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On the Step-Size of Leakage QN and Leakage LS
Algorithms

Fabiano T. Castoldi and Marcello L. R. de Campos

Abstract— Recursive Least Squares (RLS) algorithms are algorithm was also presented. This leakage QN algorithm als
known to have fast convergence in the presence of correlated does not need user-defined quantities and has a slightly lowe
input signals that have persistent excitation. However, wan misadjustment in comparison to the QN algorithm

non-persistently excitating signals or quantization errgs are h . .
present in the system, the RLS algorithms may diverge. Thisafct The method to derive algorithms presented in [4] allows

happens due to the loss of positive definiteness of the inptiggal Minimization of the cost function, in particular in LS prelohs,
correlation matrix. There is a class of quasi-Newton algothms using convex optimization techniques and a minimum dis-

that use a correlation matrix that once initialized positive definite, tyrbance approach. The derivation of new variable stegssiz

it remains in this state independently of the input signal. h this ¢, | 5 aigorithms is presented in this work, using different
paper some algorithms are developed using different apprazhes . he i . | lati -
to the calculation of the step-size, such that the conditiorof constraints to the input-signal correlation matrix.

positive definiteness of the correlation matrix is guaranted. This paper is organized as follows: In the following sub-
Keywords— Leakage Least-Squares Algorithm, Variable Step- section some common notations will be presented for better

Size, Robustness, Optimization Problems, Logarithmic Bajer. uUnderstanding the text. Section Il presents the Leakage QN

algorithm developed in [4]. An alternative version, usimg-

quality constraints, is derived in Section Ill. The Leakdge

algorithm and its modified version are presented in Sections

IV and V, respectively. Simulations are carried out to show
Many adaptation algorithms have been proposed in tkige convergence performance of the algorithms in Section VI

past forty years, offering trade-offs in convergence speeahd conclusions are given in Section VII.

robustness, and computational complexity. Least-Squa®s

algorithms usually have better convergence speed in campar _

son to Least Mean Squares (LMS) algorithms. However, mafly €ommon Notations

Recursive Least-Squares (RLS) algorithms lack robustnessin this work vectors are represented by bold lower case

due to accumulation of quantization errors, or due to loss lftters and matrices are represented by bold upper caseslett

positive definiteness of the Hessian matrix caused by norhe representation of variables in the text is similar ta thfa

persistently exciting input signals [1]. the RLS algorithm, which is presented here and will be used
The conventional RLS algorithm presents good convergerniaecomparisons in Section VI. The conventional version &f th

speed, but its robustness is not guaranteed unless we RpS algorithm can be implemented as:

for a QR-decomposition implementation, or some other re- -

gularization scheme. Robust RLS-algorithm implementetio en = dn —Wp_1Xpn (1)

with reduced computational complexity are usually based on

I. INTRODUCTION

QR-decompositions, which are complex to implement and tn =R, ix, @
maintain [2]. There are other algorithms that have been T

developed based on known convex optimization methods, Tn = Xntn )
like the quasi-Newton (QN) and IPLS (Interior Point Least 1 t T

Square) algorithms [1], [3]. These algorithms offer ined R, = 3 { ;il - )\:_—"] (4)
robustness at a cost of extra computational complexity, for n

they do not admit O(N) implementations. Wn = Wn_1 + xR %, (5)

The QN algorithm in [1] is a robust algorithm that presents

good convergence capabilities without user-defined viasab wheree,, is thea priori error, d,, is the reference signak,, is

which gives a further level of robustness. However, it dodbe input-signal vectorv,, is the filter coefficient vector, all at

not allow fast implementation and it also has a constaiterationn, and the vectors have lengfi. The constani

misadjustment of 3 dB due its normalization, which cannot 46, 1] is purposely called forgetting factor because it controls

reduced. A different approach to derive adaptation algori how past information is weighted to form the estimates of the

was developed in [4], and as a by product a new leakage @Nput-signal correlation matrixR = F [x,,x~]. The operator
()T is the transposed of a vector or a matriR,,! is the

