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On the Step-Size of Leakage QN and Leakage LS
Algorithms

Fabiano T. Castoldi and Marcello L. R. de Campos

Abstract— Recursive Least Squares (RLS) algorithms are
known to have fast convergence in the presence of correlated
input signals that have persistent excitation. However, when
non-persistently excitating signals or quantization errors are
present in the system, the RLS algorithms may diverge. This fact
happens due to the loss of positive definiteness of the input signal
correlation matrix. There is a class of quasi-Newton algorithms
that use a correlation matrix that once initialized positive definite,
it remains in this state independently of the input signal. In this
paper some algorithms are developed using different approaches
to the calculation of the step-size, such that the conditionof
positive definiteness of the correlation matrix is guaranteed.

Keywords— Leakage Least-Squares Algorithm, Variable Step-
Size, Robustness, Optimization Problems, Logarithmic Barrier.

I. I NTRODUCTION

Many adaptation algorithms have been proposed in the
past forty years, offering trade-offs in convergence speed,
robustness, and computational complexity. Least-Squares(LS)
algorithms usually have better convergence speed in compari-
son to Least Mean Squares (LMS) algorithms. However, many
Recursive Least-Squares (RLS) algorithms lack robustness,
due to accumulation of quantization errors, or due to loss of
positive definiteness of the Hessian matrix caused by non-
persistently exciting input signals [1].

The conventional RLS algorithm presents good convergence
speed, but its robustness is not guaranteed unless we opt
for a QR-decomposition implementation, or some other re-
gularization scheme. Robust RLS-algorithm implementations
with reduced computational complexity are usually based on
QR-decompositions, which are complex to implement and
maintain [2]. There are other algorithms that have been
developed based on known convex optimization methods,
like the quasi-Newton (QN) and IPLS (Interior Point Least
Square) algorithms [1], [3]. These algorithms offer increased
robustness at a cost of extra computational complexity, for
they do not admit O(N) implementations.

The QN algorithm in [1] is a robust algorithm that presents
good convergence capabilities without user-defined variables,
which gives a further level of robustness. However, it does
not allow fast implementation and it also has a constant
misadjustment of 3 dB due its normalization, which cannot be
reduced. A different approach to derive adaptation algorithms
was developed in [4], and as a by product a new leakage QN
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algorithm was also presented. This leakage QN algorithm also
does not need user-defined quantities and has a slightly lower
misadjustment in comparison to the QN algorithm.

The method to derive algorithms presented in [4] allows
minimization of the cost function, in particular in LS problems,
using convex optimization techniques and a minimum dis-
turbance approach. The derivation of new variable step-sizes
for LS algorithms is presented in this work, using different
constraints to the input-signal correlation matrix.

This paper is organized as follows: In the following sub-
section some common notations will be presented for better
understanding the text. Section II presents the Leakage QN
algorithm developed in [4]. An alternative version, using ine-
quality constraints, is derived in Section III. The LeakageLS
algorithm and its modified version are presented in Sections
IV and V, respectively. Simulations are carried out to show
the convergence performance of the algorithms in Section VI
and conclusions are given in Section VII.

A. Common Notations

In this work vectors are represented by bold lower case
letters and matrices are represented by bold upper case letters.
The representation of variables in the text is similar to that of
the RLS algorithm, which is presented here and will be used
in comparisons in Section VI. The conventional version of the
RLS algorithm can be implemented as:

en = dn − w
T
n−1xn (1)

tn = R
−1

n−1
xn (2)

τn = x
T
n tn (3)
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(4)

wn = wn−1 + enR
−1

n xn (5)

whereen is thea priori error,dn is the reference signal,xn is
the input-signal vector,wn is the filter coefficient vector, all at
iterationn, and the vectors have lengthN . The constantλ ∈
(0, 1] is purposely called forgetting factor because it controls
how past information is weighted to form the estimates of the
input-signal correlation matrix,R = E

[

xnx
T
n

]

. The operator
(·)T is the transposed of a vector or a matrix.R

−1

n is the
inverse of the correlation matrix and is usually initialized as
R

−1

0
= γI, where I is the identity matrix with dimension

N × N andγ is a user-defined constant, usuallyγ = 1.



XXVI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT’08, 02-05 DE SETEMBRO DE 2008, RIO DE JANEIRO, RJ

II. L EAKAGE QN ALGORITHM

The leakage QN algorithm derived in [4] was developed by
solving the following minimization problem with respect to
the filter coefficients at instantn:

min
wn

µn‖wn − wn−1‖
2

Rn−1
+

[

dn − x
T
nwn

]2

s.t. x
T
nR

−1

n xn = 1/2 (6)

For this algorithm the correlation matrix isRn = Rn−1 +
µnxnx

T
n and its inverse, using the matrix inversion lemma, is
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with tn and τn as in equations (2) and (3), respectively, and
µn is the step-size limited as0 ≤ µn ≤ 1.

