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Abstract—A performance analysis in terms of the bit error rate
for digital systems with co-channel interference is done. In order
to evaluate the effects of the interference on systems performance,
expressions for the bit error rate are obtained for different sce-
narios. In these scenarios we consider one, two or K interferers
that have the same power. If K is large, the interference is
gaussian and the interference can be treated as equivalent noise.
Scenarios with two interferers, where one of them is dominant
and where the interference is asynchronous to the signal are
also considered. Although the gaussian approximation is easy
to be obtained, it is considered not a good model for cellular
networks, because the number of main interferers is in essence
one or two. This paper presents an effective tool to evaluate how
much effective are the diverse schemes proposed to mitigate the
co-channel interference in cellular networks.

Index Terms—2-PAM, BPSK, Co-Channel Interference, SIR,
BER.

I. INTRODUCTION

The characterization of the co-channel interference is a fun-
damental question to the correct evaluation of the performance
of cellular networks in terms of the bit error rate (BER).

The interference in cellular systems is produced by the co-
cells that use the same resources of the central cell. As the
propagation loss is proportional to the distance between the
transmitter and receiver raised to an exponent (typically equal
to 4), the interference is mainly produced by the first tier of
co-channel cells [1].

Some papers have evaluated the BER for different digital
modulations in the presence of co-channel interference [2],
[3], [4], [5], [6]. As the exact analysis is difficult to do, the
interference is sometimes modelled as gaussian [7]. In this
paper, we present much simpler and intuitive expressions of
the BER just in the presence of co-channel interference.

With the crescent widespread of cellular networks (e.g.
WiMax and LTE), the correct performance evaluation of these
systems in the presence of co-channel interference is an
important item that deserves consideration. Besides, another
important question is how effectively some known techniques
in the literature mitigate the co-channel interference, as the
reuse factor, antenna arrays, etc.

In this paper, we present expressions for the BER for BPSK
modulation in the presence of K co-channel interferers with
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Figure 1. Receiver with K Interferers.

same power. It is supposed that the signal and interference are
synchronous. We also present an expressions for a scenario
with two interferers, where one of them prevails and for
the case where signal and interference are asynchronous. An
expression for the gaussian approximation is also presented,
with the purpose of comparing the obtained results.

Initially, we are going to obtain BER expressions for a
bandbase 2-PAM system. Later, we are going to show that
these results are directly applied to BPSK systems.

This paper is organized as follows. Section II presents
the system model. Section III derives BER expressions for
different scenarios. Section IV presents the numerical results
and section V shows the conclusions.

II. SYSTEM DESCRIPTION

Consider the bandbase system shown in Fig. 1, where the
received signal is given by:

r(t) =

K∑
k=0

sk(t) + n(t) (1)

where sk(t) are 2-PAM signals. Specifically, s0(t) represents
the signal component, sk(t) for k = 1, 2, · · · ,K are the K
interferers and n(t) is the additive white gaussian noise with
bilateral power spectral density equal to N0/2.

The PAM signal component is given by:

s0(t) =

∞∑
i=−∞

Abi,0p(t− iTb) (2)
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where A is the amplitude, bi,0 is the transmitted bit at the i-th
time interval, that is modelled as a Bernoulli random variable
that assumes ±1 and p(t) is the pulse format with duration
Tb.

The k-th PAM source of interference is given by:

sk(t) =

∞∑
i=−∞

αAbi,kp(t− iTb) (3)

where αA is the amplitude and bi,k is the transmitted bit at
i-th time interval by k-th interferer.

