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Resumo— Neste artigo, o problema de localizaç̃ao de múltiplos
usuários é tratado de forma cega, considerando-se a hipótese de
campo distante. Explorando-se o conceito de Arranjos Virtuais,
propõe-se um algoritmo de localizaç̃ao de fontes de alta resoluç̃ao,
usando para tanto uma t́ecnica iterativa de otimizaç̃ao de
mı́nimos quadrados com uma única etapa. O ḿetodo proposto
baseia-se na decomposição Parafac de um tensor de cumulantes
de 4a ordem combinada com um algoritmo de tipo MUSIC.
A unicidade da soluç̃ao proposta é discutida, permitindo uma
análise da quantidade ḿaxima de fontes que o algoritmo pode
tratar.

Palavras-Chave— Identificação cega de canal, algoritmo MU-
SIC, decomposiç̃ao Parafac, localizaç̃ao de fontes, tensores, ar-
ranjo virtual de antenas.

Abstract— In this paper, we treat the problem of blind mul-
tiuser localization, under the far-field assumption. Exploiting the
Virtual Array (VA) concept, we use an iterative single-stepleast-
squares (SS-LS) technique to propose a high-resolution direction
finding (DF) algorithm that utilizes the Parafac decomposition
of a 4th-order cumulant tensor combined with a MUSIC-like
algorithm. The uniqueness issue is addressed to assess the
maximum number of sources handled by the proposed method.

Keywords— Blind channel identification, MUSIC algorithm,
Parafac decomposition, source localization, tensors, virtual array
of antennas.

I. I NTRODUCTION

High-resolution subspace-based direction finding (DF)
methods, such as the well-known MUSIC [1], [2] and ESPRIT
[3] algorithms, have become very popular in narrowband
(NB) array processing. Exploiting the orthogonality between
the signal and noise subspaces, these methods based on the
second-order statistics (SOS) provide asymptotically infinite
resolution and are very interesting solutions for localizing
multiple sources when the spatial correlation of the additive
noise is known [4]. However, the performance of SOS-based
methods can be seriously deteriorated when dealing with
several sources with low signal-to-noise ratio (SNR) and small
angular separation using finite data sample sequences [5] orin
presence of spatial noise with unknown correlation function.
In addition, they can only treat overdetermined mixtures (more
sensors than sources).

Source localization is a crucial aspect in sensor array
processing. Determining the location of signal emitters allows
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for the implementation of source separation techniques as
well as beamforming for interference suppression. During the
last two decades, the use of high-order statistics (HOS) has
been widely considered for the estimation of direction-of-
arrival (DOA) in the context of multiuser NB array processing.
Several solutions to the source localization and DF problems
have been proposed for non-Gaussian signals based on the 4th-
order cumulants of the array output data (c.f. [6] and references
therein). Extensions of the MUSIC algorithm to the 4th- and
higher (even) orders gave rise to the 4-MUSIC [7] and, more
recently, the2κ-MUSIC (κ ≥ 2) methods [8]. In addition
to noise robustness, these methods offer better resolutionand
allow for an increased number of sources to be localized,
including certain underdetermined cases. Although characte-
rized by a higher variance [9], the HOS-based MUSIC-like
algorithms increase the number of virtual sensors and the
effective aperture of the receive antenna array at the cost of
an increased complexity due to the estimation of high-order
statistical information [10].

