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Set-Membership Affine-Projection with Estimated
Parameters for non-White Inputs

Tadeu N. Ferreira, Markus V. S. Lima, Paulo S. R. Diniz

Abstract— This article proposes versions of the set-membership
affine-projection algorithm that estimate an adequate threshold
and a proper constraint-vector for a system identification sce-
nario. A novel constraint-vector is proposed for a non-white in-
put, since the Simple-Choice Constraint Vector is asymptotically
optimum for white inputs. Non-white inputs are commonplace
in communication systems when there is channel encoding
or precoding in the transmitter. A fixed and a time-varying
threshold set-membership version are used. Simulations show
that the proposed algorithm presents lower mean-square error
and updates in fewer iterations than the traditional Simple-
Choice and Exponential-Decay Constraint Vectors. For the time-
varying threshold, the computational complexity of the algorithm
is similar to the Simple-Choice Constraint Vector.

Keywords— Adaptive filter, set-membership, constraint vector,
parameter estimation.

I. INTRODUCTION

The emergence of the Affine Projection algorithm (APA) [1]
provided a data-reuse alternative to Least-Mean Squares
(LMS) providing fast convergence. The price for a faster
convergence is a higher computational complexity of APA
in comparison to LMS. Then, some data selective algorithms
have been developed, such as the Set-Membership Affine
Projection (SM-AP) [2],[3], in order to avoid the updates in
some iterations. The idea of Set-Membership Filtering (SMF)
emerged in [4] with the membership set concept used in
system modeling [5]. Both the original Optimal Bounding
Ellipsoids (OBE) [5] and the SMF algorithms are based on
noise modeling, particularly on previous knowledge of noise
power.

The use of the constraint vector (CV) and of a threshold are
internal characteristics of the SM-AP algorithm. The Simple-
Choice CV (SC-CV) has become the hegemonic CV for
the implementation of SM-AP [3], [8]. Recently, other CVs
have been proposed to exploit specific characteristics of the
problems as in [2], [7]. The development of the Optimal
CV [6] has lead to a possible break of an SC-CV hegemony.
Nevertheless, [6] shows that the SC-CV is asymptotically
optimal CV for white input signals. The Optimal CV still
relies on a predefined threshold, which requires knowledge
of the measurement noise.

The use of time-varying thresholds for the SM-AP has its
roots in the development of an SM-AP version with constant
rate of updates [9]. A time-varying threshold is particularly
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interesting if the parameters are estimated, since a proper value
of the threshold may be calculated adaptively.

The main proposal of this article is to design SM-AP
versions based solely on the estimated parameters. One of
the proposed algorithms estimates the adequate threshold for
a given input and scenario using the Optimal CV in few
iterations and designing the proper CV using structures already
calculated by the coefficient updates. The other algorithm
proposes a time-varying threshold based on the norm of the
error vector. A secondary contribution of this article is to de-
velop a CV for non-white input scenarios, such as for channel
estimation when a convolutional enconding or a precoding is
used in the transmitter.

In this article, Section II describes the SM-AP algorithm
and the role of the threshold and the CV. Section III shows the
proposed algorithm. In Section IV the main simulation results
are presented to validate the proposed algorithm. Section V
concludes the article. In this article, minuscule boldface is
used for vectors, while capital letter bold symbols are used
for matrices.

II. SET-MEMBERSHIP AFFINE PROJECTION ALGORITHM

Consider a tapped-delay line adaptive filter in the system
identification configuration [2]. The input of the adaptive filter
is x(k) ∈ R

N+1 at the kth discrete sample time, where
x(k) =

[

x(k −N) x(k −N + 1) . . . x(k)
]T

. This in-
put x(k) is also applied to the system whose impulse response
h(k) ∈ R

N+1 is to be identified. The output of the system
is d(k) = x

T (k)h(k) [2]. The adaptive filter is a tapped-
delay line characterized by its parameters, i.e., its coefficients,
w(k) ∈ R

N+1. The output of the filter is y(k) = x
T (k)w(k).