A. K Interferers

Let’s consider first a system with only one interferer and
later we generalize to K interferers. Suppose that there is
no noise and that signal and interference are synchronous,
specifically in the time interval iTb ≤ t ≤ (i + 1)Tb. The
matched filter output is sampled at t = (i+1)Tb and is given
by:

y(i+1)Tb
= Abi,0 + αAbi,1 (4)

where we used that
´ (i+1)Tb

iTb
p2(t)dt = 1. The mean power

of the received signal given by (1) with just one interferer is
given by:

P = A2 + α2A2 (5)

From (2), the signal mean power is equal to S = A2.
From (3), the interference mean power is I = α2A2. As a
consequence, the signal to interference ratio (SIR) is given
by:

S

I
=

1

α2
(6)

Developing the same reasoning for two interferers with
equal power, the sample at the matched filter output is given
by:

y(i+1)Tb
= Abi,0 +

1√
2

2∑
k=1

αAbi,k (7)

where the factor 1/
√
2 maintains the total interference power

equal to I = α2A2 and as a consequence the SIR is given by
(6).

Generalizing for K interferers with equal power, the sample
at the matched filter output is given by:

y(i+1)Tb
= Abi,0 +

1√
K

K∑
k=1

αAbi,k (8)

For a large number of K interferers with equal power,
the interference becomes gaussian and as a consequence we
can write that noise plus interference power is equal to an
equivalent noise power, that is:(

S

N

)
eq

=
S

N + I
=

1[(
S
I

)−1
+
(
S
N

)−1] (9)

B. One Prevailing Interferer

It is not probable at all that in a cellular network the power
of the interferers be all equal, nor that the interference be
gaussian. In fact, as there are just 6 co-channel cells nearer a
given central cell, there is potentially just 6 main interferers.
As the propagation loss is proportional to the distance between
transmitter and receiver raised to a propagation exponent of γ
(typically 4), any difference between the interferers distances
to a given receiver is amplified by the propagation exponent.
Thus, it is much more probable that there is one prevailing
interferer.

Let’s suppose now the case of two interferers, where one
of them prevails. In this case, the sample at the matched filter
output is given by:

y(i+1)Tb
= Abi,0 + αAbi,1 + βAbi,2 (10)

where α and β are multiplicative constants that define the
power of both interferers.

In this case, the total mean power is given by:

P = A2 + α2A2 + β2A2 (11)

From the mean power given by (11), we can write that the
SIR is given by:

S

I
=

1

α2 + β2
(12)

When β � α the first interferer is dominant in relation to
the second and (6) becomes a good approximation for the SIR.

C. One Asynchronous Interferer

Consider now that the interference is asynchronous to the
signal, that is:

s1(t) =

∞∑
i=−∞

αAbi,1p(t− iTb − τ) (13)

where τ is a delay between interference and signal, that is a
random variable uniform in the interval 0 ≤ τ ≤ Tb.

In this case, the sample at the matched filter output is given
by:

y(i+1)Tb
= Abi,0 + αAbi−1,1

τ

Tb
+ αAbi,1

(Tb − τ)
Tb

(14)

The asynchronism between signal and interference does not
modify the SIR, that is given by (6).

D. BPSK Modulation

Consider the same receiver given in Fig. 1 for the BPSK
modulation.

The received signal is now given by:

s0(t) =

∞∑
i=−∞

√
2Abi,0p(t− iTb) cos(2πf0t+ φ) (15)



The 7th International Telecommunications Symposium (ITS 2010) 3

where
√
2 maintains the power equal to the bandbase case and

φ is the received phase. The k-th interferer is given by:

sk(t) =

∞∑
i=−∞

√
2αAbi,kp(t− iTb) cos(2πf0t+ φ) (16)

Considering absence of noise and synchronism between
signal and interference, we can write the sample at the matched
filter output for the time interval iTb ≤ t ≤ (i+ 1)Tb as:

y(i+1)Tb
= Abi,0 + αAbi,1 (17)

The mean power of the received signal is given by (1),
where the PSK signal and interference are given by (15) and
(16). For the case with just one interferer, the mean power for
the PSK modulation is also equal to (5). As a consequence,
the SIR is also given by (6). Based on this, we can extend
all analysis developed for 2-PAM to the BPSK case. In the
following, all the analysis is valid for both BPSK and 2-PAM
modulation, but we will refer just as BPSK that is the focus
of the paper.

III. BER ANALYSIS

The BER for a BPSK system without interference is given
by [8]:

Pb = Q

(√
2
Eb

N0

)
(18)

where Eb = A2Tb and σ2 = N0/2Tb, for A and Tb given in
(2). Using the same reasoning when developing (18), we can
obtain the BER for different scenarios of interference.

