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Statistical Analysis of the Bias in Acoustic Feedback
Cancellation System for Hearing Aids

Yasmı́n Montenegro M. and José C. M. Bermudez

Abstract— The acoustic feedback is one of the main complaints hearing
aids users producing distortion of the desired signal and limiting the
maximum hearing aid’s stable gain. The acoustic feedback cancellation
system here presented employs an LMS adaptive estimator andan LMS
adaptive predictor operating simultaneously. The nature of the practical
problem makes the input to the adaptive estimator and the interference
to its output statistically correlated, thus a biased solution is found. This
paper presents an analytical model for the bias and the performance of
the system is then investigated. Interesting results were obtained from
the model. Monte Carlo simulations are presented to verify the accuracy
of the derived model.

Keywords— Adaptive systems, feedback cancellation, LMS, hearing
aids.

I. I NTRODUCTION

About 660 million people in the world suffer from hearing loss
[1]. Several hearing–impaired individuals would benefit from using
hearing aids. However, user benefits are still limited due tothe lack
of systems that can effectively exploit all the potential ofsignal
processing techniques. The desirable hearing aid miniaturization has
also created problems. The occlusion effect and the acoustic feedback
are among the main user complaints. Venting is essential to reduce
the occlusion effect. However, venting leads to undesirable acoustic
feedback because of the proximity of microphone and loudspeaker.
Acoustic feedback occurs when the hearing aids receiver output signal
is fed back into the hearing aids microphone. Large feedforward gains
can lead to instability in presence of acoustic feedback. This may
lead to signal oscillations which produce annoying sounds referred
to as ”whistling”and ”howling”. One way to reduce this problem
is to cancel the acoustic feedback using an internal feedback path
as shown in Fig. 1, where the acoustic feedback path is modelled
by w0. Sincew0 will change in time during normal use [2], [3]
(e.g. when the user is giving a hug, chewing or using a telephone),
most modern solutions employ adaptive systems. An adaptivefilter
w(n) is used to generate an estimateŷ(n) of the feedback signal
y(n). This estimate is subtracted from the microphone signal.g(n)
provides amplification. Ideally,̂y(n) converges toy(n) for n large.
Then, only the input signalx(n) is preserved at the hearing aids input
e(n) so thatu(n) = g(n)x(n).
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Fig. 1. Basic adaptive feedback cancellation in hearing aids.

Becauseg(n) is simply a gain,x(n) and u(n) are statistically
correlated. Thus, minimum mean-square estimation ofy(n) in Fig. 1
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leads to a biased adaptive weight vector solution. Different schemes
have been proposed to reduce this bias. Several of them introduce
decorrelating operations such as delays or non–linearities in the
forward pathg(n) or in the adaptive filter path [4], [5]. The use
of restrictions in the adaptive canceller has also been proposed [6]–
[8]. Unfortunately, none of these solutions completely cancels the
acoustic feedback.

Alternative solutions have been recently proposed which rely on
the direct method of closed-loop identification [9]. The data used
for identification are obtained in closed loop but the identification
is performed using an open loop model. Recent approaches assume
a model for the input signal and apply the prediction-error method
(PEM) to reduce the steady-state bias [10]–[13].

In [12] the adaptive filter (called shadow filter) works offline while
a fixed cancellation filter operates in the actual signal path. The
adaptive filter weights are periodically used to update the cancellation
filter response. The adaptive filter updating structure includes an
adaptive prediction error filter (PEF) to reduce the solution bias. Both
adaptive filters are adapted simultaneously. Though this strucuture has
led to good results, no analytical model is available in the literature
to predict its behavior and to provide good design guidelines.

In this paper we present a mathematical model for the bias
introduced by the adaptive hearing aid feedback cancellation system
proposed in [12]. The new model shows the dependence of the
adaptive weight bias on the forward path delay and on the adaptation
step of the PEF. We present curves that show relationship between
the hearing aid signal–to–noise ratio (SNR) and those parameters.
Monte Carlo simulations show good agreement with the theoretical
predictions.

