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Statistical Analysis of the Bias in Acoustic Feedback
Cancellation System for Hearing Aids

Yasmin Montenegro M. and José C. M. Bermudez

Abstract— The acoustic feedback is one of the main complaints hearing leads to a biased adaptive weight vector solution. Diffesmmemes

aids users producing distortion of the desired signal and fniting the
maximum hearing aid’s stable gain. The acoustic feedback ceellation
system here presented employs an LMS adaptive estimator areh LMS
adaptive predictor operating simultaneously. The nature 6 the practical
problem makes the input to the adaptive estimator and the inérference
to its output statistically correlated, thus a biased soluibn is found. This
paper presents an analytical model for the bias and the perfanance of
the system is then investigated. Interesting results werebtained from
the model. Monte Carlo simulations are presented to verify he accuracy
of the derived model.

Keywords— Adaptive systems, feedback cancellation, LMS, hearing
aids.

I. INTRODUCTION

About 660 million people in the world suffer from hearing loss

[1]. Several hearing—impaired individuals would benefinfr using
hearing aids. However, user benefits are still limited du¢ghtolack
of systems that can effectively exploit all the potential sfnal
processing techniques. The desirable hearing aid mitzation has
also created problems. The occlusion effect and the acdiggtilback
are among the main user complaints. Venting is essentiaédace
the occlusion effect. However, venting leads to undesiraloustic
feedback because of the proximity of microphone and loualegre
Acoustic feedback occurs when the hearing aids receivgubstgnal
is fed back into the hearing aids microphone. Large feeddodvgains
can lead to instability in presence of acoustic feedbacks Ty
lead to signal oscillations which produce annoying soureferred
to as "whistling’and "howling”. One way to reduce this prebi
is to cancel the acoustic feedback using an internal feddpath

have been proposed to reduce this bias. Several of thendudeo
decorrelating operations such as delays or non-linegaritie the
forward pathg(n) or in the adaptive filter path [4], [5]. The use
of restrictions in the adaptive canceller has also beenqseg [6]—
[8]. Unfortunately, none of these solutions completely aea the
acoustic feedback.

Alternative solutions have been recently proposed whidh oa
the direct method of closed-loop identification [9]. The adatsed
for identification are obtained in closed loop but the idécdiion
is performed using an open loop model. Recent approachesnass
a model for the input signal and apply the prediction-erratmod
(PEM) to reduce the steady-state bias [10]-[13].

In [12] the adaptive filter (called shadow filter) works offimvhile
a fixed cancellation filter operates in the actual signal pdthe
adaptive filter weights are periodically used to update trecellation
filter response. The adaptive filter updating structure udek an
adaptive prediction error filter (PEF) to reduce the solutias. Both
adaptive filters are adapted simultaneously. Though thissture has
led to good results, no analytical model is available in iterdture
to predict its behavior and to provide good design guidsline

In this paper we present a mathematical model for the bias

introduced by the adaptive hearing aid feedback cancetiatystem

proposed in [12]. The new model shows the dependence of the

adaptive weight bias on the forward path delay and on thetatiap
step of the PEF. We present curves that show relationshipeeet
the hearing aid signal-to—noise ratio (SNR) and those petern
Monte Carlo simulations show good agreement with the thmatle
predictions.

as shown in Fig. 1, where the acoustic feedback path is neatell

by w°. Since w®

most modern solutions employ adaptive systems. An adafittee

w(n) is used to generate an estimdte:) of the feedback signal

y(n). This estimate is subtracted from the microphone sigp@t.)
provides amplification. Ideallyj(n) converges tay(n) for n large.

Then, only the input signat(n) is preserved at the hearing aids inputx

e(n) so thatu(n) = g(n)z(n).
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Fig. 1.

