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Nakagami High-Order Statistics
from a Different Perspective
José Cândido Silveira Santos Filho and Michel Daoud Yacoub

Abstract— The Nakagami fading signal has been traditionally
modeled as a sum of multipath Rayleigh components. Recently,
an alternative Nakagami model, particularly attractive for simu-
lation, has been proposed in the literature: a single Rayleigh
signal propagating over a nonlinear path. Here, we derive
many important high-order statistics associated to this model
(second-order distribution, autocorrelation, joint distribution of
the envelope and its time derivative, average outage rate, and
average outage duration) and compare these statistics to those
of the traditional model, widely assigned to Nakagami fading.
We show that the two models lead to very different high-
order statistics, except for the autocorrelations, which are indeed
similar.

Keywords— High-order statistics, Nakagami fading, nonlinear
channels, simulation.

I. I NTRODUCTION

In [1, Eq. (3)], Nakagami reported that the radiowave
amplitude variations due to multipath fading can be well
described by the probability density function (PDF)

fN (n) =
2mmn2m−1 exp

(

−mn2

Ω

)

ΩmΓ(m)
, m ≥ 1

2
, (1)

whereN denotes the Nakagami fading envelope,Ω = E[N2]
is the mean power,m = E[N2]/V [N2] is the fading para-
meter, andΓ(·) is the gamma function. (E[·] denotes expecta-
tion, V [·] variance.) The corresponding cumulative distribution
function (CDF) is

FN (n) = 1 −
Γ
(

m, mn2

Ω

)

Γ(m)
, m ≥ 1

2
, (2)

whereΓ(·, ·) is the incomplete gamma function.
Although Nakagami inferred (1) by inspecting measured

fading data, he demonstrated in [1] that his distribution is
indeed a general approximate solution to the so-called problem
of random interference—the main cause of multipath fading.
In such an interference scenario, it is reasonable to expect
that the signal at the receiver arises a sum of multipath
wave components that traveled on different paths from the
transmitter. The resulting fading envelope can be then written
as [1, Eq. (41)]
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, (3)

where Ai and Θi denote the envelope and the phase of
the ith component, respectively. Of course, the exact PDF
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of (3) depends on the envelope and phase PDFs of each
component. However, Nakagami showed that this PDF may
be in general well approximated by (1) [1, Eqs. (42)–(46)].
His approximation has gained widespread use because of its
mathematical ease, great flexibility, and, more important,good
fit to empirical fading data [2], [3].

On the other hand, the simulation of the Nakagami fading
channel is rather controversial. For other fading conditions
such as Rayleigh, Rice, and Hoyt, the channel model itself can
be directly used as a simulation scheme. For Nakagami fading,
however, this approach no longer works. Since the Nakagami
PDF and its underlying channel model only approximate each
other, using (3) as a simulation scheme would not produce
samples that follow (1) in a exact manner.

Many artifices have been proposed in the literature to
produce Nakagami envelope samples. A classical method,
suggested by Nakagami himself [1, Eqs. (63)–(64)], is to write
the Nakagami processNc(t) (c stands for classical method)
as the square root of the sum ofm i.i.d. squared Rayleigh
processesRi(t), that is

Nc(t) =

√

√

√

√

m
∑

i=1

R2
i (t). (4)

where t is a time index. The mean power of each Rayleigh
process isΩ/m. It is easy to show that (4) perfectly mat-
ches the Nakagami PDF. Indeed, many high-order statistics
widely associated to the Nakagami envelope have been derived
under the assumption of (4), including second-order PDF,
autocorrelation, joint PDF of the channel envelope and its time
derivative, average outage rate, and average outage duration.
These statistics shall be revisited in the next section. Themain
limitation of the classical method is that it applies tom integer
only1.