II. PROBLEM FORMULATION

Fig. 2 shows the adaptive feedback cancellation system studied.
x(n) is the desired signal andy(n) is the feedback signal to be
cancelled. SystemH and a zero-mean white Gaussian noiseη(n)
define a parametric model forx(n) [12]. ζ(n) is a zero-mean white
Gaussian noise required for identifiability of the feedbackpath when
x(n) includes periodic components [12].wo is the feedback path to
be identified.w(n) is the adaptive estimation filter.ec(n) andu(n)
are, respectively, the input and output signals of the hearing aid,
which is modeled by a gainG and a delayD. wc is the feedback
estimation filter implemented in the signal path.wc is periodically
updated with the coefficients ofw(n) following some updating policy
[12]. The adaptive prediction error filterq(n) whitensu(n) before its
use by the adaptive algorithm. The same filterq(n) is also applied
to e(n). Note that the top part (above the broken line) of Fig. 2
operates as an stationary system during adaptation of the bottom
part1. Therefore, signalsu(n) and y1(n) are considered stationary
during adaptation ofw(n) andq(n).

The structure in Fig. 2 is the same proposed in [12] except for
the adaptive predictor location. In [12] the adaptive predictor was

1We assume a stationary acoustic feedback path in this analysis. Thus,
we assume that changes in the acoustic path are slow when compared to
the adaptive filter convergence speed. We also assume that transients due to
updatings inwc are much shorter than adaptive filter convergence times.
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Fig. 2. Hearing aids feedback cancellation structure. Modified from [12].

applied to the error signale(n) and copied to filteru(n). We
propose the structure shown in Fig. 2. This solution pre-whitens
the adaptive algorithm input signal and speeds-up convergence of
stochastic gradient algorithms [14] whithout affecting the steady-state
behavior of the system. We have demonstrated this property in [15].

Under certain conditions, the structure in [12] can providean
unbiased feedback path identification. Ifx(n) is an autoregressive
process, it is shown in [12] thate(n) converges tox(n) and the
adaptive PEF (applied toe(n)) converges toH−1. From Fig. 2 and
using the subscriptq to refer to a signal filtered byq(n),

eq(n) = y1q (n) − ŷq(n). (1)

Writing the PEF coefficient vector asq(n) = [1 pT (n)]T , ŷq(n) =
ŷ(n) +

PM

i=1 pi(n)ŷ(n − i) = uT
q (n)w(n) with uq(n) =

[uq(n), · · · , uq(N − 1)]T , whereN is the order of estimator filter,
yields

eq(n) = y1q (n) − uT
q (n)w(n). (2)

It is easy to show that E[e2
q(n)] is minimized for w(n) =

ŵ(n) where ŵ(n) = Ruquq(n)−1rq(n) with Ruquq (n) =
E{uq(n)uT

q (n)} and rq(n) = E{yq1(n)uq(n)}. Using yq1(n) =
xq(n) + uT

q (n)wo with xq(n) = qT (n)x(n) we have

ŵ(n) = Ruquq(n)−1E{xq(n)uq(n)} +wo (3)

which shows that the solution bias is controlled by the cross-
correlation vector E{xq(n)uq(n)} and by the autocorrelation matrix
Ruquq (n). Note that (3) has been derived for a fixed PEF (fixed value
of n). In the adaptive scheme, this optimal solution will vary intime
as the predictor converges towards its own steady-state solution. In
the next section we derive a mathematical model for this bias.

III. B IAS ANALYSIS

DenotingB the bias vector, we have from (3) that

B(n) = Ruquq(n)−1E
˘

xq(n)uq(n)
¯

(4)

where the time dependence has been explicited. Next we determine
mathematical expressions for E

˘

xq(n)uq(n)
¯

andRuquq (n).

A. Cross–correlation E
˘

xq(n)uq(n)
¯

The elements inrxquq (n) = E
˘

xq(n)uq(n)
¯

are given by

[rxquq (n)]i = E
˘

xq(n)uq(n − i)
¯

= E
˘

[x(n) + pT (n)x(n − 1)]

× [u(n − i) + pT (n)u(n − i − 1)]
¯

(5)

with i = 0, · · · , N , x(n − 1) = [x(n − 1), · · · , x(n − M)]T and
u(n− i− 1) = [u(n− i− 1), · · · , u(n− i−M)]T . M is the order
of the predictor. In deriving (5) we assumed slow convergence of the
predictorp(n) such thatp(n) = p(n − 1) = p(n − N).