Becauseg(n) is simply a gain,z(n) and u(n) are statistically
correlated. Thus, minimum mean-square estimatiog(ef) in Fig. 1
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will change in time during normal use [2], [3]
(e.g. when the user is giving a hug, chewing or using a telegho

Il. PROBLEM FORMULATION

Fig. 2 shows the adaptive feedback cancellation systeniestud
z(n) is the desired signal and(n) is the feedback signal to be
cancelled. SystenH and a zero-mean white Gaussian noige)
define a parametric model far(n) [12]. ¢((n) is a zero-mean white
Gaussian noise required for identifiability of the feedbpekh when
(n) includes periodic components [12}° is the feedback path to
be identified.w(n) is the adaptive estimation filte#.(n) andu(n)
are, respectively, the input and output signals of the hegasid,
which is modeled by a gaid: and a delayD. w® is the feedback
estimation filter implemented in the signal path? is periodically
updated with the coefficients af(n) following some updating policy
[12]. The adaptive prediction error filtgn(n) whitensu(n) before its
use by the adaptive algorithm. The same filigr.) is also applied
to e(n). Note that the top part (above the broken line) of Fig. 2
operates as an stationary system during adaptation of tttenbo
part. Therefore, signals:(n) and y:(n) are considered stationary
during adaptation ofv(n) andgq(n).

The structure in Fig. 2 is the same proposed in [12] except for

the adaptive predictor location. In [12] the adaptive pceati was

lWe assume a stationary acoustic feedback path in this amaljsus,

Antofagasta—Chile dan we assume that changes in the acoustic path are slow whenacemnmo

the adaptive filter convergence speed. We also assume #msients due to
updatings inw® are much shorter than adaptive filter convergence times.
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Fig. 2. Hearing aids feedback cancellation structure. Medifrom [12].

applied to the error signak(n) and copied to filteru(n). We
propose the structure shown in Fig. 2. This solution pretevis
the adaptive algorithm input signal and speeds-up conmesgef
stochastic gradient algorithms [14] whithout affecting #teady-state
behavior of the system. We have demonstrated this property5].

Under certain conditions, the structure in [12] can provige
unbiased feedback path identification.alfn) is an autoregressive
process, it is shown in [12] that(n) converges tox(n) and the
adaptive PEF (applied te(n)) converges taHl ~*. From Fig. 2 and
using the subscripg to refer to a signal filtered by(n),

eq(n) = y1,(n) — g (n). @)
Writing the PEF coefficient vector ag(n) = [1 p*'(n)], ¥,(n) =

g(n) + S, pi(n)j(n — 0) ug (nyw(n) with ug(n)
[ug(n), ---, ug(N —1)]%, where N is the order of estimator filter,
yields

T
Uq

y1,(n) (n)w(n). &)

eq(n)

It is easy to show that [EZ(n)] is minimized for w(n) =

w(n) where w(n) = Ru,u,(n) 're(n) with Ry,u,(n)

E{uq(n)ug (n)} andr,(n) = By (n)u, § n)}. Using yq1(n) =
o

q(n )+uq Jw® with z4(n) = g" (n)z(n) we have

(n
w(n) = "E{zg(n)ug(n)} + w° ®)

Rugug(n)”

which shows that the solution bias is controlled by the cross

correlation vector Ex,(n)uq(n)} and by the autocorrelation matrix

R, ., (n). Note that (3) has been derived for a fixed PEF (fixed value

of n). In the adaptive scheme, this optimal solution will varytime
as the predictor converges towards its own steady-statgi@ol In
the next section we derive a mathematical model for this. bias

I1l. BIAS ANALYSIS
Denoting B the bias vector, we have from (3) that
B(n) = Rugu,(n) " E{zq(n)uq(n)} (4)

where the time dependence has been explicited. Next wendeter
mathematical expressions fof E,(n)ug(n)} and Ru,u, (n).

n)ug(n)}
= E{xq(n)uq(n)
))i = E{zq(n)uq(n — i)}
= E{[x( T (n)z(n —1)]
X [u(n —i) +p” (n)u(n —i— ]}

A. Cross—correlation Ex,(

The elements i, u, (1) } are given by

[Paquq (N

®)

n)+p

withi =0,---,N, z(n—1) = [z(n = 1), ---, z(n — M)]* and
u(n—i—1)=[un—i—1),---, u(n—i—M)]*. M is the order
of the predictor. In deriving (5) we assumed slow convergeoicthe
predictorp(n) such thatp(n) = p(n — 1) = p(n — N).

