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Blind Sequence Separation Based on the
Eigenstructure of Finite Field Transforms

Juliano B. Lima, Ricardo M. Campello de Souza and Daniel Panari

Abstract— A blind sequence separation method based on the is considered and the user signatures are eigenvectors of th
eigenstructure of finite field transforms is proposed. In analogy DFT matrix; distinct eigenvalues are associated to each use
with a multiuser communication system, an additive channel and, after the channel addition, the corresponding eiggore

is considered and the information coming from each user is ted b Vi i t f f Sj
mapped on eigenvectors of a transform matrix. Since orthogonal are separated by solving a linear system or equations. since

eigenspaces are related to different users, it is possible to sepathe knowledge of the sequence resulting from the eigeniecto
rate such eigenvectors after the channel addition. The recently addition is sufficient for performing such a separations thi

introduced finite field trigonometric transforms are used. Their procedure can be viewed as blind. In this case, the maximum

eigenstructure is analyzed and applied to the described scenario. number of simultaneous users is four, because the DFT matrix
Keywords— Blind separation, multiuser communication, finite has at most four distinct eigenvaluds:, —1, 7, —j}.

field transforms, eigenstructure. Other discrete transforms applicable to the described sce-

nario have been investigated [5]. This paper proposes the us

Resumo—Este trabalho propde um método para separacéo of the recently introduced finite field trigonometric traorshs

cega de sequéncias baseado em transformadas de corpo finito(FFTT), which include finite field cosine and sine trans-

Analogamente a um sistema de comunicagao multiusuario, ¢, mq [6]. Since FFTT matrices have only integer elements,

considera-se um canal aditivo através do qual as informagdessa floati int and | ithmeti fi id
transmitidas como autovetores de uma matriz de transformacao. 10&ting-point and complex arithmetic operations are a0i

Uma vez que subespacos vetoriais ortogonais estdo relacionado@nd a more natural adjustment to the digital systems corgtext
a usuarios distintos, é possivel separar tais autovetores apésprovided. Furthermore, some of the FFTT types have matrices
a adicdo no canal. As transformadas trigonométricas de corpo with more than four distinct eigenvalues.
finito, recentemente introduzidas, sdo usadas. Sua auto-estuma The key-point for developing the reported separation pro-
€ analisada e aplicada ao cenario descrito. . .
cedure is the knowledge of the eigenstructure of the used
Palavras-Chave— Separagéo cega, comunicagdo multiusuario, transforms. Therefore, a considerable part of this paper is

transformadas de corpo finito, auto-estrutura. dedicated to the study of the eigenvalues of each FFTT
and of the systematic ways for constructing their respectiv
|. INTRODUCTION eigenvectors. Under many aspects, this theory is similtrab

the real-valued trigonometric transforms, the eigertdtires

Multiple access techniques perform an essential role . . ) . .
modern communication systems. The simultaneous use o aWh'Ch have been studied with the main purpose of defining

channel by different transmitters allows a flexible design d'actional transforms [7], 8], [9].

such systems and the reasonable allocation of the availapl his paper is organized as follows. In Section I, the finite

resources [1]. In a code division multiple access systet!r?d trigonometric traqsforms are briefly reviewed. In Sec-
rt{gs Il and IV, respectively, the eigenstructures of typand
r

(CDMA), different users share, at the same, time the sa i . )

L : FFTT are studied. In Section V, the eigenstructures oés/p
f . Th I to th t X : . !
requency band 's is possible due to the spread spec and lll FFTT are investigated. Section VI presents thadbli

technique which uses high ragignature pulseso enhance i d based the ei trabt
the signal bandwidth far beyond what is necessary for a giv fauence separation procedure based on Ihe eigenstratiure
FFTT and some preliminary discussions of its practical

data rate. The users can be separated at the receiver by mé s ts. Th r el with som neluding remarks in
of their characteristic individual signatures. Commorthjis aspects. 1he paper closes Some conciuding remarks

separation is done without any explicit knowledge conaegni Section V.