Define vp(n) = p(n) − po, wherepo is the optimum predictor
of x(n)2 with Ruu(0) = E[u(n)uT (n)] being the M × M
autocorrelation matrix ofu(n) andru(l) = E[u(n)u(n − l)].

Substituing the value ofp(n) in (5) with p(n) = vp(n) + po we
have:

[rxquq (n)]i =E
n

x(n)u(n − i) + vT
p (n)u(n − i − 1)x(n)

+ poT
u(n − i − 1)x(n) + vT

p (n)x(n − 1)u(n − i)

+ vT
p (n)x(n − 1)uT (n − i − 1)vp(n)

+ vT
p (n)x(n − 1)uT (n − i − 1)po

+ poT
x(n − 1)u(n − i)

+ poT
x(n − 1)uT (n − i − 1)vp(n)

+ poT
x(n − 1)uT (n − i − 1)po

o

(6)

Conditioning initially the expectation (6) invp(n) and neglecting the
correlations ofvp(n) with u(n) andx(n), we have

[rxquq (n)]i =

rxu(i) +
˘

E[vT
p (n)] + poT

¯

rxu(i + 1) + tr
˘

Rxu(i)Kp(n)
¯

+
˘

E[vT
p (n)] + poT

¯

rux(1 − i) + tr
˘

Rxu(i)E[vp(n)]poT
¯

+ tr
˘

Rxu(i)poE[vT
p (n)]

¯

+ tr
˘

Rxu(i)po
p

oT }

(7)

whereRxu(i) = E[x(n − 1)u(n − i − 1)], rxu(l − k) = E[x(n −
k)u(n − l)] and rux(l − k) = E[u(n − k)x(n − l)]. The cross–
correlationrxu(i) is derived in the Appendix to be Eq. (37), assuming
an autoregressive (AR) model forx(n). Eq. (37) shows thatrxu(i)
depends on the delayD. Thus, rxquq(n) and hence the bias will
change as a function ofD. A recursion for E[vp(n)] using the LMS
algorithm has been obtained in [15] as

E[vp(n + 1)] =
ˆ

I − ρRuu(0)
˜

E[vp(n)] − ρ
ˆ

ru(1) +Ruu(0)po
˜

(8)
whereρ is the predictor step size. In the following we determine a
recursion forKp(n) = E

ˆ

vp(n)vT
p (n)

˜

.

B. Determination ofKp(n) = E
˘

vp(n)vT
p (n)}

The LMS PEF weight update equation with step sizeρ is

p(n + 1) = p(n) − ρuq(n)u(n − 1)

= p(n) − ρu(n)u(n − 1)

− ρu(n − 1)uT (n − 1)p(n)

(9)

Using p(n) = vp(n) + po in (9) yields

vp(n + 1) = vp(n) − ρu(n − 1)uT (n − 1)vp(n)

− ρu(n − 1)uT (n − 1)po − ρu(n)u(n − 1)
(10)

Multiplying (10) by its transpose,

2Note that po is not necessarily the optimum predictor ofu(n) in the
mean–square sense
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vp(n + 1)vT
p (n + 1)

= vp(n)vT
p (n) − ρvp(n)vT

p (n)u(n − 1)uT (n − 1)

− ρvp(n)poT
u(n − 1)uT (n − 1) − ρu(n)vp(n)uT (n − 1)

− ρu(n − 1)uT (n − 1)vp(n)vT
q (n)

+ ρ2
u(n − 1)uT (n − 1)vp(n)vT

p (n)u(n − 1)uT (n − 1)

+ ρ2
u(n − 1)uT (n − 1)vp(n)poT

u(n − 1)uT (n − 1)

+ ρ2u(n)u(n − 1)uT (n − 1)vp(n)uT (n − 1)