Fabiano T. Castoldi and Marcello L. R. de Campos, Programtandenha-  jnyerse of the correlation matrix and is usually initializas

ria Elétrica, COPPE/UFRJ, P.O.Box 68504, Rio de Janeith, 22.945-970, R-! — ~I wh I is the identit tri ith di .
Brazil. Emails: ft ol di @nmai |l . com and ntanpos@ eee. org. This o = 71, wherel s the identty matrx wi Imension

work was partially supported by CAPES and CNPq. N x N and~ is a user-defined constant, usually= 1.
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Il. LEAKAGE QN ALGORITHM where the parameteéradjusts the approximation precision. As

The leakage QN algorithm derived in [4] was developed tfyincreases,. so does the prfacisi.on. S
solving the following minimization problem with respect to The gradient of the logarithmic barrier is given as

the filter coefficients at instant: R 1
VI_(fi(z)) = ———=V/fi(z) (10)
min  p,||w, — Wn,1||%(n71 + [dn — xgwn}2 —fi(z)
st. xIR;'x, =1/2 (6) For more information about interior-point methods and the

. . . . logarithmic barrier see [5].
For this algorithm the correlation matrix R,, = R,,_1 +

UnXnxt and its inverse, using the matrix inversion lemma, is

1 t,t7 B. Algorithm Derivation
R,'=— Rl - 7 () : : : . :
Hn Hn + Ty Using the same cost function as in equation (6) but with
with t,, and 7, as in equations (2) and (3), respectively, andifferent constraints to limit both the lower and upper bdun
Iy iS the step-size limited a3 < p, < 1. of the correlation matrix, the new minimization problem can

It can be seen from the minimization problem of equatiobe presented as follows:
(6) that the constraint imposed in the cost function does not

include the coefficient vectosy,,, having no influence in the min i, ||Wn, — Wioi1l|R,_, + [dn — vavn}2
coefficient update values. However, the constraint impéses Wn
the correlation matrix a condition. Therefore, one can cgoo x'R1'x, > a
the step-size such that the constraint is satisfied, e.g., by S't'{ x'R1x, < 8 (11)
directly applying the correlation matrix update formulg {d
the constraint: These constraints allow better control over the correfatio
1 t tT matrix behavior, making explicit the positive definitengss-
T —1 nvn _ L . .
Xn {u— [ n-1—" ﬁ} }Xn =1/2 (8) perty and limiting how much the matrix can grow to avoid
" e _ numeric overflow problems. The update equations for the
The resulting algorithm is presented in Table I. coefficient vector and for the inverse of correlation matine
TABLE | the same. The step-size now can be calculated by minimizing
LEAKAGE QN (LQN) ALGORITHM a convex function constructed as the combination of the
two constraints, with the logarithmic barrier function ds®
approximate the inequality:
en = dn — x;fwn,l
thn =R xn min  — (1/t1)log (xR, "%, — )
Tn = XLty Hm
Hn = Tn — (1/t2) log (—fo;lxn + ﬁ) (12)
Rt = (R - e
Wi = Wyt Solving the equation (12) by taking its gradient and setting
Hn T it equal to zero, and using the update equation of the inverse
of the correlation matrix, equation (7), then
Different constraints can be imposed to the algorithm, -1
allowing the correlation matrix’s eigenvalues to be lower — — [ —Tn } 77”2 —
and upper bounded within they, 3) interval. However, the ty Lpn +Tn (n +70)
use of inequalities cannot be easily solved using Lagrange 1 o -1 —,
multipliers, so the logarithmic barrier method can be used t o [ - } —— | =0 (13)
2 | Mn + Tn (,un =+ Tn)

help the solution.

I1l. M ODIFIED LEAKAGE QN ALGORITHM After some manipulations, the step-size is given by

A. Logarithmic Barrier - [(t1 +t2) — (hra+ 12 3)] (14)
The barrier method is an interior-point method that sim- " tia+12f3

plifies the inequality constraints in the cost function wih

sum of indication functiond_(f;(z)) in the cost function.

