in this article.

Due to the randomness present in the DNNs, as mentioned
in Section III, seeds for the random number generator were
defined in NumPy and Tensorflow, making the models repro-
ducible and facilitating the comparison of the adjustment effect
of each hyperparameter. In addition, the average performance
is calculated through the random repetition of the learning
algorithm for different proposed DNN architectures. In Fig.
2, 3, and 4, performance is evaluated considering the two
values for the seed and the average of 30 random runs of the
learning algorithm, i.e., the training and testing process of the
neural network is executed 30 times without values fixed for
the seeds. It will guarantee at each execution of the learning
algorithm that the training and validation sets are different and
that the weights are initialized randomly.

Fig. 2 shows the performance of the DNN estimator in terms
of MSE under different SNRs and for DNN architectures with

TABLE II
CONFIGURATION OF HYPERPARAMETERS FOR THE DNNS PROPOSED IN

FIGS. 2, 3, 4 AND 5.

Hyperparameter DNN 1 DNN 2 DNN 3

Fig. 2
Hidden layers 1 2 3

Neurons per hidden layer 24 24 24
Learning rate 0.001 0.001 0.001

Fig. 3
Hidden layers 1 1 1

Neurons per hidden layer 12 24 32
Learning rate 0.001 0.001 0.001

Fig. 4
Hidden layers 1 1 -

Neurons per hidden layer 24 24 -
Learning rate 0.001 0.01 -

Fig. 5
Hidden layers 1 2 2

Neurons per hidden layer 24 12 12
Learning rate 0.001 0.001 0.01

TABLE III
GENERAL CONFIGURATION OF PARAMETERS FOR THE DNNS PROPOSED

IN FIGS. 2, 3, 4, AND 5.

Base DNN Parameters

Activation function ReLU
Optimizer ADAM

Number of epochs 500
Batch size 128

Training samples 8000
Testing samples 2000

1, 2, and 3 hidden layers. It is noticeable that the performance
of the estimate improves as the number of hidden layers
increases. It is also possible to observe that the performance
of the DNN estimator exceeds the performance of the LS
estimate in all proposed hidden layer configurations. Finally,
Fig. 2 shows that the average performance is close for 2 and
3 hidden layers, and, therefore, 2 hidden layers can be a good
fit since the computational complexity is less.

Fig. 3 shows the performance of the DNN estimator in terms
of MSE under different SNR for DNN architectures, with a
hidden layer and different amounts of neurons in the hidden
layer 12, 24, and 32, as shown in Table II. It is possible to
observe the effect caused in the estimation by randomness
since the number of neurons unevenly affects the performance
of each seed. Also, it is possible to observe that the average
performance is very close for the three quantities of neurons in
the hidden layer. However, with 12 neurons, the generalization
capacity of the trained model is slightly higher.

The performance of the DNN estimator for learning rates
equal to 0.001 and 0.01 is shown in Fig. 4. For the config-
urations proposed in Table II, the performance of the DNN
estimate is better for a learning rate equal to 0.01. And, as in
Fig. 2 and Fig. 3, it is possible to notice that the performance
of the DNN estimate is better than that of the LS estimate.

Finally, Fig. 5 shows the average performances of 30
random runs of the learning algorithm for three different DNN
architectures. These are three possibilities for adjusting the
hyperparameters that result in good performance of the DNN
estimate with low training complexity. For two hidden layers,
with 12 neurons per hidden layer and a learning rate equal
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Fig. 2. Performance of the DNN based estimator in the online implementation
stage, under different adjustments in the number of hidden layers.
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Fig. 3. Performance of the DNN based estimator in the online implementation
stage, under different adjustments in the number of neurons per hidden layer.

to 0.01, the generalization capacity of the DNN estimator is
higher, and the performance in this scenario is better.

Through the results, it is possible to see that the performance
of a neural network can change depending on the seed value. In
Figs. 2, 3, and 4, the performance deteriorates for higher SNR
values when the seed value is 0, while for seed equal to 7, the
performance improves at higher SNR values. Therefore, for a
more accurate analysis of the results, the learning algorithm
must be executed a few times, and the average of these
executions must be taken into account.

It is important to note that the results are generally specific
to each task and cannot be transferred from one problem to
another. However, there are broader trends in the adjustment
of hyperparameters for each task that must be taken into
account to facilitate and delimit the search space. The proper
adjustment of hyperparameters leads to good performance
results at the cost of appropriate complexity for the task in
question, in addition to avoiding overfitting.

V. CONCLUSIONS

The DNN-based estimator can be used to improve the LS
channel estimation and, consequently, improve the perfor-
mance of the MUSA scheme. Adjusting the DNN hyperparam-
eters is essential for improving the channel estimation, increas-
ing the model’s generalization, and reducing the complexity
and training time. In addition, knowing how to initialize
hyperparameters correctly can be useful to restrict the search
space when using optimization tools, such as grid Search, and
when training is very expensive due to the size of the data set
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Fig. 4. Performance of the DNN based estimator in the online implementation
stage, under different adjustments in the learning rate.
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Fig. 5. Performance of the DNN based estimator in the online implementation
stage, under different DNN architectures.

and of the DNN structure. Finally, the stochastic nature of the
learning algorithm must be taken into account when evaluating
the model’s performance and when reproducing it.
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