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Nakagami High-Order Statistics
from a Different Perspective

José Candido Silveira Santos Filho and Michel Daoud Yhcou

Abstract— The Nakagami fading signal has been traditionally of (3) depends on the envelope and phase PDFs of each
modeled as a sum of multipath Rayleigh components. Recenfly component. However, Nakagami showed that this PDF may
an alternative Nakagami model, particularly attractive for simu- be in general well approximated by (1) [1, Egs. (42)—(46)].

lation, has been proposed in the literature: a single Raylgh Hi imation h ined wid d b fit
signal propagating over a nonlinear path. Here, we derive IS approximation has gained widespread use because of Its

many important high-order statistics associated to this mdel Mathematical ease, great flexibility, and, more importgotd
(second-order distribution, autocorrelation, joint distribution of ~ fit to empirical fading data [2], [3].
the envelope and its time derivative, average outage rate,nd On the other hand, the simulation of the Nakagami fading

average outage duration) and compare these statistics to dse . : : -
of the traditional model, widely assigned to Nakagami fadin, channel is rather controversial. For other fading condgio

We show that the two modeéls lead to very different high- Such as Rayleigh, Rice, and Hoyt, the channel model itself ca
order statistics, except for the autocorrelations, which ge indeed be directly used as a simulation scheme. For Nakagami fading

similar. however, this approach no longer works. Since the Nakagami

Keywords— High-order statistics, Nakagami fading, nonlinear PDF and its underlying channel model only approximate each

channels, simulation. other, using (3) as a simulation scheme would not produce
samples that follow (1) in a exact manner.

. INTRODUCTION Many artifices have been proposed in the literature to

In [, Eq. (3)], Nakagami reported that the radiowav@roduce Nakagami enyelppe samples. A classica_\l meth_od,
amplitude variations due to multipath fading can be wefjuggested by Nakagami himself [1, Eqgs. (63)—(64)], is tdawri

described by the probability density function (PDF) the Nakagami process’c(f) (c stands for classical method)
as the square root of the sum of i.i.d. squared Rayleigh

2m™n?m 1 exp (—m—"z) processesk;(t), that is

Q 1
QmT(m) ’ 2’
where N denotes the Nakagami fading envelofe= E[N?]
is the mean powenn = E[N?]/V[N?] is the fading para-
meter, and’(-) is the gamma function H[-] denotes expecta- wheret is a time index. The mean power of each Rayleigh
tion, V'[-] variance.) The corresponding cumulative distributioprocess is2/m. It is easy to show that (4) perfectly mat-

fn(n) =

(1)

m >

(4)

function (CDF) is ches the Nakagami PDF. Indeed, many high-order statistics
o widely associated to the Nakagami envelope have been derive
F( aT) 1 5 under the assumption of (4), including second-order PDF,

Fy(n)=1- L'(m) m 2 2’ @) autocorrelation, joint PDF of the channel envelope andrits t

whereT(-,-) is the incomplete gamma function derivative, average outage rate, and average outage aurati

’ omp 9 ; : These statistics shall be revisited in the next section.raim
Although Nakagami inferred .(1) by mspe_ctm_g mea.surqgmitation of the classical method is that it appliestointeger

fading data, he demonstrated in [1] that his distribution Is

indeed a general approximate solution to the so-calledignob only’. .
Another attractive method was recently proposed that allow

of random interference—the main cause of multipath fading. 131 In thi thod. the Nak  sianal |
In such an interference scenario, it is reasonable to exp%’t m real [3]. In this method, the Nakagami signal is

that the signal at the receiver arises a sum of multipa ought of as a single Rayleigh signal that propagates over

wave components that traveled on different paths from tﬁ\ememoryless nonlinear path. In other words, the Nakagami

transmitter. The resulting fading envelope can be therterrit samples are gen_erated from R_ayle|gh samples by using the
as [1, Eq. (41)] standard percentile transformation method, also calledrin

sion method [4, Eqg. (7-157)]. This approach connects the
’ZAi exp(j0i)|, () Nakagami procesd;(t) (i stands for inversion method) to the
i Rayleigh oneR(t) through the CDFs of each, as follows [3,
where A; and ©; denote the envelope and the phase d&fig. 3]
the ith component, respectively. Of course, the exact PDF Ni(t) = Fy' (Fr(R(1)) £ g(R(1)), (5)
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unit-power Rayleigh CD¥ this PDF is obtained as [1, Eq. 126]
Fr(r)=1—exp (-r?). (6) 4m™ 1 (nyng)™
. . o . PNt Netrir) (M1,112) = ey
The inverse Nakagami CDF required in (5) is unknown QmHpa ()77 (1 = pa(7))T'(m)

in closed form and must be numerically approximated. An m(n? 4 n2) 2\/p2(T)mning
accurate approximation is presented in [3]. In the remginin< ¢Xp (—_7> Iy | m—1, —S—————

: \ Q1 — p2(7)) Q1 — p2(7))
of the text, we call (5) the inversion method, as opposed to (12)
the classical method in (4).