Define v,(n) = p(n) — p°, wherep® is the optimum predictor
of x(n)? with Ry.(0) E[u(n)u” (n)] being the M x M
autocorrelation matrix ofi(n) andr,(l) = Elu(n)u(n —1)].

Substituing the value op(n) in (5) with p(n) = v,(n) + p°® we

have:

ey (] =E{@(m)u(n =) + v} (Wu(n — i — Da(n)
+p°Tu(n —i—1)x(n) + vg(n)m(n — Du(n —1)
+ g (n)x(n — Du’ (n —i— vy(n)
+ 'vg (n)z(n —u’(n —i—1)p°
+p°Tx(n — Du(n — 1)
+p°Tx(n—Du" (n—i—1)v,(n)
+p°Tx(n—1u"(n—i—1)p°

(6)

Conditioning initially the expectation (6) in,(n) and neglecting the
correlations ofv,(n) with u(n) andz(n), we have

[requq (n)]i =

rou (i) + {E[vg(n
+ {Efvy ()] + " Jrua(1 -
+tr{ Rou (i)p°E[v,, (n)]} + tr{ Rou(i)p

N+ P Jrou(i + 1) +tr{ Rou(i) Kp(n) }

i) + tr{ Rou(i)E[v, (n)]p°" }
o OT}

@)

where R, (i) = Elz(n — Du(n —i — 1)], r2u(l — k) = E[z(n —
k)u(n — )] and ru, (I — k) = Eju(n — k)x(n — 1)]. The cross—
correlationr,. (¢) is derived in the Appendix to be Eq. (37), assuming
an autoregressive (AR) model fat(n). Eq. (37) shows that,.(7)
depends on the delap. Thus, r.,.,(n) and hence the bias will
change as a function dp. A recursion for Bv,(n)] using the LMS
algorithm has been obtained in [15] as

Efvy(n+1)] = [I = pRuu(0)] Elvp(n)] — p[ru(1) + Ruu(O)p(g)

where p is the predictor step size. In the following we determine a

recursion forK ,(n) = E[v,(n)v;, (n)].
B. Determination ofK ,(n) = E{v,(n)v, (n)}

The LMS PEF weight update equation with step sizis

p(n+1) =p(n) — pug(n)u(n —1)
=p(n) — pu(n)u(n —1) )
— pu(n — Du’ (n —1)p(n)
Using p(n) = vp(n) + p° in (9) yields
vp(n+ 1) = vy(n) - pu(n — Du” (n - 1)v,(n) 10

—pu(n —Du” (n - 1)p° — pu(n)u(n — 1)

Multiplying (10) by its transpose,

2Note thatpe is not necessarily the optimum predictor afn) in the
mean-square sense
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vy(n+ vy (n+ 1)

= v, (M7 (n) — pop(n)o] (nu(n — DuT (n 1)

— pwp()p* u(n — 1)u” (1 — 1) — pu(n)o, () (n — 1)
T(n — 1)y ()7 (n)

+ p*u(n —1)u’(n — l)vp(n)vg(n)u(n —Du’(n—1)
+ p*u(n — Du” (n — Doy,(n)p° u(n — Du’ (n— 1)

+ p*u(n)u(n — Du’ (n — Dvy(n)u” (n — 1)

T(n— 1)p°? (n)

+ p’u(n — Du’ (n — 1)p°v} (n)u(n — u
+ p*u(n—Du"(n— Dp°p°Tu(n—1u
+ p*u(n)u(n — Du’ (n — Dp°u” (n — 1)
— pu(n)u(n — 1)1}5(71) + p*u*(n)u(n — Du’ (n — 1)
+ p*u(n)u(n — 1)va(n)u(n —Du’'(n—1)

