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Resumo— Neste artigo, o problema de localiza&o de multiplos for the implementation of source separation techniques as
usuarios é tratado de forma cega, considerando-se a hiese de well as beamforming for interference suppression. Durire t

campo distante. Explorando-se o conceito de Arranjos Virtais, a5t two decades, the use of high-order statistics (HOS) has
propoe-se um algoritmo de localizago de fontes de alta resoligo, been widely considered for the estimation of direction-of-
usando para tanto uma €cnica iterativa de otimizago de y

minimos quadrados com uma Gnica etapa. O @odo proposto arrival (DOA) in the context of multiuser NB array procesgsin
baseia-se na decomposip Parafac de um tensor de cumulantes Several solutions to the source localization and DF problem
de 4' ordem combinada com um algoritmo de tipo MUSIC. have been proposed for non-Gaussian signals based on the 4th
Qngl?slgd;:e ud;tisggﬁo m‘;)[ %ﬁ’gséae efoi'tse‘;““iz' g‘zrlm(')tmg% ”rgg‘e order cumulants of the array output data (c.f. [6] and refees
tratar. q q 9 P therein). Extensions of the MUSIC algorithm to the 4th- and
o , higher (even) orders gave rise to the 4-MUSIC [7] and, more
Palawras-Chave—ldentificacdo cega de canal, algoritmo MU- o ontly  the2,x-MUSIC (x > 2) methods [8]. In addition
SIC, decomposiéo Parafac, localizaéo de fontes, tensores, ar- . .
ranjo virtual de antenas. to noise robu§tness, these methods offer better resolandp
Abstract— In this paper, we treat the problem of blind mul- allow _for an mcreased numbgr of sources to be localized,
tiuser localization, under the far-field assumption. Expldting the ~ including certain underdetermined cases. Although cherac
Virtual Array (VA) concept, we use an iterative single-stepleast- rized by a higher variance [9], the HOS-based MUSIC-like
squares (SS-LS) technique to propose a high-resolution diction  algorithms increase the number of virtual sensors and the
finding (DF) algorithm that utilizes the Parafac decompositon effective aperture of the receive antenna array at the dost o

of a 4th-order cumulant tensor combined with a MUSIC-like . . . . .
algorithm. The unigueness issue is addressed to assess thé&" increased complexity due to the estimation of high-order

maximum number of sources handled by the proposed method. Statistical information [10]. _ _
Keywords— Blind channel identification, MUSIC algorithm, In this paper, we are interested in the problem of blind

Parafac decomposition, source localization, tensors, viral array ~ Multiuser localization in the context of multiple antenmeagy
of antennas. processing. Assuming that the sources are located at the far

field of the antenna array, our goal is to estimate signal DOAs
I. INTRODUCTION using only the array output signals. We propose a new high-
solution DF algorithm that artificially adds sensors to a
rtual antenna array without resorting to statistics ofler
jgher than fourth. In fact, using the 4th-order cumulamty,o
e proposed method estimates the array matrix and, exygoit
structure of the cumulant tensor, creates an enhanced
Gal Array (VA) that yields an augmented observation
space, thus providing additional degrees of freedom to the
antenna array and allowing for improved resolution. Based o
% iterative single-step least-squares (SS-LS) ParatletoF

High-resolution subspace-based direction finding (DI£
methods, such as the well-known MUSIC [1], [2] and ESPRI
[3] algorithms, have become very popular in narrowbar}
(NB) array processing. Exploiting the orthogonality begmwe th
the signal and noise subspaces, these methods based orvltﬁ
second-order statistics (SOS) provide asymptoticallyniti
resolution and are very interesting solutions for localigi
multiple sources when the spatial correlation of the adeliti
noise is known [4]. However, the performance of SOS-bas

metho?s can be _t?]elrlouslly dle:enor_ated t\(vh(asr]Ngeallr:igljbw e new source localization algorithm exploits an arrayitgv
several sources with low signal-to-noise ratio ( ) an Ma double Kronecker structure, which commonly only arises

angular separa‘uo_n using f|n|_te data sample sequences ['5].0\5vhen using 6th-order statistics. However, since we do not
presence of spatial noise with unknown correlation fumrctio

In addition. they can onlv treat overdetermined mixturesi@n need to estimate cumulants of order higher than fourth, our
- they y | approach keeps the variance of the cumulant estimators at
sensors than sources).