The error signal is defined as e(k) = d(k) − y(k) = d(k) −
x
T (k)w(k).
In the APA [2], L previous scalar inputs are used together

with the current scalar input x(k), where L is known as data
reuse factor. Then the matrix data is X(k) ∈ R

(N+1)×(L+1),
where X(k) =

[

x(k) x(k − 1) . . . x(k − L)
]

.
In the SMF approach, the parameter vector w(k) is esti-

mated with an error which is bounded by a pre-defined thresh-
old γ̄. The Set-Membership Adaptive Recursive Techniques
(SMART) [4] allowed the use of the SMF approach in online
applications [6]. At the kth iteration, a new input vector x(k)
and a sample of the desired signal d(k) are received by the
adaptive filter. The pair (x(k), d(k)) generates the constraint
set H(k) = {w ∈ R

N+1 : |d − w
T
x(k)| ≤ γ̄}. SM-AP

uses the intersection of the previous L constraint sets and the

current constraint set, that is, Ψk
k−L ,

k
⋂

i=k−L

H(i). At each

iteration, SM-AP chooses a new parameter vector w(k + 1)
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belonging to Ψk
k−L, which is the closest one to w(k) for the

SC-CV. In summary, SM-AP minimizes ‖w(k+1)−w(k)‖2

subjected to w(k + 1) ∈ Ψk
k−L [3],[6].

A. Threshold and the Constraint-Vector

An important definition to the SM-AP algorithm is the
constraint set, which is defined as H(k) = {w ∈ R

N+1 :
|d(k) − w

T (k)x(k)| ≤ γ̄} [6], where γ̄ is the threshold.
Therefore, if |d(k) − w

T (k)x(k)| ≤ γ̄ already holds for the
current coefficient vector, then it is not going be updated, i.e.
w(k + 1) = w(k).

A cost function often used is ‖w(k + 1)−w(k)‖2, which
is minimized subjected to d(k) − X

T (k)w(k) = γ, where
γ is the CV. The CV defines the subset of Ψk

k−L where the
projection is performed [7]. The coefficient updates in SM-AP
is given by:

w(k + 1) =
{

w(k) +X(δI+X
T
X)−1(e(k)− γ(k)) |e(k)| > γ̄,

w(k) |e(k)| ≤ γ̄
(1)

where e(k) = d(k) − X
T (k)w(k) and δ is a regularization

parameter. Parameter γ̄ is typically set to
√

τσ2
n [2], where τ

is usually chosen as 4 or 5 and σ2
n is the measurement noise

variance, which is assumed to be known. In this paper, an
estimation of the measurement noise is used.

Several CV γ(k) exists [2]. The most popular CV is
the Simple Choice CV (SC-CV), defined as γSC(k) =
[

γ̄sign(e(k)) e(k − 1) . . . e(k −N)
]T

[2]. In [6], the
SC-CV is proved to be asymptotically optimal for the white
input case.

B. Optimal Constraint-Vector

Optimal CV [6] finds the CV that minimizes the SM-AP
problem formulated as:

min
γ,w(k+1)

‖w(k + 1)−w(k)‖2 +
1

δ
‖d(k)−X

T (k)w(k)‖,

s. t. ‖γ(k)‖∞ ≤ γ̄. (2)

Eq. (2) allows as possible results the CVs whose elements are
less than the threshold γ̄, which leads to the use of the original
constraint w(k + 1) ∈ Ψk

k−L of the SM-AP.
In general, the choice of γ̄ and γ(k) in SM-AP is empirical.

The Optimal CV [6] leads to a more mathematical approach,
but it presents a high computational burden.

The use of the Optimal CV generates CVs whose largest
element may be smaller than the pre-defined γ̄. It indicates that
the modeling for γ̄ may be changed based on the Optimal CV.
The choice of an Optimal CV may not lead to a projection
which has a distance of γ̄ from the a posteriori null error
which is the solution to the SM-APA cost function. On the
other hand, if a ˆ̄γ may be selected as the largest element of the
Optimal CV, restoring the property of the SM-APA solution.
Then, the Optimal CV indirectly provides an estimation of the
threshold γ̄.

III. PROPOSED ALGORITHMS

Our objective is to estimate γ̄ and then build a CV. The
CV generation also uses the estimation of how far from the
white distribution the input is. This is performed by using a
time-average estimate of the correlation of the input signal.
A rough instantaneous estimation of the correlation is already
performed in the APA by calculating X

T (k)X(k).
Using the Optimal CV is a problem due to an inherent

high computational complexity and to the nature of SM-AP,
which calculates Optimal CV if the γ̄ is high enough. Then, an
underestimated γ̄ would not be detected. Our strategy aims to
circumvent both issues. The algorithm is divided in two stages:
a short training stage and a large execution stage. During
training, the update is performed by APA, but the Optimal
CV is also calculated, and the input correlation is estimated.
After training, γ̄ is estimated by ‖γm‖∞, where γm is the
median of each element along the training, obtained by the
Optimal CV. The CV building is a more complicated issue.