+ p*u(n)u(n — D)p°Tu(n — Du” (n — 1)

—pu(n—1u

—pu(n—1u
f(n—1)
T(n—1)

(11)

Taking the expected value of (11) and making the same appeoxi
tions as in (7) yields

K,(n+1) = Kp(n) = p[Kp(n) Ruu (0
+ E[vy(n )1p°TRw<o>+E[vp< >1r (1
+ R (0 pE[vp [
+ 2Ruu(0)K ,(n uu<0)+Ruu< )t (R (0)Efw,(n)]p°T)
+ 2E[0y (0)]p°" Ruu (0) + Ru (0)tr (Ron (0)p°p°")
+ 2R (0 >p“p°TR 20(0) + Ruu (0)tr (R (0)p°Efo. (n)])
+ 2D E[o], (W] R (0)] + ° | R (O)E[w, ()] (1)
+ra(l >E[v ( ) Ruus(0) + Ruw (O (1 (DE[Y (n)])
+ R (0)p°rZ (1) + 7 (1)p°" Rua (0) + Ruu (O)tr (ru (1)p°7)
+m< JE[o! (1) Rus(0) + R (0)Efw, ()] (1)

R (Ot (Efoy () 7(1)) + ru(1)p"" Ruu (0)
+Ruu(0) 7 (1) + Ruu (0)tr (p°ry, (1))
+2ru (DL (1) + Ruu(0)ra(0)]

) + Ruu(0) K p(n)
+r

S(DE[T (n)
)it (Run(0)K ()

uu

(12)

An expression forr, (1) is determined in the Appendix, Eq. (34),

assuming an AR model fog(n). Expressions for I{Eu(n)u(n —
DuT(n — Dvy(n)u®(n — 1)}, E{u( (n — 1)v, T (n)u(n —
Du”(n — 1)} and Eu?*(n)u(n — 1)u” (n -1} are obtained
in sections V-B, V-C and V-D of the Appendix, respectivelyher
remaining expectations in (12) were derived as in [16].

Eg. (12) can be written as

Ky(n+1) =(I = pRuu(0)) K, (n) (I — pRui(0))

+ p* Ruu(0) K p (1) Ruu(0)

+ p° Ruu(0)tr (Ruu(0) K () + Cq(n)

(13)

whereI is the M x M identity matrix and

Cy(n) =
—p[ [vp(n)]P°T Ruu(0) + E[vp ()] (1) + 7o (1)E[vg (n)]
+ Ruu(0)p"Elv; ()] + 0° [ R (0)tr (R (0)p°p°")
+ 2Ry (0)p°p°" Ruu(0) + 2Ru (0)p°ry; (1)
+ 27, (1)p°" Ruu(0) + Ruu (0)tr (1 (1)p°")
+ Ruu (0)tr (p%7, (1)) + 2ru(1)7e (1) + Ruw(0)74(0)
+ R (Ot (Ruu(0)Efvy (n)]p°") + 2E[v,,(n)p°" Ruu(0)
+ R (O)tr (Ruw(0)p°Elvy, (n)]) + 2p°Elv,, (n)]Ruu(O)]
+ 2R (0)E[v,(n)]r, (1) + 274 (1)E[vy (n)] Ruw (0)
+ Ry (O)tr (ru (1)E[w} (n)]) + Rw(o)tr(E[vp(n)]rf(l))]
(14)

To study the steady-state behavior @& ,(n) (and thus of
E{zq(n)uq(n)}), we write R,.(0) = QAQ™, where the columns
of @ are the orthonormal eingenvectors &.,.(0) and A is its
diagonal eigenvalue matrix with elements,i = 1, --- , M. We
also defineH (n) = Q7K ,(n)Q so thatK ,(n) = QH(n)Q".
Then, (13) can be writen as

QH(n+1)Q" = (I -pQAQ")QH(n)Q" (I - pQAQ")
+0’QAQTQH (n)Q" QAQ"
+ 0’ QAQ"r (QAQT"QH (n)Q") + Cy(n)

(15)

Using QTQ = I and pre- and post-multiplying (15) b®7 and Q
respectively yields:

H(n+1) =FH(n)F + p’AH (n)A + p°Atr (AH (n)) + C,

(16)
whereC, = Q" C4(n)Q andF = (I-pA). F is a diagonal matrix
with diagonal element vectgf = [fi1, - - far]”, Wheref; = 1—p),.