o . . a moderate level, even for quite short output data sequen-
Source localization is a crucial aspect in sensor array, . : B " .
: - ) . ) s. Uniqueness and identifiability conditions are disedss
processing. Determining the location of signal emitteloved , . . .
allowing us to study the capacity of the proposed technique i
(D Université de Nice Sophia Antipolis, CNRS, Laboratoir§|2000 route {€rms O_f the maximum nur_nber of .reSO|Vab|e sources. Com-
des Lucioles, 06903, Sophia Antipolis, France. puter simulations are provided to illustrate the perforogan

(2 Universidade Federal do Ceara, Grupo de Telecomunisa@®@m Fio  of the proposed method compared with the classical MUSIC
(GTEL/UFC), Campus do Pici, 60455-760, Fortaleza, Brazil. h
This work has been funded by the CAPES agency of the BraziligPProacnhes.

gover nment (BEX1488/02-3). The main contributions of this paper arie; derivation of

arafac) decomposition technique introduced in [11],],[12
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a 3rd-order VA model based on an unfolded representationkf convention to be the first antenna, izg. = 0. The signal

a 4th-order cumulant tensoaii;) proposition of an algorithm wavelength\ is given by A = ¢/ f., where f. is the carrier

for estimating the VA using an iterative SS-LS approdih), frequency and the constaatis the propagation speed of the
unigueness and capacity analysis of the proposed methodigit. Due to (3), matrixA has a particular unit-modulus
terms of the maximum number of separable sources for a giveroperty and, sincer; = 0, it also has a all-one first row,
number of receive antennas. The remaining of the paperi.is. A;. =[1,1,...,1]. Inthe case of Uniform Linear Antenna
organized as follows: in section Il, we formulate the arraftyLA) arrays, the sensors are equally spaced from each other
output signal model along with the basic definitions of signalong the array axis and distanced Afr with respect to
and noise subspaces; we also discuss the VA concept adfacent sensors, so that (3) becomes:
present a survey of plassic MUSIC-like algo.rit.hms, inchgli 927 (m — 1)Az cosf),
the general formulation for the case of statistics of anyneve am(0y) = exp{ 3 } , (4)
order; in section Ill, we derive a new high-resolution DF

algorithm exploiting the double Kronecker structure of agnd the spatial response array matAx has the following
unfolded representation of a 4th-order cumulant tensahi;n  Vandermonde structure:

section, we revisit the iterative SS-LS approach for thefaar 1 L 1
decomposition of the cumulant tensor and the uniquenass iss az(01) ...  ax(fK)
is addressed; finally, in section IV, we provide simulation A — ai(01) ... ai(0k) ’ (5)

results illustrating the proposed method and assessing its :
performance under different channel configurations. Gencl M1 M1
sions are drawn in section V, along with some future work ag-—(01) ... ay (k)
perspectives. where the second row is the generating vector, from which the
whole matrix can be deduced.

Il. SOURCE LOCALIZATION IN NB ARRAY PROCESSING

Let us consider a linear antenna array withidentical NB - A Array output statistics
sensors receiving the contribution &f zero-mean stationary Let us define the spatial covariance matglé) € CMxM
sources, assumed to be placed at the far-field of the arrgy. (2,9) AN N .

H Mx1 i S that[c v ]ij = Cy U(za]) = Cum[yi(n)vy'(n)]’ 1,] €

Denoting by y(n) € C the vector of complex signals LM F 1 h Y — ' d
measured at the output of the antenna array, we have: [1, M]. From (1), we hav = E{y(n)y"(n)} an

hence:
Q C?¥ = AT, (A" + C3V) (6)
y(n) = Y sq(n)aldy) +v(n)
o whereT'; , = E {s(n)s"(n)} andCZ*) = E {v(n)v"(n)}.
= As(n) +v(n) (1) Due to the assumption of mutual independence of the sources,

h h ox1 ig 1 d of th | it follows thatT'; 5 is a diagonal matrix with diagonal entries
where the vectos(n) € C is formed of the complex given by, ., = E{|sq(n)|2}, g€ [LQ).

