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Abstract— This paper discusses a coding scheme for the 2-
user binary adder channel (2-BAC) employing a pair of distinct
turbo convolutional codes, not necessarily forming a uniquely
decodable code pair, in the presence of additive white Gaussian
noise. The decoder is able to separate the binary data for each
user by exploiting the code structure to combat noise and to
resolve ambiguities, i.e., to distinguish between noisy versions
of the two-user pairs (0,1) and (1,0). By means of computer
simulation the performance of a particular pair of distinct turbo
convolutional codes is determined and is presented as an example.
The results are considerably better than those obtained by using a
serial concatenation of 2-BAC uniquely decodable codes as outer
codes and identical turbo convolutional codes as inner codes in
the 2-BAC.

Keywords— Turbo codes; iterative decoding, multiple access
channel, additive channel.

I. INTRODUCTION

The two-user binary adder channel (2-BAC) is one of the
simplest models for a multiple access channel [1], [2]. The
2-BAC is a memoryless channel which, at each time interval,
accepts two binary inputs, one from each user. In the absence
of noise the 2-BAC output is given by the arithmetic sum of
its two inputs, i.e., the output symbols belong to the alphabet
{0,1,2}. In the noisy case the 2-BAC output is described by
a conditional probability distribution [1].

For many years the research on coding for the 2-BAC con-
sisted of attempting to construct pairs of codes with high sum
rates, usually resorting to a computer search. More recently,
references [3] and [4] present new uniquely decodable codes
for the 2-BAC and for the t-user binary adder channel (t-BAC)
for 3 ≤ t ≤ 5, respectively. These codes have the best known
rates for the respective adder channels. In general, however,
codes obtained in this manner have no structure that could
help to simplify their decoding.

In an effort to overcome the lack of structure present
in 2-BAC codes generated by computer search, in 2004 a
serial concatenation technique was proposed for constructing
uniquely decodable trellis codes for the 2-BAC [5], [6], where
identical convolutional codes were allocated as inner codes to
both users. For each of the two users the encoder consisted of
a serial concatenation of a block code as the outer code, with a
convolutional code as the inner code. The block code, which
is one code of a pair of 2-BAC uniquely decodable binary
block codes, acts as a filter to eliminate those paths in the
2-BAC trellis [7] that would otherwise lead to ambiguity at
the decoder. Some 2-BAC computer simulation results were

presented of a construction [8], [9] where the convolutional
code employed in [6] was replaced by a turbo code [10]. Still
in 2005, further computer simulation results were presented of
a similar 2-BAC code construction employing however turbo
block codes as inner codes [11] instead of turbo convolutional
codes. It is argued in the sequel that, independent of the
strategy adopted for decoding, the use of identical inner codes
for both users in a 2-BAC may cause a loss in performance.

Differently of [5], [6], [8], [9] and [11] which uses a serial
concatenation to get the unique decodability, our purpose in
this paper is to investigate the performance of a coding scheme
for the 2-BAC employing just a pair of distinct turbo convolu-
tional codes, not necessarily constituting a uniquely decodable
code pair. The efficiency of this construction is illustrated by
means of computer simulation results, considering the BCJR
[12] algorithm adapted for the 2-BAC case, i.e., a joint BCJR
decoder. This remainder of this paper is organized as follows.
In Section II we describe in detail the encoder employed, in
Section III we review the main aspects of the noisy 2-BAC
and a new table description of the 2-BAC trellis is introduced.
In Section IV we describe the details of the iterative decoder
employed and we close the paper in Section V presenting
computer simulation results and some comments.

II. ENCODER

Let (C1,C2) denote a pair of turbo convolutional codes
associated with users 1 and 2 of a 2-BAC, respectively, as
illustrated in Figure 1.
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Fig. 1. Model of coding scheme for the 2-BAC.