− ρu(n − 1)uT (n − 1)po
v

T
p (n)

+ ρ2
u(n − 1)uT (n − 1)po

v
T
p (n)u(n − 1)uT (n − 1)

+ ρ2
u(n − 1)uT (n − 1)po

p
oT
u(n − 1)uT (n − 1)

+ ρ2u(n)u(n − 1)uT (n − 1)po
u

T (n − 1)

− ρu(n)u(n − 1)vT
p (n) + ρ2u2(n)u(n − 1)uT (n − 1)

+ ρ2u(n)u(n − 1)vT
p (n)u(n − 1)uT (n − 1)

+ ρ2u(n)u(n − 1)poT
u(n − 1)uT (n − 1)

(11)

Taking the expected value of (11) and making the same approxima-
tions as in (7) yields

Kp(n + 1) = Kp(n) − ρ
h

Kp(n)Ruu(0) +Ruu(0)Kp(n)

+ E[vp(n)]poT
Ruu(0) + E[vp(n)]rT

u (1) + ru(1)E[vT
p (n)]

+Ruu(0)poE[vT
p (n)]

i

+ ρ2
h

Ruu(0)tr
`

Ruu(0)Kp(n)
´

+ 2Ruu(0)Kp(n)Ruu(0) +Ruu(0)tr
`

Ruu(0)E[vp(n)]poT
´

+ 2E[vp(n)]poT
Ruu(0) +Ruu(0)tr

`

Ruu(0)po
p

oT
´

+ 2Ruu(0)po
p

oT
Ruu(0) +Ruu(0)tr

`

Ruu(0)poE[vT
p (n)]

´

+ 2poE[vT
p (n)]Ruu(0)

i

+ ρ2
h

Ruu(0)E[vp(n)]rT
u (1)

+ ru(1)E[vT
p (n)]Ruu(0) +Ruu(0)tr

`

ru(1)E[vT
p (n)]

´

+Ruu(0)po
r

T
u (1) + ru(1)poT

Ruu(0) +Ruu(0)tr
`

ru(1)poT
´

+ ru(1)E[vT
q (n)]Ruu(0) +Ruu(0)E[vp(n)]rT

u (1)

+Ruu(0)tr
`

E[vp(n)]rT
u (1)

´

+ ru(1)poT
Ruu(0)

+Ruu(0)po
r

T
u (1) +Ruu(0)tr

`

p
o
r

T
u (1)

´

+ 2ru(1)rT
u (1) +Ruu(0)ru(0)

i

(12)

An expression forru(l) is determined in the Appendix, Eq. (34),
assuming an AR model forx(n). Expressions for E

˘

u(n)u(n −
1)uT (n − 1)vp(n)uT (n − 1)

¯

, E
˘

u(n)u(n − 1)vT
p (n)u(n −

1)uT (n − 1)
¯

and E
˘

u2(n)u(n − 1)uT (n − 1)
¯

are obtained
in sections V-B, V-C and V-D of the Appendix, respectively. The
remaining expectations in (12) were derived as in [16].

Eq. (12) can be written as

Kp(n + 1) =
`

I − ρRuu(0)
´

Kp(n)
`

I − ρRuu(0)
´

+ ρ2
Ruu(0)Kp(n)Ruu(0)

+ ρ2
Ruu(0)tr

`

Ruu(0)Kp(n)
´

+Cq(n)

(13)

whereI is theM × M identity matrix and

Cq(n) =

− ρ
h

E[vp(n)]poT
Ruu(0) + E[vp(n)]rT

u (1) + ru(1)E[vT
p (n)]

+Ruu(0)poE[vT
p (n)]

i

+ ρ2
h

Ruu(0)tr
`

Ruu(0)po
p

oT
´

+ 2Ruu(0)po
p

oT
Ruu(0) + 2Ruu(0)po

r
T
u (1)

+ 2ru(1)poT
Ruu(0) +Ruu(0)tr

`

ru(1)poT
´

+Ruu(0)tr
`

p
o
r

T
u (1)

´

+ 2ru(1)rT
u (1) +Ruu(0)ru(0)