amplitudes of the source signalg(n), which are stationary, Moreover, by defining the 4th-order tensor
ergodic and mutually independent with symmetric distriby-(4,y) c cMxMxMxM  \ith scalar component given by
tion, zero-mean and non-zero kurtosis;, , ¢ € [1, Q], with Cuy(irg, k) 2 cumlys(n),y;(n),yi(n),y(n)], we can
azimgth angles given b§, and no el.evation angle. Moreovgr,bu“d the Quadricovariélnce matrin(4vy> e CM*xM* g
tge S|gpaI$q(p) are aSSijTﬁd to pe mdependent of t_he addltl\{%(zl,y)](j_l)MH, (onnsr = Cay(i,j k1), yielding the
aussian noise(n) € C , Which is stationary with zero- ¢\ ~ture given below [14]:
mean and unknown spatial correlation.
Matrix A € CM*@ concatenates the steering vectors cly) — (AOA*)I‘4 S(AOA*)H )
a(d,) € CM>1, containing the DOA informatiofi, associated ’ ’
with each source € [1,Q]. The array matrixA can therefore where T'y; = Diag (74751, . ,747562) and ¢ denotes the
be written as Khatri-Rao product, i.e. the column-wise Kronecker prdgduc
Mx defined forX € C™*™ andY € CP*" asX oY £
A= [awl) a 'a(eQ)} ecte, @ X,©Y,...X,® Y., € Cmrxn [15]. The rank ofC(4v)
where themth element of vectom(6,) corresponds to the equalsQ when@ < M?.
spatial response of theuth array element with respect to Comparing (7) with (6), we note strong similarities in the
the source;. We further consider that the sources are spacgtfuctures ofC4¥) and (the noiseless part of(>¥). Both
far enough apart from each other so that the steering vectare diagonal quadratic forms, the latter one being builinfro
are mutually independent. Assuming a planewave propayattbe source steering vectors, whi@*¥) involves a column-

with no coupling between sensors [13], we can write: wise Kronecker product of those vectors. This structural
127 &y 08 0 analogy is the basic idea allowing for extending some array
am(0y) = exp{#}, (3) processing methods based on SOS to the 4th-order [14]. In

addition, since the above analysis only evokes the linearit
wherey = /—1 andx,, is the distance of each array elemerand the additivity properties of cumulants, it can be exéshd
m € [1, M] with respect to a given reference sensor, assumed statistics of any (even) order. In fact, complex-valued
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2kth-order output cumulants, defined @s;, ,, (i1, - . ., 2x) £  MUSIC (2-MUSIC) algorithm is of particular interest in the
cum[yil(n), oy () yE ()., ()], k> 2, can noiseless case and when the additive noise is spatiallyewhit

Assuming M > @, the 2-MUSIC algorithm consists in
searching for@ local maxima of the following localization
function:

be represented by a Hermitian mamxf’”"*y € CM"xM”
which admits the following decomposition:

L ©)

CEQK’y) _ (Aog OA*M%)I‘%S (Aoz OA*ON%)H’ (8) P(0) = W

¢ € [1,K], whereTls,. ; = Diag (Y2u,s:, - - - s Y2r,50 ) @NAy2s,s,
is the 2+ th-order cumulant of the input signa}(n). The no- where the orthogonal projecter(f) € C**! has the form of
tation X°" stands for a multiple Khatri-Rao product involvingthe steering vectoa(d) defined in (3) andJ,, € CM*M-@
a matrixX so thatX°” = X ¢ X o...o X, where the Khatri- is formed from the eigenvectors af(2¥) associated with
Rao product symbob appears: — 1 times. Throughout the its M — @ smallest eigenvalues. The functidn(¢) clearly
rest of this paper, we omit the indéxchoosing by convention measures the orthogonality between the signal and noise
¢ =k/2 whenk is even and’ = (k + 1)/2 for x odd. subspaces for the sourge Using this method, we can only

In practical applications, the array output statistics moe localize M — 1 sources, thus only overdetermined mixtures
known and must be estimated from the received data sequer(dds> Q) can be treated.
using theergodicity assumption. Exact expressions exist for On the other hand, the Khatri-Rao structur@ﬁ'“’y) given
computing the variance of cumulant estimators of orgler in (8) yields an increased number of virtual antenna element
involving very complicated calculations with cumulants ofhus allowing for the localization of more sources than sesis
order up to4s [16]. When using HOS, it is particularly the amount of which varies in function of the array geometry.
important to note that short sample data sequences may Id&is is the main idea behind the extension of the MUSIC
to significant errors with respect to true cumulants [9]. algorithm to the 4th- (and higher-) orders [7], [14]. In fact