Other methods exist for simulating Nakagami fading [5]wherel, (-) is the modified Bessel function of first kind and
[8], but we shall not address them here. Our aim is to derivéh order, andp»(7) is the power correlation coefficient of
important high-order statistics associated to the Nakaga@ach underlying Rayleigh proceBs(t). Expressions fops(7)
fading channel as implemented by the inversion methodhave been extensively reported in the literature for igntras
second-order PDF, autocorrelation, joint PDF of the emlowell as anisotropic fading scenarios [9], [10]. It can bevsho
and its time derivative, average outage rate (AOR), andsaeer thatp,(7) is also the power correlation coefficient f.(¢) [1,
outage duration (AOD)—and to compare these statistics feg. 127].
those of the classical method, extensively assigned to Nafrom (12), the autocorrelation function (ACR)y_(7) and
kagami fading. We show that the two methods lead to vetiye autocorrelation coefficient (ACQ)y, (7) of N.(t) can be
different high-order statistics, except for the autoclatien, derived as [1, Egs. (137) and (139)]
which are indeed similar.

1
In the following, the time index is sometimes omitted to Qr? (m + —)
alleviate the notation. An.(1) = 2 o Fy HER p2(7) ) (13)
¢ mI'2 (m) 27 277
2 1 _1 1., _
II. THE CLASSICAL METHOD REVISITED pn. (1) = L2 (m+3) (281 (=5, —53m3 p2(7)) 1), (14)
¢ L(m)I'(m+1) —T2 (m+ 3)
As mentioned before, it is easy to show that the PRE(-) _ ) _
and CDFFy (-) of N, are given by Other important dynamic metrics are the AORy,(-)
‘ and AOD Dy_(-) of N.(t), which reflect the autocorrelation
fn.(n) = fn(n) and Fiy, (n) = Fn(n), (7)  properties of the channel. They are given by [2, Egs. (17) and
wherefy(-) is the Nakagami PDF anfy (-) is the Nakagami (21)]
CDF, presented in (1) and (2). Important high-order siatist \/%fDmm—%an—l exp (_M)
of the processV.(t) have been investigated in the literature. Ry, (n) = - ° (15)
Next, we reproduce some of them. L(m)Qm=z
It has been shown in [2] that for isotropic scattering the m—1 _ mn?
time derivative N.(¢t) of N.(t) is Gaussian distributed with D.(n) = f [F(m) r (m’ Q )} _ (16)
zero mean and variance ‘ V27 fpm™=2n2m=1 exp (—mg—?z)
oz = fpSY/m, 8
where fp is the maximum Doppler shift in Hz. Accordingly, 1. THE INVERSIONMETHOD ANALYZED
exp (_%) In this section, we derive the corresponding high-order sta
[y () = ———"%. (9) tistics of the inversion method. To the best of our knowledge
V2mo. all of the expressions derived here are new.
It has also been shown in [2] thaV.(t) and N.(t) are As desired, the PDFy, () and CDFFJ;,(-) of N; are those
independent variatésso that of a Nakagami variate, i.e.
frron, (dn) = fr, (7) (10) fni(n) = fn(n) and Fy,(n) = Fy(n). (17)
and However, the high-order statistics of;(¢) differ from those

I (n) = fo (0)fn.(n) of N.(t), as shown next.
Ne,Ne AT Ne e For convenience, instead of (5), we shall use the inverse
2 .2 . .
V2m™mn?m =1 exp (—M — ”—) relation, given by
(

Q 262 11) B B .
R(t) = Fr~ (Fn(Ni(t)) = g7 (Ni(t)) = h(Ns(t)), (18)

The second-order PDF &¥.(t) is also of interest. From (4), wherngl(-) is the inverse unity-power Rayleigh CDF

VT T (m) N
—1 / —
2For convenience, we have normalized the Rayleigh procesmve unit FR (55) =V- 1n(1 - 95) (19)
mean power. . . .
3t does not imply thatV..(¢1) and N, (t2) are still independent faf; # t» The_reas9n to use (18) instead of (5) is tidt) can b_e
or, equivalently, thatV,(t) and N.(t) are independent random processes. Obtained in closed form, wherea$-) cannot. Indeed, using