A. Building a Constraint-Vector

One of the first SM algorithms was the SM-NLMS algo-
rithm [4]. Defining SM-NLMS does not lead to creating a CV.
SM-NLMS uses a scalar error, which is compared to γ̄ at each
iteration. Moreover, the coefficient vector is updated by using
γ̄sign(e(k)).

The emergence of SM-AP [3] and SM Binormalized NLMS
(SM-BNLMS) [8] leads to the creation of the CV for the SM
algorithms. The solution, which is still placed at γ̄sign(e(k))
instead of e(k), is advantageous since the w(k+1) is updated
inside the current constraint set while generating the minimum
distortion to the original error, because it is placed on the edge
of Ψk

k−L. The other entries of the CV are chosen not to change
the current a posteriori error. Then,

γSC(k) =











γ̄sign(e(k))
e(k − 1)

...
e(k −N)











. (3)

Eq. (3) leads to the update based on the vector e(k) −

γ(k) =
[

γ̄sign(e(k)) 0 . . . 0
]T

. Due to the SM-AP’s
good performance with SC-CV, it is the most popular version
of the SM-AP nowadays. Recently, the optimality of SC-CV
for orthogonal inputs and for white signals (in the mean)
has been shown [6]. Then, some design guidelines may be
developed:

• The CV should converge to the SC-CV for white inputs;
• The first component of the CV should be e(k) −

γ̄sign(e(k)), which is the choice of the large majority
of the existing CV [2].

There is a wide variety of non-white signals, which makes
it harder to design proper CVs. The nullity of almost all of the
elements in e(k)−γ(k) for the SC-CV removes the effects of
e(k−1), . . . , e(k−L) in the coefficient updates. The inclusion
of the effects of all elements, as in the Fixed-Modulus Error
Bound (FMEB) CV [2], in the Trivial Choice (TC) CV [2]
or in the Exponentially-Decay (ED) CV [7] resulted in worse
performance when compared to the SC-CV in some scenarios.
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The inclusion of the effect of some of the elements of e(k)−
γ(k) may be a possible solution. Our proposal is to include
only the effects of e(k) and e(k − 1). The proposed CV is
then configured as:

γ(k) =















e(k)− γ̄sign(e(k))
e(k − 1)− α(k)sign(e(k − 1))

e(k − 2)
...

e(k − L)















. (4)

The value of α(k) is used based on the (2, 1) entry of the
estimated correlation matrix, since e(k − 1) = d(k − 1) −
w

T (k − 1)x(k − 1), and the (2, 1) estimates the correlation
between x(k − 1) and x(k).

After some experimental tests, α was chosen as |r2,1|/5,
where r2,1 is the (2, 1) entry of the estimated correlation
matrix.

Keep in mind that the threshold γ̄ used in our proposed
algorithm is also estimated from the training part, using
‖γm‖∞, with γm as the median of each element along the
training. Median eliminates possible outliers in the optimal CV
estimation. This idea is inspired by the time-varying threshold
used in [10]. The whole proposed algorithm is summarized in
Table I.

TABLE I

PROPOSED ALGORITHM WITH FIXED THRESHOLD.

Stage 1: Training
Coeffient updates using APA;
Correlation matrix estimate updates using X

T (k)X(k);
γ̄ estimate updates using ‖γopt(k)‖∞

Stage 2: Running
Coefficient updates using the proposed SM-AP;
γ̄ defined by the estimate of the training stage;
CV defined in (4), based on the training stage.

B. Time-Varying Threshold

Another approach for performing the estimation of the SM
threshold is to use a time-varying threshold. The proposed
estimation is inspired by the time-varying threshold [11], by
avoiding the term containing σ2

n, which requires previous
knowledge of the measurement noise variance. The estimated
threshold ˆ̄γ(k) at iteration k is given by:

ˆ̄γ(k) = λˆ̄γ(k − 1) + (1− λ)ǫ‖e(k)‖, (5)

where λ is a forgetting factor and ǫ is a scaling factor for
adjusting the proportionality between ˆ̄γ(k) and ‖e(k)‖. In our
simulations, ˆ̄γ(0) = 0.