using C?%%) a general localization function can be defined

B. The Virtual Array concept as: 1

By replacing the array response vectors by their Kronecker Po(0) = ———, (10)
product, we actually increase the dimension of the obsiervat Hwn(G)H U,
space, thus allowing for the separation of a greater number o ) Ml
sources [17]. Actually, the element in positiém; — 1)A7 + Where the orthogonal projectow,(#) < C* *' takes
ms of the 2nd-order steering vecta(d,) ® a*(f,) can be the form of the mth—o_rder steering vector anwn_ is the
viewed as avirtual sensor(VS) distanced ofm; — mo)Ax M*E x (M* — Q)_ matnx_thgt concatenates the _elgenvectors
with respect to the reference sensor, forrall, ms € [1,M]. ©f CCrv) associated with its\/* — @ smallest eigenvalues.
The number of different VS depends on the array geomeEfurce DOAs are found by searching for the Iocall maxima of
since some VS positions may coincide. In the case of a UL+ (). See [8] for a survey on thex-MUSIC algorithms.
array with space diversity only, a 2nd-order VA hasl — 1
different VS, meaning that it can deal with up 23/ — 2 1ll. PARAFAC-BASED APPROACH FOR DIRECTIONFINDING

independent sources [18]. In a gengeral case, using an dptimg, s section, we propose a high-resolution DF algorithm

array geometry, we can have up” — M +1 different VS. hat creates a 3rd-order virtual array, only exploiting the
The theory of Virtual Arrays has been introduced indegp 4t Rao structure of a 4th-order cumulant tensor. Olu-so

pendently in [10] and [17] using 4th-order statistics. Thg, is hased on an iterative single-step least-squared §S

concept has been further developed in [18] and [19], 5 atac decomposition technique [11], [12], which exgsidie
the cases of 4th- and higher-order cumulants, respectlvegymmetry properties of 4th-order output cumulants.

One major interest in using high-order (HO) VAs consists in Let us rewrite the scalar representation of the 4th-order
exploiting the Kronecker structure that naturally ariseshe tensorc¥)  defined in section II-A. as follows:

HOS representations to improve the array angular resolutio

Despite the increased variance of the HOS estimators, the o Q

HO VAs provide resolution gains, which can be measured byc4ay(279’ k) = 2747% a; (04) a;(0q) ai(0q) ar(6g) (11)

means of the spatial correlation between two sources, dgiyen =1

the normalized inner product of the respective steeringovec for 1 < i,5,k,1 < M andq € [1,Q], where the nonzero
source Kurtoses, ;, are assumed unknown. It follows from

C. MUSIC-like DF algorithms (11) thatC*¥) is a 4th-order tensor with rar® that admits a

In its basic form, the MUSIC technique has been intrd2arafac decomposition of which the canonical componermts ca

duced to provide asymptotically unbiased estimates of tR€ straightforwardly deduced and are all written in terms of
parameters of multiple wavefronts arriving at an antennayar the array matrixA. and the diagonal Kurtosis matri,  [12].

[1], [2]. Exploiting the orthogonality between the signaida L&t us now define the unfolded tensor representalipn &
noise subspaces, the MUSIC algorithm aims to determifié’ **/, as follows:

the number of sources, their location (DOAs) and the cross-

correlations among the directional waveforms. The SO®dbas {C“]} (= 1) M2 +(k—1) M+,

= O4-,y(7;aj7kal)a (12)
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which can be easily shown to be written as follows: B. Unigueness and identifiability

. H Due to the Vandermonde structure of the array matrix,
Chnp = (AcA0A)Ty A (13) given in (5), and assuming that the sources are not closely
AP T, A" (14) located, matrixA can be shown to be full k-rank [20], so
thatks = r4 = min(M, Q). In this case, the uniqueness of
where A®) is the M* x Q 3rd-order VA matrix, defined as the Parafac decomposition of tensd¥) is ensured under
A® = AoA*o A, with A defined in (5). the condition stated by the Kruskal Theorem [21], which
yields Q < (4M —3)/2, for M < @ [12]. This leads to the

) ) ) following sufficient uniqueness condition:
A. The iterative SS-LS algorithm

. ) 2<Q<2M-—2. (19)
Using the unfolded tensor representation, the SS-LS

algorithm iteratively minimizes the following LS cost fuimn: Although (19) is not a necessary condition, it establishes a
upper bound on the number of guaranteed resolvable sources.