The indication function for a constraint(xz) < 0, for i =

As this is also a modified version of the conventional RLS
algorithm, the step-size needs to be kept inside the dabili
: . . . region,0 < u, < 1. This can be accomplished in many ways,
1,---,m (wherem is the number of inequality constraints)y, , probably the most simple one is to use a hard decision
has value Z€ro f(.)[fi(x) .S 0 and tends too f_or f?’(@ = after the computation of the step-size: If it is off the limit
0. The logarithmic barrier makes an approximation of th'fhen set it to the closest boundary value.

function as The resulting Leakage QN algorithm is summarized in Table

I (fi(x)) = —(1/t)log(— fi(x)) @ I
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TABLE I TABLE Il
MODIFIED LEAKAGE QN (MLQN) ALGORITHM LEAKAGELS (LLS) ALGORITHM
en =dn — XL Wpn_1 en =dn — XL Wpn_1
tn = R;ilxn tn = R,:llxn
Tn =xLt n =xLt
o n o it " 27#,121
“: _ Tl +ttf;+i21ﬁa+t2ﬁ)] pn = Fn—l )
i <jin<l1 -1 _p-1 Hntnty,
0 _ﬁn"_ Rn - R"L71 - 1+punTn
Hn = MUn ik
el se Wn = Wn—1+ tnenRy " Xn
_J 0 for g, <O
Pn=193 1 for fin >1
endi f
R-l— L[R!, _ _tnty . . . .
(T ) control over the inverse correlation matrix behavior. The
—_— €n .
Wi = Wao1 F et problem to be solved now is
. 2 T 2
min [Wn = Wan-1l&,_, + #n [dn - ann]
TRfl
IV. LEAKAGE LS ALGORITHM X, R, "Xy >«
s.t. L (21)
x, R "%, < 8

An algorithm with good convergence performance and low
misadjustment was presented in [4]. The cost function that i The coefficient vector and the inverse of correlation matrix

minimized is given by update equations are the same, equations (16) and (17), res-
pectively. However, the step-size is computed by miningzin
&n = |Wn — Wn1ll&, | + b [dn — sznf (15) a similar constraint problem as in equation (12). The sotuti
becomes

The solution of this minimization problem results in the
following recursive update equations of the coefficienttoec

and the inverse correlation matrix: 1 [ ~Tn a] |
1 tr L1+ pnTn (1 + ,unTn)Q
Wy = Wp_1 + ,Unean Xn (16) 1 -1 ( )
Tn —7)Tn
e D )T (22
and ta [1 + UnTn ] (1+ MnTn)2‘| (22)
T
R —R. — 1Mitntn (17)  Solving equation (22) foy,,, we have
finTn
- - Tn (tl —|— t2) — (Oétl + /BtQ) (23)
respectively. Hn = T (a1 + Bta)

Using the QN constraint in this algorithm, one can find h dified leak laorith | the bound
a new leakage quasi-Newton algorithm, that will be called The modified leakage LS algorithm can control the bounds

herein leakage LS algorithm, where the step-size reinﬁ)rc(éf the correlation matrix, and its inverse, through the atle

the equalityx’ R -'x,, = 1/2. Solving this equality we have step-size. The resulting algorithm was first presented in [6
e and is shown in Table IV.

t,
x} {R;il - M} X =1/2 (18) TABLE IV
L+ tnTn MODIFIED LEAKAGE LS (MLLS) ALGORITHM

or, equivalently,

(1 + T — 7-2 en =dn — sznfl
nlt finTn) = T | _ g gy (19) R
1+ pinTn S o
Tn = Xptn
. . o _ Tn(titte)—(ati+Bta)
which results in _”f" 6< . Trlatit )
i n <
- 27, — 1 (20) iji fn
Hn = 77_71 el se
i :{ 0 for i, <O
The algorithm is presented in Table IIl. g fn L for jim >1
endi
Rfl _ Rfl _ Hn,tntz
no— n—1 I+pntn
V. MODIFIED LEAKAGE LS ALGORITHM Wn = Wn_1 + pnenRy 1xn

The same constraints used in the leakage QN algorithm can
be employed in the leakage LS algorithm, allowing better
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VI. SIMULATIONS . MSE Convergence of the Algorithms for WGN Input Signal
: 10 T T T T T T T T T
Simulations were carried out to test and compare cor 7 Tﬁéﬁ
gence speed and Mean Square Error (MSE) of the algorit e kALLSQN
. . . . . O . |I - B
Another objective is to verify the improved robustness af 0 ---MLLS
algorithms using the variable step-size over the conve '

nal RLS algorithm, which can diverge in situations of n 102 Gk
persistently exciting signals or quantization errors.