Another attractive method was recently proposed that allows
for m real [3]. In this method, the Nakagami signal is
thought of as a single Rayleigh signal that propagates over
a memoryless nonlinear path. In other words, the Nakagami
samples are generated from Rayleigh samples by using the
standard percentile transformation method, also called inver-
sion method [4, Eq. (7-157)]. This approach connects the
Nakagami processNi(t) (i stands for inversion method) to the
Rayleigh oneR(t) through the CDFs of each, as follows [3,
Fig. 3]

Ni(t) = F−1
N (FR(R(t))) , g(R(t)), (5)

whereF−1
N (·) is the inverse Nakagami CDF andFR(·) is the

1In fact, (4) can be relaxed to allow form half-integer [2].
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unit-power Rayleigh CDF2

FR(r) = 1 − exp
(

−r2
)

. (6)

The inverse Nakagami CDF required in (5) is unknown
in closed form and must be numerically approximated. An
accurate approximation is presented in [3]. In the remaining
of the text, we call (5) the inversion method, as opposed to
the classical method in (4).

Other methods exist for simulating Nakagami fading [5]–
[8], but we shall not address them here. Our aim is to derive
important high-order statistics associated to the Nakagami
fading channel as implemented by the inversion method—
second-order PDF, autocorrelation, joint PDF of the envelope
and its time derivative, average outage rate (AOR), and average
outage duration (AOD)—and to compare these statistics to
those of the classical method, extensively assigned to Na-
kagami fading. We show that the two methods lead to very
different high-order statistics, except for the autocorrelation,
which are indeed similar.

In the following, the time indext is sometimes omitted to
alleviate the notation.

II. T HE CLASSICAL METHOD REVISITED

As mentioned before, it is easy to show that the PDFfNc
(·)

and CDFFNc
(·) of Nc are given by

fNc
(n) = fN(n) andFNc

(n) = FN (n), (7)

wherefN (·) is the Nakagami PDF andFN (·) is the Nakagami
CDF, presented in (1) and (2). Important high-order statistics
of the processNc(t) have been investigated in the literature.
Next, we reproduce some of them.

It has been shown in [2] that for isotropic scattering the
time derivativeṄc(t) of Nc(t) is Gaussian distributed with
zero mean and variance

σ̇2
c = π2f2

DΩ/m, (8)

wherefD is the maximum Doppler shift in Hz. Accordingly,

fṄc
(ṅ) =

exp
(

− ṅ2

2σ̇2
c

)

√
2πσ̇c

. (9)

It has also been shown in [2] thatNc(t) and Ṅc(t) are
independent variates3, so that

fṄc|Nc
(ṅ|n) = fṄc

(ṅ) (10)

and

fṄc,Nc
(ṅ, n) = fṄc

(ṅ)fNc
(n)

=

√
2mmn2m−1 exp

(

−mn2

Ω − ṅ2

2σ̇2
c

)

√
πσ̇cΩmΓ(m)

.(11)

The second-order PDF ofNc(t) is also of interest. From (4),

2For convenience, we have normalized the Rayleigh process tohave unit
mean power.

3It does not imply thatNc(t1) andṄc(t2) are still independent fort1 6= t2

or, equivalently, thatNc(t) and Ṅc(t) are independent random processes.

this PDF is obtained as [1, Eq. 126]

fNc(t),Nc(t+τ)(n1, n2) =
4mm+1(n1n2)

m

Ωm+1ρ2(τ)
m−1

2 (1 − ρ2(τ))Γ(m)

× exp

(

− m(n2
1 + n2

2)

Ω(1 − ρ2(τ))

)

Im−1

(

m − 1,
2
√

ρ2(τ)mn1n2

Ω(1 − ρ2(τ))

)

,

(12)

whereIν(·) is the modified Bessel function of first kind and
νth order, andρ2(τ) is the power correlation coefficient of
each underlying Rayleigh processRi(t). Expressions forρ2(τ)
have been extensively reported in the literature for isotropic as
well as anisotropic fading scenarios [9], [10]. It can be shown
thatρ2(τ) is also the power correlation coefficient ofNc(t) [1,
Eq. 127].