A summary of the proposed algorithm with a time-varying
thresold is presented in Table II.

C. Remarks on Convergence

The proposed CV defined in Eq. (4) shows an intermediary
behavior between the SC-CV and the Fixed Modulus Error-
Bound (FMEB) CV [2] [7], since the first element of the
proposed CV is identical to both SC-CV and FMEB CV, the

TABLE II

PROPOSED ALGORITHM WITH TIME-VARYING THRESHOLD.

Stage 1: Training
Coeffient updates using SM-AP;
Correlation matrix estimate updates using X

T (k)X(k);
γ̄ estimate updates using Eq. (5), starting with ˆ̄γ(0) = 0

Stage 2: Running
Coefficient updates using the SM-AP with the proposed CV;
γ̄ estimate updates using Eq. (5).
CV defined in (4), based on the training stage.

second element combines the weighted FMEB CV and the SC-
CV, while the others are identical to the SC-CV corresponding
element. Then, the same reasoning applied to the convergence
of ED (Exponentially Decay) CV in [7] may also be applied
here to the proposed CV.

The proposed CV is also a possible solution to Eq. (2) of
the Optimal CV. Then, the reasoning used in [6] to address
the convergence of the Optimal CV may also be applied here
to the special case of a fixed CV inside the feasible set of
solutions to Eq. (2).

The use of a time-varying threshold may present some
concerns over convergence, since a small rate of updates in the
beginning may slow the convergence down. Nevertheless, our
algorithm starts with a zero threshold, that is, every iteration
presents an update, with a slow increase in its value until a
proper estimate for the threshold is reached.

D. Computational Complexity Remarks

As presented in [12], the asymptotic computational com-
plexity of the Optimal CV lies between O(L3.5) and O(L4),
during the training stage. On the other hand, the computational
complexity of a pre-defined CV is O(L) after the training
stage. In our proposed algorithm with fixed CV, the number of
training samples is much smaller than the number of samples.
In Section IV, the training part comprises 20 samples out
of 3,500. Besides that, the proposed fixed CV requires fewer
updates than the SC-CV.

For the proposed algorithm with a time-varying threshold,
the Optimal CV is not used in the training part. The estimated
threshold is updated in every iteration using Eq. (5). A
summary of the asymptotic computational complexity of the
proposed CVs for the SM-AP with SC-CV is presented in
Table III.

TABLE III

COMPARISON FOR THE ASYMPTOTIC COMPUTATIONAL COMPLEXITY OF

THE PROPOSED CVS AND THE SM-AP WITH SC-CV.

Version of the SM-AP Complexity
SC-CV O(L)

Proposed Fixed CV O(L3.5
T

) then +O(L),
Proposed Time-Varying CV O(L)

IV. RESULTS

This section presents the results of computer simulations for
the performance comparison of the proposed CVs, presented in
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Section III, compared to SM-AP with SC-CV [2] and ED-CV.
Besides that, the fixed threshold algorithm is also simulated
in a situation where the parameters were known. Simulations
have been performed on Matlab software in a Ubuntu Linux
distribution.

The algorithms are compared in terms of mean-squared

error (MSE), that is,
M−1
∑

m=0

K−1
∑

k=0

|em(k)|2, where M = 600 is the

number of Monte-Carlo runs and K = 3, 500 is the amount of
transmitted symbols, and em(k) is the error at the m-th Monte-
Carlo run. Only 20 symbols are used in the training phase.
Another comparative figure-of-merit used in the simulations
is the Misalignment φ(k), defined in Eq. (6).

φ(k) =
1

M

M−1
∑

m=0

K−1
∑

k=0

‖wm(k)− h(k)‖22
‖wm(k)‖22

, (6)

where wm(k) is the coefficient vector in the m-th Monte-
Carlos run, and h is the impulse response of the channel, which
has all the N = 16 taps equal to one during the first 200
iterations and then all of them change to 2.

As presented in [6], the SC-CV is the Optimal CV in the
mean for the white input. Our focus in the simulations are the
colored-input scenarios.

