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Geodesic Learning
Rui F. Vigelis and Charles C. Cavalcante

Abstract— In this paper we develop a new algorithm
for estimating the geodesic between points in a point
cloud. Geodesics are useful in dimensionality reduction
and data analysis. The algorithm exploits data locally, and
results in a distance minimizing curve. The convergence
was experimentally verified in a toy (swiss roll) and ‘semi-
toy’ (rendered faces) data set.

Keywords— Geodesic learning, dimensionality reduction,
data analysis.

I. INTRODUCTION

In information extraction one of the principal draw-
backs concerns the high dimensional and non-linearly
nature of the underlying data. For example, a commu-
nication network provides a rich and large amount of
data. But generally one can only take poor on-line deci-
sions due to computational constraints. Many algorithms
for dimensionality reduction have been proposed that
exploit non-linear and geometric aspects of the data.
To cite a few, we have the locally linear embedding
(LLE) [1], isometric mapping (ISOMAP) [2], Laplacian
eigenmaps (LapEig) [3]. The data is supposed lying in
a d-dimensional manifold embedded in aD-dimensional
Euclidian space (d ≪ D). This algorithms non-linearly
map the data to ad-dimensional Euclidian space, pre-
serving local or global distances. In the low-dimensional
space a desired task (clustering, classification, etc.) can
be performed.

If we are just interested in the geodesic between points
in the manifold, we can avoid the entire dimensionality
reduction. A geodesic is defined as the shortest path
joining two points. In some situations (e.g., clustering,
classification in some cases), estimating the geodesic is
sufficient for the task in consideration.

Since the ISOMAP preserves global distances, it is
required the estimation of geodesic distances between
points. Graph based methods are adopted for estimating
the geodesic distances. In the graph points are the
edges. Near points are joined forming vertices, which
are weighted by the distance between the points that are
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joined. The geodesic is approximated by the shortest path
in the graph. This leads to very poor geodesic estimation.

A second alternative for geodesic estimation is pro-
posed in [4]. In that paper, a thin tubular neighborhood
is taken from the point cloud. And the geodesic in the
manifold is approximated by the geodesic in the tubular
neighborhood. The main advantage of our algorithm over
[4] is the computational simplicity.

In this paper we propose a simple and efficient algo-
rithm for estimating the geodesic between points from a
set of sampled points we suppose lying in a manifold.
Estimating geodesic helps elucidating the data structure,
and in some cases avoid the entire manifold learning.
The algorithm is derived in the next section.

The rest of the paper is organized as follows. In
section II we derive the algorithm. Section III shows the
simulation results. Finally in Section IV we draw our
conclusions and perspectives of this work.

II. GEODESICLEARNING ALGORITHM

We want to find a curvef : [0, 1] → M between
pointsa = f(0) andb = f(1) in the manifoldM whose
length attains a minimum. For curves between this points
we apply a cost function that we try to minimize. Since
the curve lives inRD, a candidate for cost function is

J(f) =

N
∑

i=1

d(M, f(ti))
2 + λ

∫ 1

0
‖f ′(t)‖2dt,

whereti ∈ (0, 1),

d(M, x) = inf{‖y − x‖ : y ∈M}

and λ ∈ R is a a penalizing factor. Larger values ofλ

will tend to result in curves of smaller length.
If we denotex0 = a, x1 = f(t1), . . . , xN = f(tN ),

xN+1 = b, the above cost function can be rewritten as

J({xi}) =
N
∑

i=1

d(M, xi)
2 + λ

N+1
∑

i=1

‖xi − xi−1‖
2.

In simulations, we have observed that the second term
in the right hand side of the above equation was not a
good choice. Instead, we replaced this term for

λ

N+1
∑

i,j=0

wij‖xi − xj‖
2,
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TABELA I

GEODESIC LEARNING ALGORITHM.