+Ruu(0)tr
`

Ruu(0)E[vp(n)]poT
´

+ 2E[vp(n)]poT
Ruu(0)

+Ruu(0)tr
`

Ruu(0)poE[vT
p (n)]

´

+ 2poE[vT
p (n)]Ruu(0)

i

+ 2Ruu(0)E[vp(n)]rT
u (1) + 2ru(1)E[vT

p (n)]Ruu(0)

+Ruu(0)tr
`

ru(1)E[vT
p (n)]

´

+Ruu(0)tr
`

E[vp(n)]rT
u (1)

´

i

(14)

To study the steady-state behavior ofKp(n) (and thus of
E

˘

xq(n)uq(n)
¯

), we writeRuu(0) = QΛQT , where the columns
of Q are the orthonormal eingenvectors ofRuu(0) and Λ is its
diagonal eigenvalue matrix with elementsλi, i = 1, · · · , M . We
also defineH(n) = QTKp(n)Q so thatKp(n) = QH(n)QT .
Then, (13) can be writen as

QH(n + 1)QT =
`

I − ρQΛQ
T

´

QH(n)QT
`

I − ρQΛQ
T

´

+ ρ2
QΛQ

T
QH(n)QT

QΛQ
T

+ ρ2
QΛQ

T tr
`

QΛQ
T
QH(n)QT

´

+Cq(n)
(15)

UsingQTQ = I and pre- and post-multiplying (15) byQT andQ
respectively yields:

H(n + 1) =FH(n)F + ρ2
ΛH(n)Λ + ρ2

Λtr
`

ΛH(n)
´

+C ′
q

(16)

whereC ′
q = QTCq(n)Q andF = (I−ρΛ). F is a diagonal matrix

with diagonal element vectorf = [f1, · · · fM ]T , wherefi = 1−ρλi.
Elementshij of (16) for i 6= j are given by

hij(n + 1) = fifjhij(n) + ρ2λiλjhij(n) + c′ij (17)

Thus, (17) forn → ∞ is given by:

lim
n→∞

hij(n) =
c′ij

ρ
`

λi + λj − 2ρλiλj

´ for i 6= j (18)

wherec′ij are elements of the matrixC ′
q.

Denoting for simplicity hi(n) the diagonal elementshii(n) of
H(n), (16) yields

hi(n + 1) = f2
i hi(n) + ρ2λ2

i hi(n) + ρ2λiλ
T
h(n) + c′ii (19)

whereλ = [λ1, . . . , λM ]T andh(n) = [h1(n), . . . , hM (n)]T . Thus,
we can write,

h(n + 1) = Bh(n) + c′ (20)

wherec′ is a vector that contains the diagonal elements ofC ′
q and

B is anM × M matrix with elements

bij =

(

f2
i + 2ρ2λ2

i , for i = j

ρ2λiλj , for i 6= j

The steady-state solution of (20) is given by:

h(∞) = [I −B]−1
c
′ (21)
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DenotingB′ = [I −B]−1, we have:

hi(∞) =

M
X

k=1

b′ikc′k (22)

Summarizing, the elements ofH(∞) are given by

hij(∞) =

8

<

:

c′ij

ρ

`

λi+λj−2ρλiλj

´ , for i 6= j

PM

k=1 b′ikc′k, for i = j
(23)

whereKp(∞) = QH(∞)QT .
Equation (23) shows howKp(∞) depends on the size ofρ and

on the eigenvalues deRuu(0). Note also that these eigenvalues are
functions of the delayD throughru(l) (see (34)).

The model for the bias (4) still requires a mathematical expression
for Ruquq (n). This expression is derived next.

C. Correlation MatrixRuquq(n)

The elements ofRuquq (n) are given by

[Ruquq (n)]ij = E
˘

uq(n − i)uq(n − j)
¯

.

Sinceuq(n − i) = u(n) + pT (n)u(n − i − 1) we have

[Ruquq (n)]ij =E
˘

[u(n − i) + pT (n)u(n − i − 1)]

× [u(n − j) + pT (n)u(n − j − 1)]
¯ (24)

Assuming slow convergence as done in section III-A such that
p(n) = p(n − 1) = p(n − N) and usingp(n) = vp(n) + po

in (24) yields a recursion foRuquq (n) as a function ot time.