In the first experiment, a 4th order auto-regressive (AR) is
used to generate the adaptive filter input signal as x(n) =
−0.95x(n − 1) − 0.19x(n − 2) − 0.09x(n − 3) + 0.5x(n −
4) + n(k). The MSE results for the first experiment are
shown in Fig. 1. The proposed algorithm with fixed threshold
presents a lower final MSE. Note also that the training part
comprises only 20 samples. The performance is not degraded
even when there is a change to the impulse response at the
200-th iteration. For the time-varying threshold, the forgetting
factor is set as λ = 0.999 and ǫ = 0.75.
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Fig. 1. MSE for an AR-4 process input.

In the same simulation, the misalignment was also mea-
sured. The results are shown in Fig. 2. The proposed algorithm
with a fixed threshold presents a lower final misalignment. The
parameter ǫ of the proposed time-varying threshold was reset
as ǫ = 1.

Another simulation was performed using an AR-1 input,
generated by x(n) = −0.95x(n − 1)n(k). Such a scenario
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Fig. 2. Misalignment for an AR-4 process input.

tends to be more favorable to the SC-CV, as shown in [6].
The results are presented in Fig. 3.
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Fig. 3. MSE for an AR-1 process input.

One may realize in Fig. 3 that the proposed algorithm with
time-varying threshold presents a slower convergence than the
proposed fixed threshold, as well as the SC-CV and ED-CV.

Fig. 4 shows the results for the misalignment in the AR-
1 simulated environment. One observes that the results are
equivalent for all the CVs, except for the ED-CV, which has
the worst performance.

Since SM algorithms do not update in every iteration,
Table IV shows the update rate for each algorithm, defined
as the ratio of the number of iterations with updates to the
number of updates where the algorithm runs. For an AR-4
input, the proposed algorithm with a fixed threshold, then the
algorithm’s training part is not considered in the ratio since
an affine projection update is used.

The proposed algorithm with fixed threshold updates in a
smaller number of iterations compared to the SC-CV. The
proposed algorithm with time-varying threshold presents an
intermediary rate of iterations when compared to SC-CV and
ED-CV for an AR-4 input. On the other hand, the version
with a time-varying threshold presents a lower complexity
for the update than the fixed threshold version, as shown

4
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TABLE IV

SM UPDATE RATES FOR EACH ALGORITHM IN EACH OF THE SCENARIOS.

CV Update Rate

AR4 AR1 White Rep. Code

SC-CV 0.271 0.187 0.156 0.193
ED-CV 0.335 0.281 0.203 0.181

Proposed: Fixed 0.215 0.165 0.151 0.258
Proposed: Time-Varying 0.304 0.168 0.150 0.165

in Section III-D. Then, the proposed fixed threshold version
presents lower MSE, a slightly lower misalignment, and fewer
updates than the SC-CV by using only 20 samples of training.
The proposed time-varying threshold version presents lower
MSE and misalignment, with an update rate greater than SC-
CV, but smaller than ED-CV.

In the case of AR-1 input, both proposed versions of SM-AP
present a smaller update rate than SC-CV and ED-CV.

In our simulations, we also plotted the proposed algorithm
with a fixed threshold considering the situation where the
parameters were all known. As can be seen in Figs. 1 and 2,
the version with known parameters presents a lower MSE and
misalignment. Then, we conclude that the performance of the
proposed algorithm presents a sub-optimal estimation.

It is remarkable that the training of the proposed fixed CV is
performed only once, even if the impulse response is changed,
as depicted in Figs. 1-4. On the other hand, if the input
signal changes its input statistics, the adaptive filter should
be retrained.

The proposed algorithm was also tested in a scenario where
a simple channel encoding known as repetition code [13]
with length 4 was used. The Misalignment for the proposed
algorithm as well as the SC-CV and ED-CV is shown in Fig. 5.
The update rates are also shown in Table IV.

V. CONCLUSION

This article describes two versions of the SM-AP algorithm
solely based on estimation. One of them estimates the CV
parameters based on the optimal CV. The other one is based
on a time-varying estimation of the noise power for the SM
threshold. Simulation results show that the proposed algorithm
outperforms the benchmarks SC-CV and ED-CV in terms of

mean-squared error with less update, with the exception of
the scenario with repetition code, where the fixed version
presented more updates. Another contribution of this article
is that the proposed CV is developed mainly for non-white
inputs, which is common when the transmitter has an encoder.
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Fig. 5. Misalignment for the scenario with Repetition Code [13].
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