It can be seen from the minimization problem of equation
(6) that the constraint imposed in the cost function does not
include the coefficient vector,wn, having no influence in the
coefficient update values. However, the constraint imposesto
the correlation matrix a condition. Therefore, one can choose
the step-size such that the constraint is satisfied, e.g., by
directly applying the correlation matrix update formula [4] to
the constraint:
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xn = 1/2 (8)

The resulting algorithm is presented in Table I.

TABLE I

LEAKAGE QN (LQN) ALGORITHM
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Different constraints can be imposed to the algorithm,
allowing the correlation matrix’s eigenvalues to be lower
and upper bounded within the(α, β) interval. However, the
use of inequalities cannot be easily solved using Lagrange
multipliers, so the logarithmic barrier method can be used to
help the solution.

III. M ODIFIED LEAKAGE QN ALGORITHM

A. Logarithmic Barrier

The barrier method is an interior-point method that sim-
plifies the inequality constraints in the cost function witha
sum of indication functionsI

−
(fi(x)) in the cost function.

The indication function for a constraintfi(x) < 0, for i =
1, · · · , m (wherem is the number of inequality constraints),
has value zero forfi(x) ≤ 0 and tends to∞ for fi(x) ≥
0. The logarithmic barrier makes an approximation of this
function as

Î
−

(fi(x)) = −(1/t) log(−fi(x)) (9)

where the parametert adjusts the approximation precision. As
t increases, so does the precision.

The gradient of the logarithmic barrier is given as

∇Î
−

(fi(x)) =
1

−fi(x)
∇fi(x) (10)

For more information about interior-point methods and the
logarithmic barrier see [5].

B. Algorithm Derivation

Using the same cost function as in equation (6) but with
different constraints to limit both the lower and upper bound
of the correlation matrix, the new minimization problem can
be presented as follows:

min
wn

µn‖wn − wn−1‖
2
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These constraints allow better control over the correlation
matrix behavior, making explicit the positive definitenesspro-
perty and limiting how much the matrix can grow to avoid
numeric overflow problems. The update equations for the
coefficient vector and for the inverse of correlation matrixare
the same. The step-size now can be calculated by minimizing
a convex function constructed as the combination of the
two constraints, with the logarithmic barrier function used to
approximate the inequality:
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Solving the equation (12) by taking its gradient and setting
it equal to zero, and using the update equation of the inverse
of the correlation matrix, equation (7), then
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After some manipulations, the step-size is given by

µn =
τn [(t1 + t2) − (t1α + t2β)]

t1α + t2β
(14)

As this is also a modified version of the conventional RLS
algorithm, the step-size needs to be kept inside the stability
region,0 < µn ≤ 1. This can be accomplished in many ways,
but probably the most simple one is to use a hard decision
after the computation of the step-size: If it is off the limits
then set it to the closest boundary value.

The resulting Leakage QN algorithm is summarized in Table
II.
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TABLE II

MODIFIED LEAKAGE QN (MLQN) ALGORITHM
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IV. L EAKAGE LS ALGORITHM

An algorithm with good convergence performance and low
misadjustment was presented in [4]. The cost function that is
minimized is given by

ξn = ‖wn − wn−1‖
2

Rn−1
+ µn

[
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T
nxn

]2

(15)

The solution of this minimization problem results in the
following recursive update equations of the coefficient vector
and the inverse correlation matrix:
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n xn (16)
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respectively.
Using the QN constraint in this algorithm, one can find

a new leakage quasi-Newton algorithm, that will be called
herein leakage LS algorithm, where the step-size reinforces
the equalityxT

nR
−1

n xn = 1/2. Solving this equality we have
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which results in
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The algorithm is presented in Table III.