Y(A,_1,A) 2 |cy - AP, I‘43AHH27 (15) This bound limits the number of sources that we can treat
" ’ F using the 3rd-order VA matriA (), regardless of the number
with of virtual sensors.
S5 s <, . In the case of a ULA array withl/ sensors, the number
AZi =Ar 10 AL 0 A, (16)  of different virtual sensors associated with théh-order VA

is shown to be equal ta(M — 1) + 1 [19]. In this context,

the 3rd-order VA matrixA (®) admits a maximum capacity of
3M — 3 sources. Since the SS-LS approach can only ensure a
unigue solution under the uniqueness condition (19), iukho

wherer is the iteration number anfl|| » denotes the Frobenius
norm. The iterative minimization of>(A,_1,A) yields the
following LS solution:

A 2 minw(A A) not be used to identify a VA with more thai/ — 2 sources.
T A b This ensures that the noise subspace has at leadree
_ I\ZI A(EI_VI<7E Cpy- (17) dimensions (i.e. linearly independent basis vectors).ddeer,

when using anV/-element ULA array, the capacity of the 4-
Note that we only have to initializeh,. In fact, at each MUSIC algorithmis associated with the number of VS sensors
iteration » > 1, we deduceAfi)l from (16) and then, we of a 2nd-order VA, which comudgs with the upper bour_ld
computeA,. from (17) of the SS-LS approach. However, if 4-MUSIC operates with

lterative LS algorithms are known to be very SenSitiV(renaX|maI capacity, the noise subspace of the 2nd-order VA has

to the initialization. Exploiting the unit-modulus properof only one free dimension.
the array steering matrix, the following modification of the
SS-LS algorithm is expected to improve convergence. Aftér. DOA estimation
initializing Ao with anM x @ matrix drawn from a (complex)  The source DOAs can be recovered from the VA matrix
Gaussian distribution, we perform the following steps: A®) by using a 6th-order MUSIC-like localization function
1) At eachr > 1, before computind\., divide each entry Ps(#), such as defined in (10) with = 3, i.e.
of the preceding estimate by its own magnitude, i.e. 1
A Po(f) = ——, (20)
PR S oo,
A,

m
’ andm=1,...,M;
m
2) Normalize each column by its first element:

rl]

q‘ wherews(6) = a(f) ® a*(f) ® a(#), with a(¢) defined in
(3), andU,, is a M3 x (M3 — Q) matrix representing the
noise subspace and formed of the left singular vectors of
- A®) associated with it3/° — Q smallest singular values. The
—re-le anglesf, are obtained from the parameters of the orthogonal
[Ar1]14 projectorsws(6) € CM°*1 associated with the local maxima
- (3) _ of the 6th-order localization functioRs(#), defined in (20).
3) DeduceA,”, from (16) and compute the array matrix  ajthough involving a channel estimation stage prior to
estimate at iteration- as follows: source localization, the above described approach allows f
. ek H improved resolution due to the use of a 3rd-order VA, obtaine
A, — {Aﬁ?’_)l Cm} . (18) without resorting to 6th-order statistics. While keepirg t
cumulant estimation variance at a lower level compared with
Notice that, due to the normalization step, the computatithe 2x-MUSIC algorithms,x > 2, the proposed technique
of A, becomes independent of the source Kurtosis matiix robust to an additive Gaussian noise with unknown spatial
Ty ;. The algorithm is stopped when(r) —e(r — 1)|? < &, correlation, contrary to the 2-MUSIC method. In additioor, f
wheree(r) = |A, — A,_1||r/||A.|r and e is an arbitrary ULA arrays, the SS-LS approach is shown to resolve as many
small positive constant. sources as the 4-MUSIC algorithm.
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Fig. 1. Maximal RMSE as a function of the SNR wiffi = 1000 (left) and as a function of the sample data length with SNRiBLEright).
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Fig. 2. Maximal RMSE as a function of the SNR fof = 1000 (left) and as a function of the sample data length with SNRBL&ight).

with azimuth angles given by, = —-55° 6, = —25°,
. . fs = 5°, 8, = 50°. The array output signals are corrupted by
In this section, we evaluate the performance of the proposse3 atially white additive Gaussian noise. The curves in fig. 1