[Ruquq (n)]ij =

E
n

u(n − i)u(n − j) + u(n − i)vT
p (n)u(n − j − 1)

+ u(n − i)poT
u(n − j − 1) + vT

p (n)u(n − i − 1)u(n − j)

+ vT
p (n)u(n − i − 1)uT (n − j − 1)vp(n)

+ vT
p (n)u(n − i − 1)uT (n − j − 1)po

+ poT
u(n − i − 1)u(n − j)

+ poT
u(n − i − 1)uT (n − j − 1)vp(n)

+ poT
u(n − i − 1)uT (n − j − 1)po

o

(25)

Taking the expected values,

[Ruquq(n)]ij =

ru(j − i) + poT
ru(j + 1 − i) + poT

ru(j − (i + 1))

+ tr
˘

Ru(j − i)Kp(n)
¯

+ tr
˘

Ru(j − i)po
p

oT }

+ E[vp(n)]T ru(j + 1 − i) + E[vp(n)]T ru(j − (i + 1))

+ tr
˘

Ru(j − i)poE[vp(n)]T } + tr
˘

Ru(j − i)E[vp(n)]poT }.
(26)

Using (26) with (8) and the expression derived in the Appendix for
ru(l) yields an analytical model forRuquq (n). Then (4) can be
resolved through equations (7), (23) and (26), proving the desired
transient model for the bias. In steady-state,Ruquq (∞) can be
obtained from (26) usingKp(∞) obtained in the previous section
and

E[vp(∞)] = −Ruu(0)−1
ru(1) − po (27)

determined from (8) asn → ∞.
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Fig. 3. Predictor MSD for the structure in Fig. 2.

D. Simulation Results

This section presents Monte Carlo (MC) simulations to verify the
theoretical model derived. The structure of Fig. 2 was utilized and
the parameters used wereµ = 0.001, ρ = 0.0001, D = 15, σ2

x = 1
(usingσ2

η = 0.1875), σ2
ζ = 10−5 andH(z) = 1/(1−1.5z−1+z−2−

0.25z−3) [17] (thus po = [−1.5; 1;−0.25]T ). The feedback path
was given bywo = [−0.0016, 0.0016, 0.0046, 0.0502, −0.0691]T

(first 5 samples of an actual feedback path response). MC simulations
are averaged over 200 realizations.

Fig. 3 shows theoretical (Eq. (13)) and MC simulation results for
the mean-square deviation (MSD) E[‖vp(n)‖2] =

PM

i=1[Kp(n)]ii.
Excellent matching can be verified in both the transient and steady-
state phases. Fig. 4 shows the theoretical MSD forµ = 0.001 and
for differents values of both the delayD and PEF step sizeρ. Other
parameters were the same as in Fig. 3. These results show thatlarger
feedforward delays lead to faster convergence and lower MSDfor a
fixed step size. Also, as expected, reducing the step sizeρ leads to
slower convergence and lower steady-state MSD.

Fig. 5 shows the MC simulation result and the theoretically
predicted steady-state value of the bias vector norm forD = 2.
Table I shows the steady-state weight bias coefficients evaluated from
(4) using MC simulations and using the theoretical model provided
by (13), (7), (23), (26) and (4). Excellent agreement can again be
verified.

TABLE I
THEORETICAL AND SIMULATED STEADY-STATE WEIGHT BIAS.

ŵ0(∞) ŵ1(∞) ŵ2(∞) ŵ3(∞) ŵ4(∞)
Theory -0.0023 -0.0099 -0.0089 -0.0042 0

Simulation 0.0005 -0.00103 -0.0090 -0.0044 0.0001

Fig. 6 shows the variation of the signal-to-noise ratio inŷ(n)
wherewoTu(n) is the desirable signal andBTu(n) is the noise.
Thus, SNR= 10 log

˘

‖wo‖2/‖B‖2
¯

is evaluated using the proposed
model as a function of the predictor step sizeρ and delayD. The
remaining parameters are the same listed at the first paragraph of this
section.