In this paper, we are interested in the problem of blind
multiuser localization in the context of multiple antenna array
processing. Assuming that the sources are located at the far-
field of the antenna array, our goal is to estimate signal DOAs
using only the array output signals. We propose a new high-
resolution DF algorithm that artificially adds sensors to a
virtual antenna array without resorting to statistics of order
higher than fourth. In fact, using the 4th-order cumulants only,
the proposed method estimates the array matrix and, exploiting
the structure of the cumulant tensor, creates an enhanced
Virtual Array (VA) that yields an augmented observation
space, thus providing additional degrees of freedom to the
antenna array and allowing for improved resolution. Based on
an iterative single-step least-squares (SS-LS) Parallel Factor
(Parafac) decomposition technique introduced in [11], [12],
the new source localization algorithm exploits an array having
a double Kronecker structure, which commonly only arises
when using 6th-order statistics. However, since we do not
need to estimate cumulants of order higher than fourth, our
approach keeps the variance of the cumulant estimators at
a moderate level, even for quite short output data sequen-
ces. Uniqueness and identifiability conditions are discussed
allowing us to study the capacity of the proposed technique in
terms of the maximum number of resolvable sources. Com-
puter simulations are provided to illustrate the performance
of the proposed method compared with the classical MUSIC
approaches.

The main contributions of this paper are:i.) derivation of
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a 3rd-order VA model based on an unfolded representation of
a 4th-order cumulant tensor;ii.) proposition of an algorithm
for estimating the VA using an iterative SS-LS approach;iii. )
uniqueness and capacity analysis of the proposed method in
terms of the maximum number of separable sources for a given
number of receive antennas. The remaining of the paper is
organized as follows: in section II, we formulate the array
output signal model along with the basic definitions of signal
and noise subspaces; we also discuss the VA concept and
present a survey of classic MUSIC-like algorithms, including
the general formulation for the case of statistics of any even
order; in section III, we derive a new high-resolution DF
algorithm exploiting the double Kronecker structure of an
unfolded representation of a 4th-order cumulant tensor; inthis
section, we revisit the iterative SS-LS approach for the Parafac
decomposition of the cumulant tensor and the uniqueness issue
is addressed; finally, in section IV, we provide simulation
results illustrating the proposed method and assessing its
performance under different channel configurations. Conclu-
sions are drawn in section V, along with some future work
perspectives.

II. SOURCE LOCALIZATION IN NB ARRAY PROCESSING

Let us consider a linear antenna array withM identical NB
sensors receiving the contribution ofQ zero-mean stationary
sources, assumed to be placed at the far-field of the array.
Denoting by y(n) ∈ C

M×1 the vector of complex signals
measured at the output of the antenna array, we have:

y(n) =

Q
∑

q=1

sq(n)a(θq) + υ(n)

= As(n) + υ(n) (1)

where the vectors(n) ∈ CQ×1 is formed of the complex
amplitudes of the source signalssq(n), which are stationary,
ergodic and mutually independent with symmetric distribu-
tion, zero-mean and non-zero kurtosisγ4,sq

, q ∈ [1, Q], with
azimuth angles given byθq and no elevation angle. Moreover,
the signalssq(n) are assumed to be independent of the additive
Gaussian noiseυ(n) ∈ CM×1, which is stationary with zero-
mean and unknown spatial correlation.

Matrix A ∈ CM×Q concatenates the steering vectors
a(θq) ∈ CM×1, containing the DOA informationθq associated
with each sourceq ∈ [1, Q]. The array matrixA can therefore
be written as

A =
[

a(θ1) . . .a(θQ)
]

∈ C
M×Q, (2)

where themth element of vectora(θq) corresponds to the
spatial response of themth array element with respect to
the sourceq. We further consider that the sources are spaced
far enough apart from each other so that the steering vectors
are mutually independent. Assuming a planewave propagation
with no coupling between sensors [13], we can write:

am(θq) = exp

{

 2 π xm cos θq

λ

}

, (3)

where =
√
−1 andxm is the distance of each array element

m ∈ [1,M ] with respect to a given reference sensor, assumed

by convention to be the first antenna, i.e.x1 = 0. The signal
wavelengthλ is given byλ = c/fc, wherefc is the carrier
frequency and the constantc is the propagation speed of the
light. Due to (3), matrixA has a particular unit-modulus
property and, sincex1 = 0, it also has a all-one first row,
i.e.A1· = [1, 1, . . . , 1]. In the case of Uniform Linear Antenna
(ULA) arrays, the sensors are equally spaced from each other
along the array axis and distanced of∆x with respect to
adjacent sensors, so that (3) becomes:

am(θq) = exp

{

 2 π (m− 1)∆x cos θq

λ

}

, (4)

and the spatial response array matrixA has the following
Vandermonde structure:

A =















1 . . . 1
a2(θ1) . . . a2(θK)
a 2
2 (θ1) . . . a 2

2 (θK)
...