From (12), the autocorrelation function (ACF)ANc
(τ) and

the autocorrelation coefficient (ACC)ρNc
(τ) of Nc(t) can be

derived as [1, Eqs. (137) and (139)]

ANc
(τ) =

Ω Γ2

(

m +
1

2

)

mΓ2 (m)
2F1

(

−1

2
,−1

2
; m; ρ2(τ)

)

(13)

ρNc
(τ) =

Γ2
(

m + 1
2

) (

2F1

(

− 1
2 ,− 1

2 ; m; ρ2(τ)
)

− 1
)

Γ(m)Γ(m + 1) − Γ2
(

m + 1
2

) . (14)

Other important dynamic metrics are the AORRNc
(·)

and AODDNc
(·) of Nc(t), which reflect the autocorrelation

properties of the channel. They are given by [2, Eqs. (17) and
(21)]

RNc
(n) =

√
2πfDmm− 1

2 n2m−1 exp
(

−mn2

Ω

)

Γ(m)Ωm− 1
2

(15)

DNc
(n) =

Ωm− 1
2

[

Γ(m) − Γ
(

m, mn2

Ω

)]

√
2πfDmm− 1

2 n2m−1 exp
(

−mn2

Ω

) . (16)

III. T HE INVERSION METHOD ANALYZED

In this section, we derive the corresponding high-order sta-
tistics of the inversion method. To the best of our knowledge,
all of the expressions derived here are new.

As desired, the PDFfNi
(·) and CDFFNi

(·) of Ni are those
of a Nakagami variate, i.e.

fNi
(n) = fN(n) andFNi

(n) = FN (n). (17)

However, the high-order statistics ofNi(t) differ from those
of Nc(t), as shown next.

For convenience, instead of (5), we shall use the inverse
relation, given by

R(t) = F−1
R (FN (Ni(t))) = g−1(Ni(t)) , h(Ni(t)), (18)

whereF−1
R (·) is the inverse unity-power Rayleigh CDF

F−1
R (x) =

√

− ln(1 − x). (19)

The reason to use (18) instead of (5) is thath(·) can be
obtained in closed form, whereasg(·) cannot. Indeed, using
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(2) and (19) into (18),h(·) is calculated as

h(n) =

√

√

√

√− ln

(

Γ
(

m, mn2

Ω

)

Γ(m)

)

. (20)

We begin by investigating the conditional PDF of the time
derivative Ṅi(t) of Ni(t), given Ni(t). Differentiating (18)
with respect to time, we obtain

Ṙ(t) = h′(Ni(t))Ṅi(t), (21)

whereh′(·) is the first derivative ofh(·), calculated as

h′(n) =
mmn2m−1 exp

(

−mn2

Ω

)

ΩmΓ
(

m, mn2

Ω

)

√

− ln

(

Γ
“

m, mn2

Ω

”

Γ(m)

)

. (22)

It is well known that for isotropic scatterinġR(t) and R(t)
are independent variates, and thatṘ(t) is Gaussian distributed
with zero mean and varianceπ2f2

D [9], so that

fR(r) = 2r exp
(

−r2
)

(23)

fṘ(ṙ) =
exp

(

− ṙ2

2π2f2
D

)

√
2π3/2fD

(24)

fṘ,R(ṙ, r) =fṘ(ṙ)fR(r)=

√
2r exp

(

−r2 − ṙ2

2π2f2
D

)

π3/2fD
.(25)

Note in (5) thatNi(t) is a memoryless function ofR(t) and
thus also independent oḟR(t). Therefore, from (21),Ṅi(t)
is Gaussian conditioned onNi(t) = n, with zero mean and
variance

σ̇2
i (n) =

π2f2
D

h′2(n)
= −

π2f2
DΩ2mΓ2

(

m, mn2

Ω

)

ln

(

Γ
“

m, mn2

Ω

”

Γ(m)

)

m2mn4m−2 exp
(

− 2mn2

Ω

)

(26)
Accordingly,

fṄi|Ni
(ṅ|n) =

exp
(

− ṅ2

2σ̇2
i
(n)

)

√
2πσ̇i(n)

. (27)

Note thatfṄi|Ni
(ṅ|n) depends onn. That is,Ni(t) andṄi(t)

are dependent variates. The joint PDF ofNi(t) andṄi(t) can
be calculated from (25) by performing the transformation of
variables defined in (18) and (21), which gives

fṄi,Ni
(ṅ, n) = h′2(n)fṘ,R (h′(n)ṅ, h(n)) , (28)

whereh′2(n) is the Jacobian of the transformation. Replacing
(20), (22), and (25) into (28), and after some algebraic

manipulations, we obtain

fṄi,Ni
(ṅ, n) =

√
2 m2mn4m−2

π3/2fDΩ2mΓ(m)Γ
(

m, mn2

Ω

)