Suppose the encoder for C1 employs the turbo code cons-
truction of Berrou et al. [10]. It follows that the encoder for
C1 consists of the parallel concatenation of two systematic
recursive binary convolutional codes, C−

1 and C|
1, not ne-

cessarily identical. The respective inputs for both component
encoders use the same information bits uk, however in di-
fferent order due to the use of an interleaver in one of the
encoders. Similarly, the encoder for C2 consists of the parallel
concatenation of two systematic recursive binary convolutional



codes, C−
2 and C|

2, not necessarily identical. The inputs for
both component encoders use the same information bits dk,
however in different order due to the use of an interleaver in
one of the encoders, which must be identical to the interleaver
employed for C1. The transmission rate of C1 is assumed to
be equal to that of C2. Without loss of essential generality,
assume that each systematic recursive encoder has asymptotic
rate 1/n and M states, for both users. Let the binary sequence
of information symbols from user 1 be denoted as

u = uN
1 = {u1,u2, . . . ,uk, . . . ,uN},

and let the corresponding binary sequence of information
symbols for user 2 be denoted as

d = dN
1 = {d1,d2, . . . ,dk, . . . ,dN}.

Let the sequence of codewords from user 1 be denoted as

v = vN
1 = {v1,v2, . . . ,vk, . . . ,vN},

and let the corresponding sequence of codewords from user 2
be denoted as

w = wN
1 = {w1,w2, . . . ,wk, . . . ,wN},

where

vk = (v(0)k ,v(1)k , . . . ,v(n−1)
k ) = (uk,v

(1)
k , . . . ,v(n−1)

k ),

1≤ k ≤N, denotes the output associated with each information
symbol from user 1 and, similarly,

wk = (w(0)
k ,w(1)

k , . . . ,w(n−1)
k ) = (dk,w

(1)
k , . . . ,w(n−1)

k ),

1 ≤ k ≤ N, denotes the output associated with each informa-
tion symbol from user 2. The symbols v(0)k and w(0)

k denote
systematic encoder outputs for user 1 and user 2, respectively.

Example 1. Let C−
1 and C|

1 denote two binary recursive sys-
tematic rate 1/2 convolutional codes and identical polynomial
generator matrices

G1(D) =

[
1

1+D2

1+D+D2

]
.

Similarly, let C−
2 and C|

2 denote two binary recursive sys-
tematic rate 1/2 convolutional codes and identical polynomial
generator matrices

G2(D) =

[
1

D+D2

1+D+D2

]
.

The corresponding encoders for users 1 and 2 are illustrated
in Figure 2 and Figure 3, respectively.

III. TWO-USER TRELLIS AND THE NOISY 2-BAC
Because the 2-BAC is defined in terms of input pairs, at

any time interval the decoder must consider pairs of paths,
one from each single-user trellis. The a posteriori probabilities
of single paths are not defined, however, the a posteriori
probabilities of path pairs are defined. This leads immediately
to the concept of a two-user trellis [7]. The two-user trellis
is defined such that, at any given time slot, each distinct pair
of paths, one through each single-user trellis, corresponds to
a unique path through the two-user trellis, each branch of

Fig. 2. Encoder for code C1, employing two identical polynomial generator
matrices, namely

[
1 1+D2

1+D+D2

]
.

Fig. 3. Encoder for code C2, employing two identical polynomial generator
matrices, namely

[
1 D+D2

1+D+D2

]
.

the two-user trellis corresponds to a pair of branches, one in
each single-user trellis, and each state of the two-user trellis
corresponds to a pair of states, one in each single-user trellis,
i.e., the two-user trellis state at time k is simply the contents of
the two encoder shift registers. The decoder task is to discover
which path along the two-user trellis is the most likely. If each
single-user trellis has Li states, i ∈ {1,2}, then the two-user
trellis will have L1L2 states.

Let the codeword sequences vN
1 and wN

1 be the two inputs for
a memoryless 2-BAC. Assume the noise to be additive white
Gaussian noise. The sequence of sub-blocks in the two-user
trellis is denoted as

x = xN
1 = {x1,x2, . . . ,xk, . . . ,xN},

where
xk = (x(0)k ,x(1)k , . . . ,x(n−1)

k ).