. . .
...

aM−1
2 (θ1) . . . aM−1

2 (θK)















, (5)

where the second row is the generating vector, from which the
whole matrix can be deduced.

A. Array output statistics

Let us define the spatial covariance matrixC(2,y) ∈ CM×M ,
so that [C(2,y)]i,j = C2,y(i, j) , cum

[

yi(n), y∗j (n)
]

, i, j ∈
[1,M ]. From (1), we haveC(2,y) = E

{

y(n)yH(n)
}

and
hence:

C(2,y) = AΓ2,sA
H + C(2,υ) (6)

whereΓ2,s = E
{

s(n)sH(n)
}

andC(2,υ) = E
{

υ(n)υH(n)
}

.
Due to the assumption of mutual independence of the sources,
it follows thatΓ2,s is a diagonal matrix with diagonal entries
given byγ2,sq

= E
{

|sq(n)|2
}

, q ∈ [1, Q].
Moreover, by defining the 4th-order tensor
C(4,y) ∈ CM×M×M×M with scalar component given by
C4,y(i, j, k, l) , cum[y∗i (n), yj(n), y∗k(n), yl(n)], we can
build the Quadricovariance matrixC(4,y) ∈ CM2×M2

, as
[C(4,y)](j−1)M+i, (k−1)M+l = C4,y(i, j, k, l), yielding the
structure given below [14]:

C(4,y) =
(

A ⋄A∗
)

Γ4,s

(

A ⋄A∗
)H
, (7)

where Γ4,s = Diag
(

γ4,s1
, . . . , γ4,sQ

)

and ⋄ denotes the
Khatri-Rao product, i.e. the column-wise Kronecker product,
defined for X ∈ Cm×n and Y ∈ Cp×n as X ⋄ Y ,

[X·1 ⊗Y·1 . . .X·n ⊗Y·n] ∈ Cmp×n [15]. The rank ofC(4,y)

equalsQ whenQ ≤M2.
Comparing (7) with (6), we note strong similarities in the

structures ofC(4,y) and (the noiseless part of)C(2,y). Both
are diagonal quadratic forms, the latter one being built from
the source steering vectors, whileC(4,y) involves a column-
wise Kronecker product of those vectors. This structural
analogy is the basic idea allowing for extending some array
processing methods based on SOS to the 4th-order [14]. In
addition, since the above analysis only evokes the linearity
and the additivity properties of cumulants, it can be extended
to statistics of any (even) order. In fact, complex-valued
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2κth-order output cumulants, defined asC2κ,y(i1, . . . , i2κ) ,

cum
[

yi1(n), . . . , yiκ
(n), y∗iκ+1

(n), . . . , y∗i2κ
(n)

]

, κ ≥ 2, can

be represented by a Hermitian matrixC(2κ,y)
ℓ ∈ CMκ×Mκ

,
which admits the following decomposition:

C
(2κ,y)
ℓ =

(

A⋄ℓ ⋄A∗⋄κ−ℓ
)

Γ2κ,s

(

A⋄ℓ ⋄A∗⋄κ−ℓ
)H
, (8)

ℓ ∈ [1, κ], whereΓ2κ,s = Diag
(

γ2κ,s1
, . . . , γ2κ,sQ

)

andγ2κ,sq

is the2κ th-order cumulant of the input signalsq(n). The no-
tationX⋄n stands for a multiple Khatri-Rao product involving
a matrixX so thatX⋄n = X ⋄X ⋄ . . . ⋄X, where the Khatri-
Rao product symbol⋄ appearsn − 1 times. Throughout the
rest of this paper, we omit the indexℓ, choosing by convention
ℓ = κ/2 whenκ is even andℓ = (κ+ 1)/2 for κ odd.