IV. CONCLUSIONS

This paper presented a statistical analysis for bias resulting from
a well known structure for acoustic feedback cancellation is hearing
aids. The structure has two adaptive systems, one estimatorand one
predictor. An analytical model has been derived for the behavior of
the bias during the transient and steady-state phases of adaptation for
the LMS algorithm applied to both the estimator and the predictor.
The new model accurately predicts the variations of the biasas a
function of the feedforward path delay and of the adaptive predictor
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step size. The theoretical predictions show excellent agreement with
Monte Carlo simulations. It is expected that the new resultsbe useful
in the design of feedback cancellation systems for hearing aids.
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V. A PPENDIX

A. Evaluation ofru(l) and rxu(l)

This section determines the correlationsru(l) and rxu(l) from
the stationary closed loop subsystem in the top part of Fig. 2for
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Fig. 6. Signal-to-noise ratio SNR= 10 log(‖wo‖2/‖B‖2) as a function of
forward path delayD and predictor step sizeρ.

an autoregressive inputx(n). Since η(n) and ζ(n) are assumed
Gaussian, bothx(n) andu(n) are Gaussian processes.

1) Autocorrelationru(l): Defining the time-invariant weight error
vectorvc = wc −wo, we have

u(n) = γ(n) − GuT (n − D)vc (28)

whereγ(n) = ζ(n) + Gx(n − D). Taking the z–transform of (28)
yields

Hu(z) =
U(z)

Γ(z)
=

1

1 + Gψ(z−1)vcz−D
(29)

with ψ(z−1) = [1, z−1, z−2, · · · , z−N+1]T . Since ζ(n) is
independent ofx(n),

Ru(z) =
Rγu(z)

1 + Gψ(z−1)vcz−D
(30)

Rγu(z) =
Rζ(z)

1 + Gψ(z)vczD
+

G2Rx(z)

1 + Gψ(z)vczD
(31)

whereRu(z) is the complex spectral density ofu(n) andRγu(z) is
the complex cross-spectral density ofu(n) andγ(n).

For x(n) autoregressive,Rx(z) = H(z)H∗(1/z∗)σ2
η with

H(z) =
1

QM

i=1(1 + aiz−1)
. (32)

Assuming stability of (29) and applying the Residue Theoremto
(31), straightforward calculation leads to

rγu(l) = σ2
ζδ(l) +

M
X

k=1

G2σ2
η(−ak)M (−ak)l−1

QM
i=1
k 6=i

(ai − ak)
QM

j=1(1 − ajak)

×
1

`

1 + Gψ(−ak)vc(−ak)D
´ , l ≥ 0.

(33)

Finally, it follows from (30) that

ru(l) = rγu(l) − GrT
u (l − D)vc (34)

whereru(l − D) = [ru(l − D), . . . , ru(l − D − N + 1)]T .

2) Cross–correlationrxu(l): We have thatrxu(l) = E{x(n +
l)u(n)} = Gh(−l)∗rx(l+D) whereh(n) is the inverse z-transform
of (32) and∗ means linear convolution. Thus,

Rxu(z) = GH∗(1/z∗)Rx(z)zD. (35)

Substituting (32) andRx(z) = H(z)H∗(1/z∗)σ2
η in (35) and using

the Residue Theorem yields

rxu(l) =
M

X

k=1

Gσ2
η(−ak)D+M(−ak)l−1

QM
i=1
k 6=i

(ai − ak)
QM

j=1(1 − ajak)

×
1

`

1 + Gψ(−ak)vc(−ak)D
´ , l ≥ 0

(36)

and

rxu(l) =
M

X

k=1

Gσ2
η(−ak)D+M

(−ak)l+1
QM

i=1
k 6=i

(ai − ak)
QM

j=1(1 − ajak)

×
1

`

1 + Gψ(−ak)vc(−ak)D
´ , l < 0.