The random variable x( j)
k , j = 0, . . . ,n− 1, at time instant k,

is defined as

x( j)
k = (1−2v( j)

k )+(1−2w( j)
k ), j = 0, . . . ,n−1.

The 2-BAC output sequence is denoted as

r = rN
1 = {r1,r2, . . . ,rk, . . . ,rN},

where rk =(r(0)k ,r(1)k , . . . ,r(n−1)
k ). The random variable r( j)

k , j =
0, . . . ,n−1, at time instant k, is defined as

r( j)
k = x( j)

k +q( j)
k , j = 0, . . . ,n−1,



TABLE I
OUTPUT SUB-BLOCKS AND TRELLIS STATES FOR THE 2-USER TRELLIS IN

EXAMPLE 2.
(uk,dk)→

Sk−1 ↓ (+1+1) (−1+1) (−1−1) (+1−1)

0000 +2+2,0000 0 0,1000 -2 0,1010 0+2,0010
0001 +2 0,0010 0-2,1010 -2-2,1000 0 0,0000
0010 +2 0,0011 0-2,1011 -2-2,1001 0 0,0001
0011 +2+2,0001 0 0,1001 -2 0,1011 0+2,0011
0100 +2+2,1000 0 0,0000 -2 0,0010 0+2,1010
0101 +2 0,1010 0-2,0010 -2-2,0000 0 0,1000
0110 +2 0,1011 0-2,0011 -2-2,0001 0 0,1001
0111 +2+2,1001 0 0,0001 -2 0,0011 0+2,1011
1000 +2 0,1100 0+2,0100 -2+2,0110 0 0,1110
1001 +2-2,1110 0 0,0110 -2 0,0100 0-2,1100
1010 +2-2,1111 0 0,0111 -2 0,0101 0-2,1101
1011 +2 0,1101 0+2,0101 -2+2,0111 0 0,1111
1100 +2 0,0100 0+2,1100 -2+2,1110 0 0,0110
1101 +2-2,0110 0 0,1110 -2 0,1100 0-2,0100
1110 +2-2,0111 0 0,1111 -2 0,1101 0-2,0101
1111 +2 0,0101 0+2,1101 -2+2,1111 0 0,0111

where the values q( j)
k represent independent noise samples with

identical variance σ2 and zero mean value.

Example 2. Consider again the situation presented in Ex-
ample 1. Figure 4 presents a section of the 2-user trellis,
showing two states at time instant k−1, namely Sk−1 = 0110
and Sk−1 = 1111, and branches connecting them to their
corresponding states at time instant t = k denoted by Sk. In
Sk−1 = 0110, for example, the first two bits 01 corresponds
to the contents of the C−

1 or C|
1 shift register, and the last

two bits 10 corresponds to the contents of the C−
2 or C|

2
shift register. Each branch has a label which indicates the
pair (uk,dk) of input symbols, followed by the noiseless 2-
BAC output xk = x0

k ,x
1
k , i.e., (uk,dk)/x0

k ,x
1
k . A simple and

compact way of representing the full trellis for 2-users is
presented in Table I, where the 2-BAC inputs are binary digits
from the alphabet {−1+ 1}, and the output is ternary from
the alphabet {−2,0,+2}. Each cell in Table I contains the
corresponding noiseless 2-BAC output x0

k ,x
1
k followed by the

current trellis state Sk, when the row label is the trellis state
in the previous time instant Sk−1 and the column label is the
2-user pair of inputs (uk,dk). For example, if Sk−1 = 0110 and
(uk,dk)= (−1,+1), then it follows from Table I that xk = 0,−2
and Sk = 0011. If Sk−1 = 1111 and (uk,dk) = (+1,−1), then
it follows that xk = 0,0 and Sk = 0111.