×

exp






− 2mn2

Ω +
m2mn4m−2 exp

“

− 2mn2

Ω

”

ṅ2

2π2f2
D

Ω2mΓ2
“

m, mn2

Ω

”

ln

 

Γ(m, mn2
Ω )

Γ(m)

!







√

− ln

(

Γ
“

m, mn2

Ω

”

Γ(m)

)

.

(29)

The second-order PDF of the unit-power Rayleigh process
R(t) is given by (12) withm = Ω = 1, which reduces to

fR(t),R(t+τ)(r1, r2) =

4r1r2 exp
(

− r2
1+r2

2

1−ρ2(τ)

)

I0

(

2
√

ρ2(τ)r1r2

1−ρ2(τ)

)

1 − ρ2(τ)
,

(30)
whereρ2(τ) is the power autocorrelation coefficient ofR(t).
By performing the transformation of variables defined in (18),
the second-order PDF ofNi(t) is obtained from (30) as

fNi(t),Ni(t+τ)(n1, n2) =
4m2m(n1n2)

2m−1

Ω2m(1 − ρ2(τ)) Γ(m)
2

1−ρ2(τ)

×
[

Γ

(

m,
mn2

1

Ω

)

Γ

(

m,
mn2

2

Ω

)]

ρ2(τ)

1−ρ2(τ)

exp

(

−m(n2
1 + n2

2)

Ω

)

×I0







2
√

ρ2(τ)

1 − ρ2(τ)

√

√

√

√

√ln





Γ
(

m,
mn2

1

Ω

)

Γ(m)



 ln





Γ
(

m,
mn2

2

Ω

)

Γ(m)










.

(31)

By definition, the ACFANi
(τ) of Ni(t) can be written

from (5) as

ANi
(τ) =

∫ ∞

0

∫ ∞

0

g(r1)g(r2)fR(t),R(t+τ)(r1, r2)dr1dr2,

(32)
wherefR(t),R(t+τ)(·, ·) is given in (30). However, as mentio-
ned before,g(·) is unknown in closed form. This problem can
be circumvented by the change of variablesn1 = g(r1) and
n2 = g(r2), yielding

ANi
(τ) =

∫ ∞

0

∫ ∞

0

n1n2fR(t),R(t+τ) (h(n1), h(n2))

× h′(n1)h
′(n2)dn1dn2, (33)

whereh(·) andh′(·) are given in (20) and (22), respectively.
It seems that (33) has no closed-form solution, requiring
numerical evaluation.

By definition, the ACCρNi
(τ) of Ni(t) is obtained as

ρNi
(τ) =

ANi
(τ) − E[Ni(t)]

2

V [Ni(t)]
. (34)

For convenience, one may useΩ = 1 in evaluating (34), forΩ
has no impact on the ACC. ReplacingE[Ni(t)] [1, Eq. (17)]
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andV [Ni(t)] [1, Eq. (18)] withΩ = 1 into (34), we obtain

ρNi
(τ) =

ANi
(τ)|Ω=1 − Γ(m+ 1

2 )
2

mΓ(m)2

1 − Γ(m+ 1
2 )

2

mΓ(m)2

, (35)

whereANi
(τ)|Ω=1 has to be solved numerically as in (33).