Elementsh;; of (16) fori ## j are given by
hij(n+1) = fifihi;(n) + p*Xidjhij(n) + ¢ 17)
Thus, (17) forn — oo is given by:
/
e
lim h;i(n) = 4 for ¢ j 18
() = e ) £ (8)
wherec;; are elements of the matrig’;.

Denoting for simplicity h;(n) the diagonal elements;;(n) of
H (n), (16) yields

hi(n+1) = ffhi(n) + p°Aihi(n) + pP°iXTh(n) + ¢;  (19)
whereX = [A1,..., AT andh(n) = [hi(n), ..., har(n)]T. Thus,

we can erte
h(n+1) = Bh(n) + ¢ (20)

wherec’ is a vector that contains the diagonal element&Cgfand
B is an M x M matrix with elements

{ff + 297\,
bi; =

for
for

1=
i#]
The steady-state solution of (20) is given by:

h(c0) =

P2AiN;,

[I-B]™" (21)
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Denoting B’ = [I — B]™!, we have:
m P
M ©° |
hi(o0) = bixch (22) £
k=1 A -
Summarizing, the elements @ (co) are given by ‘igfmr
el f ” E ™ Simulation |
%7 or 1 ] —20} ]
hij(c0) = P(AH‘AJ‘_QF’MAJ) (23) st // ———————————
nLy bich, for i=y Model
where K ,(c00) = QH (00)QT. iterations (& 10%)

Equation (23) shows houk',(co) depends on the size of and Fig. 3. Predictor MSD for the structure in Fig. 2.
on the eigenvalues dB..(0). Note also that these eigenvalues are
functions of the delayD throughr, (1) (see (34)).

The model for the bias (4) still requires a mathematical egpion . )
for Ry, (n). This expression is derived next. D. Simulation Results

This section presents Monte Carlo (MC) simulations to yetiife
theoretical model derived. The structure of Fig. 2 was z#ili and

C. Correlation Matrix R ,u,(n) the parameters used were= 0.001, p = 0.0001, D = 15, 02 = 1

The elements oR., ., (n) are given by (usingo;, = 0.1875), 0¢ = 107" andH (2) = 1/(1-1.5z7"+27 %~
0.2527%) [17] (thus p° = [~1.5;1; —0.25]7). The feedback path

[Rujug(n)]ij = E{uq(n —i)ug(n —j)}. was given byw? = [—0.0016, 0.0016, 0.0046, 0.0502, —0.0691]T

) ] - ) (first 5 samples of an actual feedback path response). MClatimns

Sinceuy(n — i) = u(n) +p* (n)u(n —i—1) we have are averaged over 200 realizations.

o o T e Fig. 3 shows theoretical (Eq. (13)) and MC simulation resiiir

gy ()]s =B{[u(n =) +pT(n)u(n " D) (24) the mean-square deviation (MSDJ|[g,(n)||*] = 2™, [K »(n)]si.

x [u(n —j5) +p" (nJu(n —j —1)]} Excellent matching can be verified in both the transient deddy-

Assuming slow convergence as done in section Ill-A such th@tate phases. Fig. 4 shows the theoretical MSD;fer 0.001 and
p(n) = p(n — 1) = p(n — N) and usingp(n) = v,(n) + p° for differents values of both the deldy and PEF step sizg. Other
in (24) yields a recursion fdR.., ., () as a function ot time. parameters were the same as in Fig. 3. These results sholathert
feedforward delays lead to faster convergence and lower N8R
fixed step size. Also, as expected, reducing the stepsieads to

[Rugug(n)]i; = slower convergence and lower steady-state MSD.