IV. THE DECODER

The decoder employed, illustrated in Figure 5, uses iterative
decoding [13] to detect the most likely pairs (uk,dk) of
binary information symbols. The iterative algorithm employed
uses the BCJR technique [12], adapted for use in the 2-
BAC [8], making use of the 2-user trellis.The log-likelihood
ratios Λ1(uk,dk), Λ2(uk,dk) and Λ3(uk,dk) associated with
the pair (uk,dk) of information symbols from users 1 and
2, respectively, are computed by means of the following
expressions.
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Fig. 4. Branches of the 2-user trellis connecting states Sk−1 = 0110 and
Sk−1 = 1111, at time instant t = k−1, to the corresponding states Sk at time
instant t = k. For example, if Sk−1 = 0110 and Sk = 0011, then (uk,dk)/xk =
(−1,+1)/0−2.
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Fig. 5. Iterative decoder, containing two component decoders connected in
series.

Λ1(uk,dk) = log
P{uk =−1,dk =+1|r}
P{uk =+1,dk =+1|r}

, (1)

Λ2(uk,dk) = log
P{uk =−1,dk =−1|r}
P{uk =+1,dk =+1|r}

, (2)

Λ3(uk,dk) = log
P{uk =+1,dk =−1|r}
P{uk =+1,dk =+1|r}

, (3)



where P{uk = i,dk = s|r}, i ∈ {−1,+1}, s ∈ {−1,+1} denotes
the a posteriori probability of the pair (uk,dk) of information
symbols, given the received 2-BAC sequence r.

The decoder operates as follows. The input to the first BCJR
decoder, denoted by the block labeled as DEC1 in Figure 5,
is fed with the received sequences r(0) = {r(0)1 ,r(0)2 , . . . ,r(0)N }
and r(1) = {r(1)1 ,r(1)2 , . . . ,r(1)N }, where r( j)

k was defined earlier.
DEC1 produces the soft outputs Λ1,1(uk,dk),Λ2,1(uk,dk) and
Λ3,1(uk,dk), which are interleaved and are used to produce
estimates of the a priori probabilities of pairs of information
sequences to be fed as inputs to the second BCJR decoder,
denoted by the block labeled as DEC2 in Figure 5. The nota-
tion Λ1,1(uk,dk), Λ2,1(uk,dk), Λ3,1(uk,dk) is used to indicate
the soft outputs Λ1(uk,dk),Λ2(uk,dk) and Λ3(uk,dk) associated
with DEC1, respectively. The values Λ1,1e(uk,dk), Λ2,1e(uk,dk)
and Λ3,1e(uk,dk) represent the extrinsic information to decoder
DEC1.

The input to decoder DEC2 receives the sequences r̃(0) and
r(2) = {r(2)1 ,r(2)2 , . . . ,r(2)N }. The sequence r̃(0) corresponds to
the sequence r(0) interleaved. Decoder DEC2 also produces
soft outputs Λ1(uk,dk),Λ2(uk,dk) and Λ3(uk,dk), denoted as
Λ1,2(uk,dk),Λ2,2(uk,dk) and Λ3,2(uk,dk), to indicate the fact
that they are associated with DEC2, respectively. These soft
outputs are used to improve the estimates of the a priori
probabilities of pairs of information bit sequences (uk,dk)
input to decoder DEC1. Decoder DEC2 estimates the log
likelihood ratios Λ1,2(uk,dk), Λ2,2(uk,dk) and Λ3,2(uk,dk). The
values Λ1,2e(uk,dk), Λ2,2e(uk,dk) and Λ3,2e(uk,dk) represent
the extrinsic information to decoder DEC2. Such values de-
pend on the redundant information supplied by the encoders C|

1
and C|

2. The extrinsic information for decoder DEC2 is used as
an estimate of the a priori probabilities to decoder DEC1. The
values Λ̂1,2e(uk,dk), Λ̂2,2e(uk,dk) and Λ̂3,2e(uk,dk) correspond,
respectively, to the values of Λ1,2e(uk,dk), Λ2,2e(uk,dk) and
Λ3,2e(uk,dk) when deinterleaved.