Initialize:
a = x0, x1, . . . , xN , xN+1 = b

Repeat:
For i = 1, . . . , N :

xi ←
1

#anL(i)

(

∑

xj∈anL(i)

xj

)

Find nnK(xi)

xi ←
1

K

(

∑

yj∈nnK (xi)

yj

)

Until {xi} converges

with the constraint
∑

j wij = 1 for i = 0, . . . , N + 1. A
choice for the weightswij is

wij =
1

#anL(i)
,

where# stands for the cardinality andanL(i) is the set
of L adjacent neighbors ofxi in the sequence(xi):

anL(i) = {xi−l, . . . , xi−1, xi+1, . . . , xi+l},

and l ∈ {0, . . . , L} is such that0 ≤ i− l, i + l ≤ N + 1
andanL(i) contains a maximum number of elements.

Since we do not know the manifoldM, we can not
find the shortest distanced(M, xi). We approximate
d(M, xi) by the average of theK-nearest neighbors of
xi in the samples{y1, . . . , yM} taken from the manifold
M.

With the above changes, the cost function is given as

J({xi}) =
N
∑

i=1

(

1

K

∑

yj∈nnK(xi)

‖yj − xi‖
2+

λ
1

#anL(i)

∑

xj∈anL(i)

‖xj − xi‖
2

)

A gradient descendent updating forJ({xi}) results in

xi ←
1

K

(

∑

yj∈nnK(xi)

yj

)

+ λ
1

#anL(i)

(

∑

xj∈anL(i)

xj

)

The above updating leads to difficulties. The penalizing
factor λ will provide curves shorter than the geodesic.
Thus the asymptotic curve will not lie in the manifold.
We avoid this difficulty updating separately each term in
the right-hand side of the above equation. The final form
of the geodesic learning algorithm is shown in Table I.

The initial points can not be arbitrary. They can be
chosen from the point cloud, and in most cases we have
observed that imposing a small maximum value for the
distances‖xi − xi−1‖ guarantees convergence.
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Fig. 1. Samples from the swiss roll, the geodesic and the estimated
curve.

III. S IMULATION RESULTS

For illustrating convergence and effectiveness, we
have run the algorithm on two data sets, the swiss roll
and the face database [2], two sources broadly used in
the data dimensionality literature.

From the swiss roll, we uniformly sampled 200 points.
Two points were selected in the samples for estimating
the geodesic between them, as shown in Fig. 1. These
two points was then joined by 20 initial points chosen
in the samples. We performed iterations withL = 3
adjacent neighbors in the curve andK = 10 nearest
neighbors in the manifold. The resulting curve after50
iterations is shown in Fig. 1. As measure of convergence
performance, we used the curve length and the averaged
square distance from the points to the geodesic,

l =
N+1
∑

i=1

‖xi − xi−1‖, e =
1

N

N
∑

i=1

(d(xi, g))2,

where g is the geodesic joiningx0 and xN+1. Fig. 2
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Fig. 2. Averaged square distance from the points to the geodesic
and curve length for each iteration.

depicts the values ofl and e for each iteration. With
approximately 25 iterations, the algorithm presented
convergence, withl near to the geodesic length ande
near to zero.

The first row in Fig. 3 shows the initial faces and the
distance between adjacent faces. The algorithm was run
with L = 3 adjacent neighbors in the curve andK = 10
nearest neighbors in the manifold. The faces after 10
iterations and their distances are shown in the second
row in Fig. 3. Finally, Fig. 4 depicts the curve length for
each iteration.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we developed a new algorithm capable
of estimating geodesics from a point cloud. Convergence
was shown in simulations. In the swiss roll case we
observed that the algorithm converges. In the face da-
tabase, we obtained a shorter curve, which could not
be compared to the geodesic, since it was not known.
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Fig. 3. Initial faces and faces after 10 iterations. Numbersbelow
each face indicate distance between faces.
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Fig. 4. Curve length for each iteration.

The algorithm has an appealing simple implementation,
differently of others techniques. The main drawback
concerns the initialization points, which can lead to some
divergence. We hope we will find a criterion for the
choice of this points. As a perspective of this work, the
convergence analysis will be developed.
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