In practical applications, the array output statistics arenot
known and must be estimated from the received data sequences
using theergodicity assumption. Exact expressions exist for
computing the variance of cumulant estimators of order2κ,
involving very complicated calculations with cumulants of
order up to 4κ [16]. When using HOS, it is particularly
important to note that short sample data sequences may lead
to significant errors with respect to true cumulants [9].

B. The Virtual Array concept

By replacing the array response vectors by their Kronecker
product, we actually increase the dimension of the observation
space, thus allowing for the separation of a greater number of
sources [17]. Actually, the element in position(m1 − 1)M +
m2 of the 2nd-order steering vectora(θq)⊗ a∗(θq) can be
viewed as avirtual sensor(VS) distanced of(m1 −m2)∆x
with respect to the reference sensor, for allm1,m2 ∈ [1,M ].
The number of different VS depends on the array geometry
since some VS positions may coincide. In the case of a ULA
array with space diversity only, a 2nd-order VA has2M − 1
different VS, meaning that it can deal with up to2M − 2
independent sources [18]. In a general case, using an optimal
array geometry, we can have up toM2−M +1 different VS.

The theory of Virtual Arrays has been introduced inde-
pendently in [10] and [17] using 4th-order statistics. The
concept has been further developed in [18] and [19], for
the cases of 4th- and higher-order cumulants, respectively.
One major interest in using high-order (HO) VAs consists in
exploiting the Kronecker structure that naturally arises in the
HOS representations to improve the array angular resolution.
Despite the increased variance of the HOS estimators, the
HO VAs provide resolution gains, which can be measured by
means of the spatial correlation between two sources, givenby
the normalized inner product of the respective steering vectors.

C. MUSIC-like DF algorithms

In its basic form, the MUSIC technique has been intro-
duced to provide asymptotically unbiased estimates of the
parameters of multiple wavefronts arriving at an antenna array
[1], [2]. Exploiting the orthogonality between the signal and
noise subspaces, the MUSIC algorithm aims to determine
the number of sources, their location (DOAs) and the cross-
correlations among the directional waveforms. The SOS-based

MUSIC (2-MUSIC) algorithm is of particular interest in the
noiseless case and when the additive noise is spatially white.

AssumingM > Q, the 2-MUSIC algorithm consists in
searching forQ local maxima of the following localization
function:

P2(θ) =
1

∥

∥

∥w(θ)HUn

∥

∥

∥

2 , (9)

where the orthogonal projectorw(θ) ∈ CM×1 has the form of
the steering vectora(θ) defined in (3) andUn ∈ C

M×M−Q

is formed from the eigenvectors ofC(2,y) associated with
its M − Q smallest eigenvalues. The functionP2(θ) clearly
measures the orthogonality between the signal and noise
subspaces for the sourceq. Using this method, we can only
localizeM − 1 sources, thus only overdetermined mixtures
(M ≥ Q) can be treated.

On the other hand, the Khatri-Rao structure ofC
(2κ,y)
ℓ given

in (8) yields an increased number of virtual antenna elements,
thus allowing for the localization of more sources than sensors,
the amount of which varies in function of the array geometry.
This is the main idea behind the extension of the MUSIC
algorithm to the 4th- (and higher-) orders [7], [14]. In fact,
usingC(2κ,y), a general localization function can be defined
as:

P2κ(θ) =
1

∥

∥

∥wκ(θ)H Un

∥

∥

∥

2 , (10)

where the orthogonal projectorwκ(θ) ∈ CMκ×1 takes
the form of the κth-order steering vector andUn is the
Mκ × (Mκ −Q) matrix that concatenates the eigenvectors
of C(2κ,y) associated with itsMκ −Q smallest eigenvalues.
Source DOAs are found by searching for the local maxima of
P2κ(θ). See [8] for a survey on the2κ-MUSIC algorithms.