In (18), Ni(t) is mapped intoR(t) through a memoryless
transformation, namelyh(·). Thus, the processNi(t) crosses
a given leveln at the same rate at which the processR(t)
crosses the levelh(n). In other words, the AORRNi

(n) of
Ni(t) can be obtained in terms of the AORRR(r) of R(t) as

RNi
(n) = RR(h(n)). (36)

The AOR of the unit-power Rayleigh process is given by (15)
with m = Ω = 1, which reduces to

RR(r) =
√

2πfDr exp
(

−r2
)

. (37)

Replacing (37) into (36) with use of (20), we have

RNi
(n) =

√
2πfDΓ

(

m, mn2

Ω

)

√

− ln

(

Γ
“

m, mn2

Ω

”

Γ(m)

)

Γ(m)
. (38)

Finally, the AOD DNi
(n) of Ni(t) is obtained as

FNi
(n)/RNi

(n), which gives

DNi(t)(n) =
Γ(m) − Γ

(

m, mn2

Ω

)

√
2πfDΓ

(

m, mn2

Ω

)

√

− ln

(

Γ
“

m, mn2

Ω

”

Γ(m)

)

.

(39)

IV. COMPARISONS

We now compare the Nakagami high-order statistics derived
for the inversion method with those of the classical method,
usually assigned to Nakagami fading.

In the classical method, as widely known, the envelope
time derivative is Gaussian and independent of the envelope.
In the inversion method, as we showed, the envelope time
derivative is neither Gaussian nor independent of the envelope.
Fig. 1 shows the variance oḟN conditioned onN . This
is given by (8) for the classical method, and by (26) for
the inversion method. In the former, the variance ofṄ is
clearly insensitive toN . In the latter, however, the variance
may change considerably withN , mainly for low levels, as
observed from the curves. Fig. 2 shows the PDF ofṄ , given by
(9) for the classical method, and by the numerical integration
of (29) overn for the inversion method. Note how form > 1
the PDF tails are much more pronounced in the inversion
method, departing considerably from the Gaussian PDFs of
the classical method.

The second-order PDFs for the classical and inversion
methods are given by (12) and (31), respectively. We have used
the Kullback-Leibler distance [11] to assess the dissimilarity
between these two PDFs. Fig. 3 shows the corresponding
results. Note that the Kullback-Leibler distance vanishesas
ρ2(τ) → 0. This is expected, because in such a case the
Nakagami variates become independent, and the second-order
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Fig. 1. Variance of the Nakagami envelope time derivative conditioned on
the envelope level.
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Fig. 2. PDF of the Nakagami envelope time derivative.

PDFs converge, in both methods, to the product of two
Nakagami PDFs. On the other hand, the Kullback-Leibler
distance increases steadily withρ2(τ), so that the two PDFs
may differ considerably from each other for high correlation
values. Take, for instance,ρ2(τ) = 0.9. In this case, from the
curves, the Kullback-Leibler distance is greater than0.02 for
any value ofm. As a term of comparison, it can be shown that
0.02 is the same distance between a zero-mean, unit-variance
Gaussian PDF and a zero-mean, 0.703-variance Gaussian PDF.

Although the second-order PDFs for the classical and in-
version methods may differ considerably from each other, the
corresponding ACFs (or ACCs) are quite similar, for any value
of m. This is shown in Fig. 4, in which the Nakagami ACC is
plotted against the underlying Rayleigh ACC. The Nakagami
ACC is given by (14) for the classical method, and by (35) for
the inversion method. The underlying Rayleigh ACC is given
by (14) or (35) withm = 1. Note that the difference between
the ACCs of the two methods does not exceed5 × 10−2.

Figs. 5 and 6 show the impact of the inversion method on
the AOR and AOD of the Nakagami envelope, respectively, as
compared with those of the classical method. At low envelope
levels, the inversion method reduces the AOR form < 1
and increases it form > 1. Correspondingly, the inversion
method increases the AOD form < 1 and reduces it for
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Fig. 3. Kullback-Leibler distance between the joint PDFs ofthe Nakagami
envelope and its time derivative for the classical and inversion methods.
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Fig. 4. Nakagami autocorrelation coefficient as a function of the underlying
Rayleigh autocorrelation coefficient.

m > 1. At high envelope levels, however, the AOR and
AOD of the inversion method are observed to be practically
indistinguishable from those of the classical method.

V. CONCLUSIONS

The modeling and simulation of Nakagami fading channels
by the inversion method is certainly attractive, because itis
simple and allows form real. However, as we showed here,
the inversion method leads to high-order statistics that differ
considerably from those of the classical method, commonly
assigned to Nakagami fading.
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