(37)
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B. E
˘

u(n)u(n − 1)uT (n − 1)vp(n)uT (n − 1)
¯

DefineMrp =
PM

s=1 E
ˆ

u(n)u(n−r)u(n−s)vp(n−s+1)u(n−
p)

˜

. Taking the expectation ofMrp conditioned onvp(n−s+1) and
neglecting the statistical dependence betweenu(n−l) andvp(n−k)
for all l andk leads to

E
ˆ

Mrp|vp(n−s+1)

˜

=

M
X

s=1

E
ˆ

u(n)u(n − r)u(n − s)u(n − p)
˜

× vp(n − s + 1)
(38)

wherer = 1, · · · , M andp = 1, · · · , M . Assuming the variables in
the expectation to be jointly Gaussian,

E
ˆ

Mrp

˜

=
n

M
X

s=1

E
ˆ

u(n)u(n − 1)
˜

r,1
E

ˆ

u(n − 1)uT (n − 1)
˜

s,p

+
M

X

s=1

E
ˆ

u(n)u(n − 1)
˜

s,1
E

ˆ

u(n − 1)u(n − 1)
˜

rp

+

M
X

s=1

E
ˆ

u(n)u(n − 1)
˜

p,1
E

ˆ

u(n − 1)uT (n − 1)
˜

r,s

o

v
T
p (n)s,1

(39)

which leads to

E
ˆ

Mrp

˜

= ru(1)E[vT
p (n)]Ruu(0) +Ruu(0)tr

`

ru(1)E[vT
p (n)]

´

+Ruu(0)E[vp(n)]rT
u (1).

(40)

C. E
˘

u(n)u(n − 1)vT
p (n)u(n − 1)uT (n − 1)

¯

Define now
ˆ

Mrp

˜

=
PM

s=1 u(n)u(n−r)vp(n−s)u(n−s)u(n−
p). Taking the expectation of

ˆ

Mrp

˜

conditioned onvp(n − s) and
neglecting the statistical dependence betweenu(n−l) andvp(n−k)
for all l andk we have,

E
ˆ

Mrp

˜

=

M
X

s=1

E
ˆ

u(n)u(n − r)u(n − s)u(n − p)
˜

vp(n − s) (41)

wherer = 1, · · · , M andp = 1, · · · , M . Assuming the variables in
the expectation to be jointly Gaussian,

E
ˆ

Mrp

˜

=
n

M
X

s=1

E
ˆ

u(n)u(n − 1)
˜

r,1
E

ˆ

u(n − 1)uT (n − 1)
˜

s,p

+
M

X

s=1

E
ˆ

u(n)u(n − 1)
˜

s,1
E

ˆ

u(n − 1)uT (n − 1)
˜

r,p

+

M
X

s=1

E
ˆ

u(n)u(n − 1)
˜

p,1
E

ˆ

u(n − 1)uT (n − 1)
˜

r,s

o

vp(n)s, 1

(42)

Thus,

E
ˆ

Mrp

˜

= ru(1)E[vT
p (n)]Ruu(0) +Ruu(0)E[vp(n)]rT

u (1)

+Ruu(0)tr
`

ru(1)E[vT
p (n)]

´

.
(43)

D. E
˘

u2(n)u(n − 1)uT (n − 1)
¯

Define now
ˆ

Mrp

˜

=
PM

s=1 = u(n−r)u(n)u(n)u(n−p) Taking
the expectation of

ˆ

Mrp

˜

yields

E
ˆ

Mrp

˜

=

M
X

s=1

E
ˆ

u(n − r)u(n)u(n)u(n − p)
˜

(44)

wherer = 1, · · · , M andp = 1, · · · , M . Assuming all variables to
be jointly Gaussian,

E
ˆ

Mrp

˜

=
M

X

s=1

E
ˆ

u(n − 1)u(n)
˜

r,1
E

ˆ

u(n)uT (n − 1)
˜

p,1

+

M
X

s=1

E
ˆ

u(n − 1)u(n)
˜

r,1
E

ˆ

u(n)uT (n − 1)
˜

p,1

+
M

X

s=1

E
ˆ

u(n − 1)uT (n − 1)
˜

r,p
E[u2(n)]

= 2ru(1)rT
u (1) +Ruu(0)ru(0).

(45)
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