58?% eﬁ.‘t;m;_ t'O:_ n;ﬁ;h%dMﬁng Ig%greitrr]:%?a\?\fe N S;)erzntphaensrg% ow the RMSE for the worst estimated sources, as a function
mean-squaréd error (RMSE) performance ériterion defioedf the SNR forlV = 1000 (Ieft), and als_o for several values of
each source as follows [8]: ' he s_ample data length (right), with a fixed SNR v_alue of 15dB.
' In this case, the SS-LS and the 4-MUSIC algorithms operate
with their maximal capacity in terms of the number of sources
(21) By exploiting the larger noise subspace of the 3rd-ordeualr
array, the SS-LS approach provides better results than-the 4
MUSIC algorithm, using the same output statistics. In this

whereR is the number of Monte Carlo simulations afid’ is scenario, the 6-MUSIC algorithm is not at its identifialyilit
the estimation of), for the simulationr. The DOA estimates bound and gives better results than the two other algorithms
(;éw' g € [1,Q], are deduced from the angle arguments &t the cost of having to estimate 6th-order cumulants.
the orthogonal projectorsv, (f) associated with the local By adding a fourth sensorM = 4) to the antenna array
maxima of the corresponding localization functidh,(f). (with \/2 spacing), we set up another simulation scenario
Local maxima can be obtained by searching the critical gpinwith Q = 5 sources. In this case, the additional source arrives
i.e. where the first derivative is zero, with a negative secorfrom the directionfs; = 20°, with no elevation angle. In
derivative. fig. 2, we show the maximal RMSE as a function of the
We first simulated the case of a ULA array witf = 3 SNR, for N = 1000 (left). These curves demonstrate that the
narrowband sensors spaced)of2, receiving@ = 4 sources three algorithms achieve better performance, with verylarm

IV. SIMULATION RESULTS

2
, g€ [L,Q]

RMSE(q) £ | 5>

r=1
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Fig. 3. Maximal RMSE vs. noise spatial correlatio’v (= 1000 and
SNR=5dB).

results when the VAs do not operate with maximal capacit)J.4]

The results for the worst estimated source are given at i ri

a resolution improvement without resorting to statistids o
order higher than fourth. Consequently, the proposed ndetho
works well even for relatively short output data sequences a
it is robust with respect to an additive Gaussian noise with
an unknown spatial correlation. Making use of the symmetry
properties of 4th-order output cumulants, the estimatiih®
enhanced virtual array utilizes the iterative SS-LS teghaito
perform the Parafac decomposition of the cumulant tengor. |
the case of ULA arrays, this yields as many resolvable ssurce
as the 4-MUSIC algorithm but with better DOA estimation
performance, as confirmed by our simulation results.

REFERENCES

[1] R. Schmidt. Multiple emitter location and signal pardereestimation.
IEEE Tr. on Antennas and Propagatiof4(3):276—280, mar. 1986.

[2] G. Bienvenu and L. Kopp. Optimality of high resolutionray Proc.
using the eigensystem approackzEE Tr. Acoust. Speech, Sig. Proc.
31(5):1235-1247, oct. 1983.

[3] R. Roy and T. Kailath. ESPRIT — estimation of signal paetens via

rotational invariance techniquesEEE Tr. Acoust., Speech, Sig. Proc.

37(7):984-995, Jul. 1989.

M. Kaveh and A. J. Barabell. The statistical performant¢he MUSIC

and the minimum norm algorithms in resolving plane waves dis&

IEEE Tr. Acoust., Speech, Sig Prp84(2):331-341, apr. 1986.

side of f|g 2 for several values of the Sample data |engt“’] W|t[5] P. Stoica and A. Nehorai. MUSIC, maximum likelihood androer rao

bound: Further results and comparisotfSEE Tr. Acoust., Speech, Sig.

a fixed SNR of 15dB. In this case, the 6-MUSIC algorithm . “35(12):2140-2150, dec. 1990.

does not yield any noticeable advantage.

[6] E. Gonen and J.M. Mendel. Applications of cumulants teagr

We have also tested the algorithms in presence of Gaussian Processing. Part lll. Blindbeamforming for coherent signdEEE Tr.

noise with unknown spatial correlation. In this case, weduse,

a \/2-spaced 3-element ULA array receividy) = 2 sources
with DOAs given byd; = 5° andf; = 50°, respectively. Since

on Sig. Proc. 45(9):2252-2264, sep. 1997.