E{u(n —i)u(n —j) +u(n — i)v;‘,r(n)u(n —j=1) Fig. 5 shows the MC simulation result and the theoretically
T ) . ) ) predicted steady-state value of the bias vector normfor= 2.

+u(n —i)p” u(n —j—1) + v, (n)u(n —i — Nu(n — j) Table | shows the steady-state weight bias coefficientsiated from

+ v;‘,r(n)u(n —i—Du"(n—j—Duy(n) (4) using MC simulations and using the theoretical modelioied

n Ug(n)u(n i 1)uT(n i 1)p° \t;()e/ri(ﬁle?g, (7), (23), (26) and (4). Excellent agreement caniraye

+p"Tu(n—i— Lu(n—j)
+p°Tu(n—i— DT (n— j - Dup(n)
+p" un —i—Du’(n—j—1)p°

TABLE |
THEORETICAL AND SIMULATED STEADY-STATE WEIGHT BIAS.

| wo(oo)  abi(o0) (o)  z(oc0)  ba(co)
(25) Theory | -0.0023  -0.0099  -0.0089  -0.0042 0
Simulation | 0.0005  -0.00103  -0.0090  -0.0044  0.0001

Taking the expected values,

[Ruguq (n)]ij = Fig. 6 shows the variation of the signal-to-noise ratiogiftm)

ru(i— i) +p" TG+ 1—1) +p" ru(i — (i + 1)) where w°Tu(n) is the desirable signal an8”wu(n) is the noise.
+tr{R.(j — i) K,(n)} +tr{R.(j — i)p°p°T} Thus, SNR= 101log {|lw°||*/||B||*} is evaluated using the proposed
T : . T . . model as a function of the predictor step sjizand delayD. The
+Euy ()] ru(f +1-19) ;_ Elop(n)] ru(j = (4 1) . remaining parameters are the same listed at the first parfagrfthis
+tr{Ru(j — )P Elvp(n)]" } + tr{Ru(j — )E[v,(n)]p°" }. section.
(26)
Using (26) with (8) and the expression derived in the Apperidi IV. CONCLUSIONS

r«(l) yields an analytical model foR..,.,(n). Then (4) can be This paper presented a statistical analysis for bias iaguftom
resolved through equations (7), (23) and (26), proving tesirdd a well known structure for acoustic feedback cancellat®hearing
transient model for the bias. In steady-staf,,.,(co) can be aids. The structure has two adaptive systems, one estiraatbone
obtained from (26) usindg ,(co) obtained in the previous sectionpredictor. An analytical model has been derived for the bignaof
and the bias during the transient and steady-state phases pfadida for
E[vp(00)] = —Ruu(0) 'ru(1) — p° (27) the LMS algorithm applied to both the estimator and the [tedi

The new model accurately predicts the variations of the hasa

determined from (8) as — oo. function of the feedforward path delay and of the adaptivedjmtor
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Elllvp(n)[[|?] in dB

10 20 30 40 50 60

iterations (<103)

Fig. 4. Predictor MSD as a function @ andp: a) D = 2; p = 0.001, b)
D =2; p=0.0005, c) D = 15; p = 0.001, d) D = 15; p = 0.0005.

Simulation

[ 5 10 15

iterations x 10*

Fig. 5. Norm of the bias vector (dB) fab = 2

step size. The theoretical predictions show excellenteagest with
Monte Carlo simulations. It is expected that the new resdtsiseful
in the design of feedback cancellation systems for hearidg. a
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V. APPENDIX
A. Evaluation ofr, (1) and rz. (1)

This section determines the correlations(l) and r..(l) from
the stationary closed loop subsystem in the top part of Fipr2

Fig. 6. Signal-to-noise ratio SNR: 10 log(||w®||2/||B||?) as a function of
forward path delayD and predictor step sizg.

=0 5 ) + v v
‘ Z Q; (w - akmﬁil(l —am) g
1
X (1 n G¢(—ak)vc(—ak)D) , 1 >0.
Finally, it follows from (30) that
ru(l) = ryu(l) — GrL(l — D)v° (34)

wherer, (I — D) =

[ro(l=D),...,ro(l—D—N+1)]".