XXVI SIMP OSIO BRASILEIRO DE TELECOMUNICAQES - SBrT'08, 02-05 DE SETEMBRO DE 2008, RIO DE JANEIRO, RJ

(2) and (19) into (18)h(:) is calculated as manipulations, we obtain
2 2m, . dm—2
I (m, 222) ‘ Ao V2 m?mn
h(n)zd_ln (W) @) Jnn ) = G G (o, 228
2771 4771 2CX 2mn<
exp | — 2" 4 n )
212 3,02 T2 (1, 22 1n< . )
X

€
)
()

The second-order PDF of the unit-power Rayleigh process
We begin by investigating the conditional PDF of the timé(t) is given by (12) withm = = 1, which reduces to
derivative N;(t) of N,(t), given N,(t). Differentiating (18) 202 )Io (2\/p2—(T)T1T2>

(29)

with respect to time, we obtain 4rirz exp (_ T—p2(7) T—p2(7)
fR(t),R(t+r)(7°1,7“2) =

R(t) = B (N:(1))Ni(1), (21) 1 — pa(7) (30) 7
where?’(-) is the first derivative of(-), calculated as wherep,(7) is the power autocorrelation coefficient &1t).
e ome1 mn? By performing the transformation of variables defined in)(18
B (n) = men eXPp ( o ) 22) the second-order PDF d¥;(¢) is obtained from (30) as
. 2 r(m,=52) Apn2m 2m—1
QT (m, 22°) \/— In <7F(m) > Fraeys(ean (1, m2) = m" (nins) _
Q2(1 — pa(r)) T(m) =277

It is well known that for isotropic scattering(t) and R(t) 2 mn2\ ] T2 m(n? +n2)
are independent variates, and tti{t) is Gaussian distributed x {F (m, 1) r (m, —2)} exp (—%)

with zero mean and varianee’ f3 [9], so that f

exp (s ) "\ 1= L(m) T(m)
) =~ 24
R V232 f (32)
Vorexp (—r? — =~
far(r) =fr(P)fr(r)= P (3/2 o jD)(ZS) By definition, the ACF Ay, (7) of N;(¢t) can be written
w2 fp from (5) as

Note in (5) thatN,(t) is a memoryless function aR(¢) and
thus also independent dk(t). Therefore, from (21)N;(t)  An, (7 / / 9(r1)g(r2) fres), Rty (1, T2)dr1dra,
is Gaussian conditioned oi;(t) = n, with zero mean and (32)

variance where fr(), re+-) (-, +) is given in (30). However, as mentio-

22 yomp2 mn?\ | r(m,=22)\  ned beforeg(-) is unknown in closed form. This problem can
m2fy ™ fD ( ) n T'(m) be circumvented by the change of variables= ¢(r;) and

5i(n) = n2(n) m2mnAm=2 exp (_27?{12) ng = g(r2), yielding
(26)
Accordingly, A, (T / / nina fr(), m(+r) (R(n1), h(n2))
' exp (_%gm) X h' ()R (ng)dnydny, (33)
frgn, (Aln) = ———=——+. (27) / e i ;
V276 (n) whereh(-) andh/(-) are given in (20) and (22), respectively.

It seems that (33) has no closed-form solution, requiring

Note thatfy, v, (n|n) depends om. That is,N;(t) and N, (t) numerical evaluation

are dependent variates. The joint PDFMf(t) and N;(t) can

be calculated from (25) by performing the transformation of gy definition, the ACCpy, (7) of N;(t) is obtained as
variables defined in (18) and (21), which gives ' )
A, () = EINi(t)]

P, (o) = W2(0) fy g (B ()i, b)), (28) (T = =T (34)

whereh/?(n) is the Jacobian of the transformation. Replacingor convenience, one may u€e= 1 in evaluating (34), fof2
(20), (22), and (25) into (28), and after some algebraltas no impact on the ACC. ReplacidgV;(t)] [1, Eq. (17)]
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©
andV[N;(¢)] [1, Eq. (18)] withQ =1 into (34), we obtain £  100. < s
S 50.0- \\ \ classical metho¢solid) ]
p(er%)? g : AN N inversion methoddashed
ANi(T)lﬂzl T TmIT(m)? = N N
PN; (T) = 1\2 ) g AN O
1— L(m+3) 3 & loot N W i
e S © 50 - NN\ m=051,234" |
. . ~ ~ \ =Y.9, 4, 400, 54
where Ay, (7)|o=1 has to be solved numerically as in (33). 5 & NN o
In (18), N;(t) is mapped intoR(¢) through a memoryless 8 E NON T
transformation, namely(-). Thus, the procesd;(t) crosses £ © *° P L.
a given leveln at the same rate at which the proce?g) 3 0.5 - S
crosses the levek(n). In other words, the AORRy;, (n) of = ——— e ———
N;(t) can be obtained in terms of the AORg(r) of R(t) as & oal o oY
2 -30 -20 -10 0 10