B. Porat and B. Friedlander. Direction finding algorithtnased on high-
order statisticsIEEE Tr. on Sig. Pro¢.39(9):2016—-2024, sep. 1991.

[8] P.Chevalier, A. Ferr+ol, and L. Albera. High-resolutidirection finding

from higher order statistics: The 2g-music algorithtBEE Tr. on Sig.

this is an overdetermined case, we used the SS-LS approach pyo 54(g).2086-2997, Aug. 2006.
to estimate the DOAs from both, the 3rd-order virtual array9] J.-F. Cardoso and E. Moulines. Asymptotic performanoelysis of

A® (x = 3) and the estimated array matri (x = 1). The

additive Gaussian noise has been simulated so that itsabpatiy;

correlation matrix is given biR.,,|;; = o2pl=71,i,j € [1, M],
wheres? is the noise variance per antenna anid the spatial

correlation coefficient of the noise. In fig. 3, we compare OL[l]I’:L]

results with the 2- and 4-MUSIC algorithms using= 1000

direction finding algorithms based on fourth-order cumtdaiEEE Tr.
on Sig. Proc. 43(1):214-224, jan. 1995.

M. C. Dogan and J. M. Mendel. Applications of cumulantsarray
processing - Part I: Aperture extension and array calimatiEEE Tr.
on Sig. Proc. 43(5):1200-1216, may. 1995.

C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Blind Mihannel
identification using cumulant tensor decompositionA8ILOMAR Conf.
on Sig., Syst. and ComgPacific Grove, CA, USA, nov. 2007.

output symbols, with a SNR of 5dB, for different values oft2] C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Blindndie iden-

the noise spatial correlation. Note that, for= 1 as well as

tification algorithms based on the Parafac decompositiocuafiulant
tensors: the single and multiuser cassig. Proc., Elsevier88(6):1382—

for k = 3, the SS-LS approach performed very closely to the 1401, jun. 2008.
4-MUSIC algorithm, showing good robustness with respeEt?’] M. Martone. Multiantenna digital radio transmissionMobile commu-

to spatially colored noise, as it should be expected. The
MUSIC algorithm, on the other hand, degradeg d@screases,

nication series. Artech House, 2002.
[@Zl] J.-F. Cardoso. Localisation et identification par laadicovariance.
Traitement du Signal7(5):397—-406, 1990.ir{ french.

since the SOS are not able to handle an additive noise withl J-W. Brewer. Kronecker products and matrix calculusystem theory.

unknown spatial correlation.

V. CONCLUSION

IEEE Trans. on Circuits and Systen®5(9):772-781, 1978.

[16] P. McCullagh. Tensor methods in statistics.Monographs on Statistics
and Applied Probability London, 1987. Chapman and Hall.

[17] P. Chevalier, A. Ferreol, and J. P. Denis. New geonleteisults about
fourth-order direction finding method performance.Hroc. EUSIPCO

In this paper, we have considered the blind source locali- 96, pages 923-926, Trieste, Italy, sep 1996.

zation problem in the context of multiuser narrowband arra@8

processing, under the assumption of sources located at

] P. Chevalier and A. Ferréol. On the virtual array cquder fourth order
direction finding problemIEEE Tr. on Sig. Prog.47(9):2592-2595, sep.
the 1999.

far-field of the antenna array. The DOA estimation problef9] P. Chevalier, L. Albera, A. Ferréol, and P. Comon. Oe trtual array

has been treated using the 4th-order cumulants only. A high-

concept for higher order array processindEEE Tr. on Sig. Prog.
53(4):1254-1271, apr. 2005.

resolution DF algorithm has been proposed, exploiting th#)] N. D. Sidiropoulos and X. Liu. Identifiability resultf blind beamfor-
structure of the cumulant tensor. This method is based on the ming in incoherent multipath with small delay spreddEE Tr. on Sig.

estimation of an array matrix formed from a double (colum
wise) Kronecker product, thus creating an enhanced vigwal
ray that commonly only arises when using 6th-order stafsti

Proc., 49(1):228-236, jan. 2001.

rEil] J. B. Kruskal. Three way arrays: rank and uniquenessribfigar

decompositions with applications to arithmetic complexind statistics.
Linear Algebra and Its Applicationsl8:95-138, 1977.

This yields an augmented observation space, which provides