A. K Interferers

Let’s consider first one interferer and then extend to K
interferers. The BER in this case is given by:

Pb =
1

2
Q

(
(1 + α)

√
2
Eb

N0

)
+

1

2
Q

(
(1− α)

√
2
Eb

N0

)
(19)

The BER for two interferers with same power is given by:

Pb =
1

4
Q

((
1 +

2√
2
α

)√
2
Eb

N0

)

+
1

4
Q

((
1− 2√

2
α

)√
2
Eb

N0

)

+
1

2
Q

(√
2
Eb

N0

)
(20)

For the general case of K interferers, we can write that:

Pb =

K∑
k=0

(
K
k

)
2K

Q

([
1− K − 2k√

K
α

]√
2
Eb

N0

)
(21)

When K is large, the interference is gaussian. Using (9) in
(18), we can obtain that:

Pb = Q

(√(
S

N

)
eq

)

= Q


√√√√[(S

I

)−1
+

(
S

N

)−1]−1 (22)

B. One Prevailing Interferer

The BER for the case of two interferers, where one of them
is dominant is given by:

Pb =
1

4
Q

(
[1 + (α+ β)]

√
2
Eb

N0

)

+
1

4
Q

(
[1 + (α− β)]

√
2
Eb

N0

)

+
1

4
Q

(
[1− (α+ β)]

√
2
Eb

N0

)

+
1

4
Q

(
[1− (α− β)]

√
2
Eb

N0

)
(23)

where (19) can be a good approximation when β � α.

C. One Asynchronous Interferer

For the asynchronous case, the BER using (14) is given by:

Pb =
1

4
Q

(
(1 + α)

√
2
Eb

N0

)

+
1

4
Q

(
(1− α)

√
2
Eb

N0

)

+
1

4
Q

((
1 + α− α2τ

Tb

)√
2
Eb

N0

)

+
1

4
Q

((
1− α+ α

2τ

Tb

)√
2
Eb

N0

)
(24)

which is a function of τ .
The mean value of the BER is given by:

Pb =
1

4
Q

(
(1 + α)

√
2
Eb

N0

)

+
1

4
Q

(
(1− α)

√
2
Eb

N0

)

+
1

4

ˆ Tb

0

Q

((
1 + α− α2τ

Tb

)√
2
Eb

N0

)
1

Tb
dτ

+
1

4

ˆ Tb

0

Q

((
1− α+ α

2τ

Tb

)√
2
Eb

N0

)
1

Tb
dτ(25)
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These integrals have closed form and consequently the mean
BER is given by:

Pb =
1

4
Q

(
(1 + α)

√
2
Eb

N0

)

+
1

4
Q

(
(1− α)

√
2
Eb

N0

)
+

1

4

+
1

8α
√
π Eb

N0

exp

[
− (−1 + α)

2 Eb

N0

]

− 1

8α
√
π Eb

N0

exp

[
− (1 + α)

2 Eb

N0

]

+
(−1 + α)

8α

[
1− 2Q

(
(−1 + α)

√
2
Eb

N0

)]

− (1 + α)

8α

[
1− 2Q

(
(1 + α)

√
2
Eb

N0

)]
(26)

IV. NUMERICAL RESULTS

In order to evaluate the BER for cellular networks in the
presence of co-channel interference, we are going to plot the
expressions developed in section III.

Fig. 2 presents the BER as a function of Eb/N0 in dB
for just one interferer, where we used (19) for S/I = −3,
0, 3, 6, 9 and ∞ dB. For S/I = −3 dB, there is a BER
floor that is equal to 1/2 due to the fact that the interference
power is larger than signal power. For S/I = 0 dB, the BER
floor is equal to 1/4 due to the fact that the interference
power is equal to the signal power. In both cases the system
performance can not be improved even increasing the Eb/N0.
On the other hand, for S/I = 3, 6 and 9 dB we observe that
BER decreases with Eb/N0 with a cost of some dB in relation
to the free interference case. When S/I →∞ the case of no
interference given in (18) is achieved. Here we also plot the
case without interference with the purpose of comparing the
obtained results.
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Figure 2. BER as a function of Eb/N0 in dB, for one interferer and S/I =
−3, 0, 3, 6, 9 and ∞ dB.