The use of identical error-correcting codes, in a systematic
manner for both users in the 2-BAC is possible only when a
serial concatenation construction, e.g., as in [8] and [11], is
employed. However, it follows for this construction technique
that the log likelihood ratios Λ1(uk,dk) and Λ3(uk,dk) are
equal, i.e., P{uk = +1,dk = −1|r} = P{uk = −1,dk = +1|r}.
This latter condition forbids any trellis decoder of separating
the symbols sent by each user in the 2-BAC, except for the
trivial cases, i.e., where uk = dk. The inner decoder outputs
its best estimate of a ternary sequence which is then fed to
the outer 2-BAC decoder in the serial concatenation. Since
the outer codes are not error-correcting codes, any error not
corrected by the inner code probably will not be corrected by
the outer decoder. This situation leads to a loss in performance.

We notice that the key point which allows the decoder used
in this paper to separate from the received noisy sequence the
two binary sequences, one for each of the two users, is the
fact that, in general,

Λ1(uk,dk) ̸= Λ3(uk,dk)

or, equivalently,

P{uk =+1,dk =−1|r} ̸= P{uk =−1,dk =+1|r}

when the codes for user 1 and user 2 are distinct. It follows
that the potential ambiguity resulting from the pairs (uk =
+1,dk = −1) and (uk = −1,dk = +1) will be resolved by
this joint decoder most of the time. The use of distinct codes
thus allows both the correction of errors due to noise and the
correction of errors due to the interference between users.

V. RESULTS AND FINAL CONSIDERATIONS

We considered for the computer simulation the situation
where the code for user 1 and the code for user 2 are
distinct.The standard Berrou and Glavieux [10] interleaver
was employed with blocklength 512. The curves obtained,
relating the bit error probability and signal to noise ratio
for user 1 and for user 2 are illustrated in Figure 6 and
Figure 7, respectively. The encoders for C−

1 = C|
1 in Figure

6 have polynomial generator matrices G(D) =
[
1 1+D2

1+D+D2

]
and the encoders for C−

2 = C|
2 in Figure 7 have polynomial

generator matrices G(D) =
[
1 D+D2

1+D+D2

]
. The two curves

labeled “Without Turbo”, one in Figure 6 and one in Figure
7, are obtained when the decoder recovers the binary data for
each user by running the received sequence r through DEC 1
only. As expected, when iterative decoding is employed this
construction shows a significant performance improvement
with respect to the no-iterations (without turbo) case, with
a gain of approximately 3dB for a bit error probability of
approximately 10−2 by using 2 iterations, for both users.
For purpose of comparison, observing the curves produced
with a serial concatenated coding scheme for the 2-BAC as
described in [9], having sum rate 1.29 × (1/3) = 0.43, the
results presented in Figure 6 and Figure 7 are considerably
better, although the turbo convolutional codes employed have
the same memory as those employed in [9].
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Fig. 6. Bit error rate for user 1, for a rate 1/3 turbo convolutional code with
polynomial generator matrix [1 (1+D2)/(1+D+D2)].

The advantage of this construction comes from the possi-
bility of directly separating the binary data for each of the
two users at the receiver by using the BCJR [12] iterative
decoding algorithm applied to the received sequence r and the
corresponding 2-BAC trellis. In [14] is adressed the problem
of designed good low density parity-check codes (LDPC) for



the Gaussian multiple access channel but long codes are not
attractive for some practical cases due to synchronism lost. In
these cases, short codes are desirable. Recently [15], LDPC
codes have been investigated for the 2-BAC and the 3-BAC by
means of computer simulation and the results for the 2-BAC
are comparable to those presented here.
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Fig. 7. Bit error rate for user 2, for a rate 1/3 turbo convolutional code with
polynomial generator matrix [1 (D+D2)/(1+D+D2)].
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