2) Cross—correlationr,.,(1): We have thatr,.(l) = E{z(n +
Du(n)} = Gh(=1)*r5(I14+ D) whereh(n) is the inverse z-transform
of (32) andx means linear convolution. Thus,

Ruu(2) = GH*(1/2")Ra(2) 2" (35)
Substituting (32) and?,(z) = H(2)H*(1/z*)o; in (35) and using
the Residue Theorem yields
M 2/ D+M(_ -1
reull) = Y0 o m o)
1 lec;tl (ai — ax) H]’:l(l — aja) (36)
1
X , 1>0
(1+ Gy(—ar)ve(—ax)P)
and
M 2 D+M
Goy(—a
Tru(l) = Z (_ak)l+1 Hfil(z’(z _ Zi) HJW (1 _ a-ak)
= ki =t ! (37)
1

I <0.

“ U+ Go(—an)v(—an)P)’
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B. E{u(n)u(n — L)u” (n — v, (n)u” (n — 1)}

DefineM,, = 3, E[u(n)u(n—r)u(n—s)v,(n—s+1)u(n—
p)]. Taking the expectation at/,,, conditioned orv, (n—s+1) and
neglecting the statistical dependence betweén—1) andv,(n—k)
for all I andk leads to

M
E[Moployn-sin] = O E[u(n)u(n — r)u(n — s)u(n — p)]
X vp(n—s+1)
(38)
wherer =1,--- M andp =1,--- , M. Assuming the variables in

the expectation to be jointly Gaussian,

M p] = { Z E[u(n)u(n — I)L,lE[u(n — l)uT(n — 1)]84)
+ Z E[u(n)u(n — 1)] S_ylE[u(n — Du(n — 1)]”7
+ > E[u(nyu(n — 1)) Efu(n— Du” (n - 1)]T’S}vgﬂ(n)s,1

(39)

which leads to
E[M.;] = ru(1)E[v, (n)] Ruu(0)
+ Ry (0)E[wy (n)]r (1)

+ Ry ()t (ru (1)E[Y (n))

C. E{u(n)u(n — 1)v} (n)u(n — D)u"(n — 1)}

Define now[M,,] = Zﬁil u(n)u(n—r)vp(n—s)u(n—s)u(n—
p). Taking the expectation of),.,] conditioned onv,(n — s) and
neglecting the statistical dependence betweén—1) andv,(n—k)
for all [ and k& we have,

o] = > Efu(n)u(

wherer =1,--- .M andp =1,--- , M. Assuming the variables in
the expectation to be jointly Gaussian,

n—r)u(n — s)u(n — p)}vp(n —s) (41)

= { Z E[u(n)u(n —1)]  E[u(n — Du”(n - 1)]

+ Z E[u(n)u(

M

+ Z E[u(n)u(

7,1 s,p

n—1)] Eu(n— Du” (n — I)L

s,1 g

n— 1)]p_’1E[u(n —Du" (n— 1)]T’S}vp(n)s, 1
(42)

Thus,
E[M,,] = 7o (DEWT (0)] Ruu (0) + Ruu(0)Elop ()} (1)

43
+ Ruu (0)tr (ru (1)E[E (). “3)

D. E{u*(n)u(n — u" (n—1)}

Define now[M,, ] = 3™ | = u(n—
the expectation of M, yields

ZE

r)u(n)u(n)u(n—p) Taking

(n)u(n)u(n — p)] (44)

n—r

wherer =1, ---
be jointly Gaussian,

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

,M andp =1,--- , M. Assuming all variables to

M

ZE

n— 1)u(n )]T‘rlE[u(n)uT(n— 1)]

+ Z E[u(n — Du(n)], Efum)u”(n-1)] | 45)
+ Z Elu(n — D)u” (n - 1)] Elu’(n)]
= 2ru(1)m( ) + Ruu(0)r(0).
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