Fig. 3 presents the BER as a function of Eb/N0 in dB for
two interferers, where we used (20) for S/I = 0, 3, 6, 9 and
∞ dB. For S/I = 0 dB, the BER floor is equal to 1/4 and
for S/I = 3 dB, the BER floor is equal to 1/8 due to the fact
that interference power is larger than and equal to the signal
power respectively. For S/I = 6, and 9 dB we observe that
BER decreases with Eb/N0 and when S/I →∞ there is the
same behavior as in the free interference case.
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Figure 3. BER as a function of Eb/N0 in dB, for two interferers and
S/I = 0, 3, 6, 9 and ∞ dB.

In (21) when the SIR is equal to the number of interferers
K, the BER presents a floor given by Pb = 1/2K+1. When
the SIR is greater than K, there is no floor at all.

Fig. 4 presents the gaussian approximation BER as a
function of Eb/N0 in dB, where we used (22) for S/I = −3,
0, 3, 6, 9 and ∞ dB. Observe when K → ∞ interferers the
BER presents a floor for any S/I , and when S/I =∞ there
is no BER floor.
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Figure 4. BER as a function of Eb/N0 in dB, for∞ interferers and S/I =
−3, 0, 3, 6, 9 and ∞ dB.

Fig. 5 presents the BER as a function of Eb/N0 in dB,
where we used (21) and simulation results, for 0, 1, and 6
interferers and S/I = 9 dB. Notice that the BER worsen
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by increasing the number of interferers, although S/I is kept
constant. For a BER of 10−5, one interferer causes a degra-
dation of approximately 3 dB in Eb/N0 and six interferers a
degradation of 15 dB.
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Figure 5. BER as a function of Eb/N0 in dB, for 0, 1 and 6 interferers
and S/I = 9 dB.

Fig. 6 presents the BER as a function of Eb/N0 in dB,
where we used (22) for 2 interferers and S/I = 9 dB. Two
cases are considered: one of the users is a dominant strong
with β/α = 0.1 or a dominant weak with β/α = 0.6 for a
S/I = 9 dB. For comparison purposes, the curves for one and
two interferers are also shown. Observe that, as expected, the
strong dominant case is near the one interferer curve and the
weak dominant is near the two interferer curve.
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Figure 6. BER as a function of Eb/N0 in dB, for dominant strong β/α =
0.1 and dominant weak β/α = 0.6 and S/I = 9 dB.

Fig. 7 presents the BER as a function of Eb/N0 in dB,
where we used (26) for 1 interferer and S/I = 9 dB. This
curve presents a comparison between the synchronous and
asynchronous case for a S/I = 9 dB. Observe that when the
interferer is synchronous to the signal, the BER is worse by
approximately 0.7 dB. As the difference between both cases

is small and as the synchronous case is in fact the worst
case, we should prefer the synchronous analysis because these
expressions are easier to obtain and to manipulate.
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Figure 7. BER as a function of Eb/N0 in dB, for one Synchronous and
Asynchronous Interferer with S/I = 9 dB.

V. CONCLUSIONS

In this paper, we have presented expressions for the BER for
a BPSK system that were evaluated in different scenarios of
co-channel interference. One scenario that we have examined
present K synchronous interferers for a given S/I . We have
concluded that there is a floor in the BER when S/I ≤ K
or when K →∞ for any S/I . Other important scenario that
we have examined is when there is one prevailing interferer.
Finally, the scenario where the asynchronous interference
presents better performance than the synchronous interference.
We have concluded that the case with just one synchronous
interferer is a good case to study. These expressions are also
valid for Q-PSK since this has the same performance of
BPSK. These results are important to correctly evaluate the
performance of cellular networks that use BPSK and Q-PSK
modulations.
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