III. PARAFAC-BASED APPROACH FOR DIRECTION-FINDING

In this section, we propose a high-resolution DF algorithm
that creates a 3rd-order virtual array, only exploiting the
Khatri-Rao structure of a 4th-order cumulant tensor. Our solu-
tion is based on an iterative single-step least-squares (SS-LS)
Parafac decomposition technique [11], [12], which exploits the
symmetry properties of 4th-order output cumulants.

Let us rewrite the scalar representation of the 4th-order
tensorC(4,y), defined in section II-A, as follows:

C4,y(i, j, k, l) =

Q
∑

q=1

γ4,sq
a∗i (θq) aj(θq) a

∗
k(θq) al(θq) (11)

for 1 ≤ i, j, k, l ≤ M and q ∈ [1, Q], where the nonzero
source Kurtosesγ4,sq

are assumed unknown. It follows from
(11) thatC(4,y) is a 4th-order tensor with rankQ that admits a
Parafac decomposition of which the canonical components can
be straightforwardly deduced and are all written in terms of
the array matrixA and the diagonal Kurtosis matrixΓ4,s [12].
Let us now define the unfolded tensor representationC[1] ∈
CM3×M , as follows:

[

C[1]

]

(j−1)M2+(k−1)M+l, i
= C4,y(i, j, k, l), (12)
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which can be easily shown to be written as follows:

C[1] = (A ⋄A∗ ⋄A)Γ4,sA
H (13)

= A(3) Γ4,s AH (14)

whereA(3) is theM3 × Q 3rd-order VA matrix, defined as
A(3) = A ⋄A∗ ⋄A, with A defined in (5).

A. The iterative SS-LS algorithm

Using the unfolded tensor representationC[1], the SS-LS
algorithm iteratively minimizes the following LS cost function:

ψ
(

Âr−1,A
)

,

∥

∥

∥C[1] − Â
(3)
r−1 Γ4,s AH

∥

∥

∥

2

F
, (15)

with

Â
(3)
r−1 = Âr−1 ⋄ Â∗

r−1 ⋄ Âr−1, (16)

wherer is the iteration number and‖·‖F denotes the Frobenius
norm. The iterative minimization ofψ(Âr−1,A) yields the
following LS solution:

ÂH
r , arg min

A

ψ
(

Âr−1,A
)

= Γ−1
4,s Â

(3)#

r−1 C[1]. (17)

Note that we only have to initializêA0. In fact, at each
iteration r ≥ 1, we deduceÂ(3)

r−1 from (16) and then, we
computeÂr from (17).

Iterative LS algorithms are known to be very sensitive
to the initialization. Exploiting the unit-modulus property of
the array steering matrix, the following modification of the
SS-LS algorithm is expected to improve convergence. After
initializing Â0 with anM ×Q matrix drawn from a (complex)
Gaussian distribution, we perform the following steps:

1) At eachr ≥ 1, before computinĝAr, divide each entry
of the preceding estimate by its own magnitude, i.e.

[Âr−1]mq ←
[Âr−1]mq

∣

∣

∣[Âr−1]mq

∣

∣

∣

,
for q = 1, . . . , Q
and m = 1, . . . , M ;

2) Normalize each column by its first element:

[Âr−1]·q ←
[Âr−1]·q

[Âr−1]1 q

;

3) DeduceÂ(3)
r−1 from (16) and compute the array matrix

estimate at iterationr as follows:

Âr ←
[

Â
(3)#

r−1 C[1]

]H
. (18)

Notice that, due to the normalization step, the computation
of Âr becomes independent of the source Kurtosis matrix
Γ4,s. The algorithm is stopped when|e(r)− e(r − 1)|2 ≤ ε,
where e(r) = ‖Âr − Âr−1‖F /‖Âr‖F and ε is an arbitrary
small positive constant.