In our simulations, an unknown system was to be ident
by the adaptive filter, and zero-mean white noise was add
the output signal of the system to form the reference sig
The signal-to-noise ratio (SNR) was constant and equi 154
40dB for all simulations.

The unknown system was an FIR filter with transfer func

. | | | . .
given by 0 20 40 60 80 100 120 140 160 180 200
Iterations

H(z) =14z 422423474 (24)
Fig. 1. Learning curves of the algorithms for WGN signal.

normalized to unitary gain.

For each different algorithm, a sufficient order adaptive ] o ]
filter was used and the simulations were carried out untf€ MLQN algorithm. In this figure, the LLS algorithm was

convergence was reached. Two different input signals wet@t Present due to its poor performance, similar to the one
used to the unknown system and to the adaptive filter: whigdtained in the WGN case.

. . L L
Gaussian and sinusoid S|gnals. The MSE curves shown i 1MSE Convergence of the Algorithms for Sinousoid Input Signal

figures were obtained after averaging over an ensemb 10
200 simulations. The user-defined parameters of algori ooN
in Tables 1l and IV were chosen so that the algorithms r 10} BVAIE

the misadjustment of the LQN algorithm, and the initialiaat
parametery = 1 for convenience.

A. White Gaussian Signal

For this case, the input signal was generated using a V
Gaussian Process (WGN) with unitary power. The user-de
parameters for the modified algorithms are= t2 = 50, a =

0.15 and 3 = 0.75 for the MLQN algorithm; and¢; =t = Eeadie
50, = 0.01 and ¢ = 0.025, for the MLSS algorithm. Thi
forgetting factor of the RLS algorithm for this experimeras 107 = 00 50 200 250 300

set tol = 0.85. Figure 1 shows the MSE learning curve for | Iterations

5 algorithms. As can be seen in the figure, the MLLS algorithm . _ . L
has the best convergence speed, whereas the LQN and MLB%IZ' Learning curves of the algorithms for non-persisjeexciting signal.
algorithms converges at similar speed as the RLS algorithm.
This is a good achievement for the LQN algorithm that does
not need or use user parameters defined. The LLS algorithm_ )
has the worst behavior, and being an algorithm that does not NiS paper presented the development of variable step-

have user-defined parameters it can't be better adjusted. Siz€ algorithms for both quasi-Newton and Least Squares
algorithms with a leakage approach. The four algorithms

obtained imposed constraints to the correlation matrix, so
that once it is initialized positive definite, it remains inig

A sinusoid signal with sample frequency bfN was used. state independently of the input signal statistics or prese
Using the same forgetting factor for the RLS algorithmpf quantization errors.
A = 0.85, the parameters for the MLLS algorithm are still The variable step-size equations were derived from egualit
the same as for the WGN input signal case to yield similand inequality constraints, where the logarithmic barvias
misadjustment. In this case, the parameterand  for the used to help solving the inequality optimization problems.
MLQN algorithm need to be set closer to each other to avoid the algorithms using equality constraints, a variabkpst
divergencet; =ty = 50, a = 0.0001 and 8 = 0.001. Figure size that does not need user-defined parameters was ohtained
2 presents the MSE convergence of the algorithms, whembich gives a different level of robustness to the algorithm
it can be seen that the modified algorithms converged asplecially in non-stationary environments. However, satioh
the RLS and the LQN algorithms diverged. Also, the MLL3esults showed that the LLS algorithm presents bad perfor-
algorithm has the best convergence performance followed mmance at high SNR levels.

VIl. CONCLUSIONS

B. Non-Persistently Exciting Signal
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The modified algorithms that were derived from inequality-
constrained optimization problems presented the besttsesu
in the simulations carried out. Even in situations of non-
persistently exciting signals the algorithms still coryet fast.
However, these algorithms need user-defined parameters tha
may influence the algorithm’s convergence performance.

In general, the most appropriate algorithm depends on the
application. If the system does not present many variations
the MLQN and MLSS algorithms can be used. If one knows
that the signal in the system has persistence of excitation a
wants to avoid tuning the algorithm for the best performance
then the LQN algorithm can be employed. An article with
the theoretical convergence analysis of the algorithmsis i
development.
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