V. M ODIFIED LEAKAGE LS ALGORITHM

The same constraints used in the leakage QN algorithm can
be employed in the leakage LS algorithm, allowing better

TABLE III

LEAKAGE LS (LLS) ALGORITHM
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control over the inverse correlation matrix behavior. The
problem to be solved now is

min
wn
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The coefficient vector and the inverse of correlation matrix
update equations are the same, equations (16) and (17), res-
pectively. However, the step-size is computed by minimizing
a similar constraint problem as in equation (12). The solution
becomes
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Solving equation (22) forµn, we have

µn =
τn (t1 + t2) − (αt1 + βt2)

τn (αt1 + βt2)
(23)

The modified leakage LS algorithm can control the bounds
of the correlation matrix, and its inverse, through the variable
step-size. The resulting algorithm was first presented in [6]
and is shown in Table IV.
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VI. SIMULATIONS

Simulations were carried out to test and compare conver-
gence speed and Mean Square Error (MSE) of the algorithms.
Another objective is to verify the improved robustness of the
algorithms using the variable step-size over the conventio-
nal RLS algorithm, which can diverge in situations of non-
persistently exciting signals or quantization errors.

In our simulations, an unknown system was to be identified
by the adaptive filter, and zero-mean white noise was added to
the output signal of the system to form the reference signal.
The signal-to-noise ratio (SNR) was constant and equal to
40dB for all simulations.

The unknown system was an FIR filter with transfer function
given by

H(z) = 1 + z−1 + z−2 + z−3 + z−4 (24)

normalized to unitary gain.
For each different algorithm, a sufficient order adaptive

filter was used and the simulations were carried out until
convergence was reached. Two different input signals were
used to the unknown system and to the adaptive filter: white
Gaussian and sinusoid signals. The MSE curves shown in the
figures were obtained after averaging over an ensemble of
200 simulations. The user-defined parameters of algorithms
in Tables II and IV were chosen so that the algorithms meet
the misadjustment of the LQN algorithm, and the initialization
parameterγ = 1 for convenience.

A. White Gaussian Signal

For this case, the input signal was generated using a White
Gaussian Process (WGN) with unitary power. The user-defined
parameters for the modified algorithms are:t1 = t2 = 50, α =
0.15 andβ = 0.75 for the MLQN algorithm; and,t1 = t2 =
50, α = 0.01 and β = 0.025, for the MLSS algorithm. The
forgetting factor of the RLS algorithm for this experiment was
set toλ = 0.85. Figure 1 shows the MSE learning curve for the
5 algorithms. As can be seen in the figure, the MLLS algorithm
has the best convergence speed, whereas the LQN and MLQN
algorithms converges at similar speed as the RLS algorithm.
This is a good achievement for the LQN algorithm that does
not need or use user parameters defined. The LLS algorithm
has the worst behavior, and being an algorithm that does not
have user-defined parameters it can’t be better adjusted.

B. Non-Persistently Exciting Signal

A sinusoid signal with sample frequency of1/N was used.
Using the same forgetting factor for the RLS algorithm,
λ = 0.85, the parameters for the MLLS algorithm are still
the same as for the WGN input signal case to yield similar
misadjustment. In this case, the parametersα and β for the
MLQN algorithm need to be set closer to each other to avoid
divergence:t1 = t2 = 50, α = 0.0001 andβ = 0.001. Figure
2 presents the MSE convergence of the algorithms, where
it can be seen that the modified algorithms converged and
the RLS and the LQN algorithms diverged. Also, the MLLS
algorithm has the best convergence performance followed by
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Fig. 1. Learning curves of the algorithms for WGN signal.

the MLQN algorithm. In this figure, the LLS algorithm was
not present due to its poor performance, similar to the one
obtained in the WGN case.
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Fig. 2. Learning curves of the algorithms for non-persistently exciting signal.

VII. CONCLUSIONS

This paper presented the development of variable step-
size algorithms for both quasi-Newton and Least Squares
algorithms with a leakage approach. The four algorithms
obtained imposed constraints to the correlation matrix, so
that once it is initialized positive definite, it remains in this
state independently of the input signal statistics or presence
of quantization errors.

The variable step-size equations were derived from equality
and inequality constraints, where the logarithmic barrierwas
used to help solving the inequality optimization problems.
In the algorithms using equality constraints, a variable step-
size that does not need user-defined parameters was obtained,
which gives a different level of robustness to the algorithm,
specially in non-stationary environments. However, simulation
results showed that the LLS algorithm presents bad perfor-
mance at high SNR levels.
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The modified algorithms that were derived from inequality-
constrained optimization problems presented the best results
in the simulations carried out. Even in situations of non-
persistently exciting signals the algorithms still converged fast.
However, these algorithms need user-defined parameters that
may influence the algorithm’s convergence performance.

In general, the most appropriate algorithm depends on the
application. If the system does not present many variations,
the MLQN and MLSS algorithms can be used. If one knows
that the signal in the system has persistence of excitation and
wants to avoid tuning the algorithm for the best performance,
then the LQN algorithm can be employed. An article with
the theoretical convergence analysis of the algorithms is in
development.
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