B. Uniqueness and identifiability

Due to the Vandermonde structure of the array matrix,
given in (5), and assuming that the sources are not closely
located, matrixA can be shown to be full k-rank [20], so
that kA = rA = min(M,Q). In this case, the uniqueness of
the Parafac decomposition of tensorC(4,y) is ensured under
the condition stated by the Kruskal Theorem [21], which
yieldsQ ≤ (4M − 3)/2, for M < Q [12]. This leads to the
following sufficient uniqueness condition:

2 ≤ Q ≤ 2M − 2. (19)

Although (19) is not a necessary condition, it establishes an
upper bound on the number of guaranteed resolvable sources.
This bound limits the number of sources that we can treat
using the 3rd-order VA matrixA(3), regardless of the number
of virtual sensors.

In the case of a ULA array withM sensors, the number
of different virtual sensors associated with theκ th-order VA
is shown to be equal toκ(M − 1) + 1 [19]. In this context,
the 3rd-order VA matrixA(3) admits a maximum capacity of
3M − 3 sources. Since the SS-LS approach can only ensure a
unique solution under the uniqueness condition (19), it should
not be used to identify a VA with more than2M − 2 sources.
This ensures that the noise subspace has at leastM free
dimensions (i.e. linearly independent basis vectors). Moreover,
when using anM -element ULA array, the capacity of the 4-
MUSIC algorithm is associated with the number of VS sensors
of a 2nd-order VA, which coincides with the upper bound
of the SS-LS approach. However, if 4-MUSIC operates with
maximal capacity, the noise subspace of the 2nd-order VA has
only one free dimension.

C. DOA estimation

The source DOAs can be recovered from the VA matrix
A(3) by using a 6th-order MUSIC-like localization function
P6(θ), such as defined in (10) withκ = 3, i.e.

P6(θ) =
1

∥

∥

∥w3(θ)H Un

∥

∥

∥

2 , (20)

wherew3(θ) = a(θ) ⊗ a∗(θ) ⊗ a(θ), with a(θ) defined in
(3), and Un is a M3 × (M3 −Q) matrix representing the
noise subspace and formed of the left singular vectors of
A(3) associated with itsM3−Q smallest singular values. The
anglesθq are obtained from the parameters of the orthogonal
projectorsw3(θ) ∈ CM3×1 associated with the local maxima
of the 6th-order localization functionP6(θ), defined in (20).

Although involving a channel estimation stage prior to
source localization, the above described approach allows for
improved resolution due to the use of a 3rd-order VA, obtained
without resorting to 6th-order statistics. While keeping the
cumulant estimation variance at a lower level compared with
the 2κ-MUSIC algorithms,κ > 2, the proposed technique
is robust to an additive Gaussian noise with unknown spatial
correlation, contrary to the 2-MUSIC method. In addition, for
ULA arrays, the SS-LS approach is shown to resolve as many
sources as the 4-MUSIC algorithm.
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Fig. 1. Maximal RMSE as a function of the SNR withN = 1000 (left) and as a function of the sample data length with SNR=15dB (right).
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Fig. 2. Maximal RMSE as a function of the SNR forN = 1000 (left) and as a function of the sample data length with SNR=15dB (right).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DOA estimation method, providing performance comparisons
using the 2-, 4- and 6-MUSIC algorithms. We use the root
mean-squared error (RMSE) performance criterion, defined for
each sourceq as follows [8]:

RMSE(q) ,

√

√

√

√

1

R

R
∑

r=1

∣

∣

∣θ̂
〈r〉
q − θq

∣

∣

∣

2

, q ∈ [1, Q], (21)

whereR is the number of Monte Carlo simulations andθ̂〈r〉q is
the estimation ofθq for the simulationr. The DOA estimates
θ̂
〈r〉
q , q ∈ [1, Q], are deduced from the angle arguments of

the orthogonal projectorswκ(θ) associated with the local
maxima of the corresponding localization functionP2κ(θ).
Local maxima can be obtained by searching the critical points,
i.e. where the first derivative is zero, with a negative second
derivative.