R (n) = Rr(h(n)). (36)

The AOR of the unit-power Rayleigh process is given by (15)
with m = Q = 1. which reduces to Fig. 1. Variance of the Nakagami envelope time derivativaditioned on
’ the envelope level.

normalized envelope Ievel/d QO ,dB

Rr(r) = V2r fprexp (—r?). (37)
Replacing (37) into (36) with use of (20), we have

Verfpl (m, anz) \/— In (%)
Ravfn) = e

Finally, the AOD Dy, (n) of N;(¢t) is obtained as
Fn,(n)/Rn,(n), which gives

Va)

o
[

Z 0.01

. (38)

©
o
=}
=

10

10°

Dy, )(n) =

probability density functionf. (n)x(fp

-20

V2rfpl (m, =22

SN—
|

E

7N
=
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E
=H
N
N—
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| o
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(39) normalized envelope time derivativg(fy+/ Q )

Fig. 2. PDF of the Nakagami envelope time derivative.
IV. COMPARISONS g g P

We now compare the Nakagami high-order statistics derived
for the inversion method with those of the classical methoBDFs converge, in both methods, to the product of two
usually assigned to Nakagami fading. Nakagami PDFs. On the other hand, the Kullback-Leibler

In the classical method, as widely known, the enveloglistance increases steadily with(7), so that the two PDFs
time derivative is Gaussian and independent of the envelopgay differ considerably from each other for high correlatio
In the inversion method, as we showed, the envelope tinmalues. Take, for instancee(7) = 0.9. In this case, from the
derivative is neither Gaussian nor independent of the epeel curves, the Kullback-Leibler distance is greater ti3ad2 for
Fig. 1 shows the variance ol conditioned onN. This any value ofn. As a term of comparison, it can be shown that
is given by (8) for the classical method, and by (26) fob.02 is the same distance between a zero-mean, unit-variance
the inversion method. In the former, the variance Mfis Gaussian PDF and a zero-mean, 0.703-variance Gaussian PDF.
clearly insensitive taV. In the latter, however, the variance Although the second-order PDFs for the classical and in-
may change considerably with/, mainly for low levels, as version methods may differ considerably from each other, th
observed from the curves. Fig. 2 shows the PDRofjiven by  corresponding ACFs (or ACCs) are quite similar, for any ealu
(9) for the classical method, and by the numerical integrati of m. This is shown in Fig. 4, in which the Nakagami ACC is
of (29) overn for the inversion method. Note how far > 1  plotted against the underlying Rayleigh ACC. The Nakagami
the PDF tails are much more pronounced in the inversiCC is given by (14) for the classical method, and by (35) for
method, departing considerably from the Gaussian PDFsthé inversion method. The underlying Rayleigh ACC is given
the classical method. by (14) or (35) withm = 1. Note that the difference between

The second-order PDFs for the classical and inversitine ACCs of the two methods does not excéed 10~2.
methods are given by (12) and (31), respectively. We have use Figs. 5 and 6 show the impact of the inversion method on
the Kullback-Leibler distance [11] to assess the dissintjla the AOR and AOD of the Nakagami envelope, respectively, as
between these two PDFs. Fig. 3 shows the corresponditgmpared with those of the classical method. At low envelope
results. Note that the Kullback-Leibler distance vanishss levels, the inversion method reduces the AOR for< 1
p2(7) — 0. This is expected, because in such a case thad increases it forn > 1. Correspondingly, the inversion
Nakagami variates become independent, and the second-ordethod increases the AOD forn < 1 and reduces it for
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Fig. 3. Kullback-Leibler distance between the joint PDFgtaf Nakagami

envelope and its time derivative for the classical and sieer methods.
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[5] K. W. Yip and T. S. Ng, “A simulation model for Nakagami-nading

m > 1. At high envelope levels, however, the AOR and

AOD of the inversion method are observed to be practicallYe]

indistinguishable from those of the classical method.

V. CONCLUSIONS
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by the inversion method is certainly attractive, becauss it

simple and allows fom real. However, as we showed here,
the inversion method leads to high-order statistics thfiedi

considerably from those of the classical method, common
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assigned to Nakagami fading.
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