We first simulated the case of a ULA array withM = 3
narrowband sensors spaced ofλ/2, receivingQ = 4 sources

with azimuth angles given byθ1 = −55◦, θ2 = −25◦,
θ3 = 5◦, θ4 = 50◦. The array output signals are corrupted by
spatially white additive Gaussian noise. The curves in fig. 1
show the RMSE for the worst estimated sources, as a function
of the SNR forN = 1000 (left), and also for several values of
the sample data length (right), with a fixed SNR value of 15dB.
In this case, the SS-LS and the 4-MUSIC algorithms operate
with their maximal capacity in terms of the number of sources.
By exploiting the larger noise subspace of the 3rd-order virtual
array, the SS-LS approach provides better results than the 4-
MUSIC algorithm, using the same output statistics. In this
scenario, the 6-MUSIC algorithm is not at its identifiability
bound and gives better results than the two other algorithms,
at the cost of having to estimate 6th-order cumulants.

By adding a fourth sensor (M = 4) to the antenna array
(with λ/2 spacing), we set up another simulation scenario
with Q = 5 sources. In this case, the additional source arrives
from the directionθ5 = 20◦, with no elevation angle. In
fig. 2, we show the maximal RMSE as a function of the
SNR, forN = 1000 (left). These curves demonstrate that the
three algorithms achieve better performance, with very similar
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Fig. 3. Maximal RMSE vs. noise spatial correlation (N = 1000 and
SNR=5dB).

results when the VAs do not operate with maximal capacity.
The results for the worst estimated source are given at the right
side of fig. 2 for several values of the sample data length, with
a fixed SNR of 15dB. In this case, the 6-MUSIC algorithm
does not yield any noticeable advantage.

We have also tested the algorithms in presence of Gaussian
noise with unknown spatial correlation. In this case, we used
a λ/2-spaced 3-element ULA array receivingQ = 2 sources
with DOAs given byθ1 = 5◦ andθ2 = 50◦, respectively. Since
this is an overdetermined case, we used the SS-LS approach
to estimate the DOAs from both, the 3rd-order virtual array
Â(3) (κ = 3) and the estimated array matrix̂A (κ = 1). The
additive Gaussian noise has been simulated so that its spatial
correlation matrix is given by[Rυ]ij = σ2

υρ
|i−j|, i, j ∈ [1,M ],

whereσ2
υ is the noise variance per antenna andρ is the spatial

correlation coefficient of the noise. In fig. 3, we compare our
results with the 2- and 4-MUSIC algorithms usingN = 1000
output symbols, with a SNR of 5dB, for different values of
the noise spatial correlation. Note that, forκ = 1 as well as
for κ = 3, the SS-LS approach performed very closely to the
4-MUSIC algorithm, showing good robustness with respect
to spatially colored noise, as it should be expected. The 2-
MUSIC algorithm, on the other hand, degrades asρ increases,
since the SOS are not able to handle an additive noise with
unknown spatial correlation.

V. CONCLUSION

In this paper, we have considered the blind source locali-
zation problem in the context of multiuser narrowband array
processing, under the assumption of sources located at the
far-field of the antenna array. The DOA estimation problem
has been treated using the 4th-order cumulants only. A high-
resolution DF algorithm has been proposed, exploiting the
structure of the cumulant tensor. This method is based on the
estimation of an array matrix formed from a double (column-
wise) Kronecker product, thus creating an enhanced virtualar-
ray that commonly only arises when using 6th-order statistics.
This yields an augmented observation space, which provides

a resolution improvement without resorting to statistics of
order higher than fourth. Consequently, the proposed method
works well even for relatively short output data sequences and
it is robust with respect to an additive Gaussian noise with
an unknown spatial correlation. Making use of the symmetry
properties of 4th-order output cumulants, the estimation of the
enhanced virtual array utilizes the iterative SS-LS technique to
perform the Parafac decomposition of the cumulant tensor. In
the case of ULA arrays, this yields as many resolvable sources
as the 4-MUSIC algorithm but with better DOA estimation
performance, as confirmed by our simulation results.
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