the information coming from each user, that is, béind Il. PRELIMINARIES
recovery is performed [1]. Nowadays, the most prominent - . —_ .
applications of CDMA are mobile communication systems Iik%' F|n|t.e Field Trlgonometry . o
cdmaOne, UMTS or cdma2000 [2]. In this subsection, the main concepts related to the finite
In [3], a new multiuser communication technique was prdi€!d tr'gf?nom_etfy are reviewed [10]. _
posed. It is based on the eigenstruture of the discrete &ourj Definition 1: The set of Gaussian integers over BFis

transform (DFT) matrix [4]. A noise-free real additive cinah € S€t G%’) = {a+jb,a,b € GF(p)}, wherep is a prime

such thatj® = —1 is a quadratic nonresidue over Gl(i.e.,
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Definition 2: Let ( be a nonzero element of @) of forward FFCT-IIl matrix and vice-versa. This is also valit f
multiplicative order denoted byrd(¢). The k-trigonometric FFST-1l and FFST-IIl. Additionally, we remark that, { is
functions cosine and sine of the “arc” of the elemehtare unimodular, number theoretic transforms can be obtaingd [6
computed modulg, respectively, asos.(z) := (¢*+(~7)/2
andsing(z) == (¢* —¢(77)/2j, forx =0,1,...,0rd(¢) — 1. 1

For the sake of simplicity, th&-trigonometric functions are o
denoted bycosy (i) andsing (i), while the value of; is fixed. ~ Similarly to the real case, the FFCT-I and the FFST-I
The k-cosine and the:-sine hold properties similar to those€igenstructure is strongly connected to the finite field Four
of the standard real-valued trigonometric functions [10]. ~ transform (FFFT) [16], [8], [17]. The FFFT of a vectar=

Definition 3: The unimodular set of G is the set of (Zi), @ =0,....,N —1, z; € GFp), is a vectorX = (Xj),

elements’ = (a+ jb) € Gl(p), such that? +b? = 1(mod p). X.’“ € GFp™), k=0,.. ._,N -1, cpmputed by Equation (1),
with the transform matriXM substituted by

. EIGENSTRUCTURE OFTYPEI FFTT

B. Finite Field Trigonometric Transforms FFy = VN-1.a"F, (2)

The finite field trigonometric transforms include eight co-
sine transforms (FFCT) and eight sine transforms (FFS
The first defined FFTT, corresponding to the FFCT-1I, w
introduced by Mahoret al. [13]. Later, new definitions were
given and some applications were investigated [6], [14thia

herea € GR(p™) and orda) = N.

"Proposition 1: The FFFT transform matrix has, at most,
our distinct eigenvalues|1, —1, j, —j}, whose multiplicities
are presented in Table Il [17].

subsection, the main FFTT types are briefly reviewed. TABLE II

Any FFTT of a vectorx = (x;), z; € GF(p), can be written MULTIPLICITIES OF THE EIGENVALUES OF ANN x N FINITE FIELD
as a vectoX = (Xy), X € Gl(p), obtained from the equation FOURIER TRANSEORM MATRIX.

X=M- x", @ [~ [ muitof1 | Multof —1 [ Mult of j | Mult.of —j ||

where M is the respective transform matrix. The transforn  4-n n+1 n n n—1
matrix denoted byFC{VH, for instance, is associated to|| 4-n+1 n+1 n n
the computation of the FFCT-I of aV + 1 length vector; || 4.5 +2 n4+1 n n+1
analogously, the matriFSY’ is associated to the FFST-I [, 75 | n 11 L 1

of an N length vector. Such matrices are obtained accordirg
to Table I, where the indexesand & are respectively related

to the columns and rows; the weight functién is defined as Proposition 2: Every eigenvector associated to the FFFT
has even or odd symmetry. Even eigenvectors are related to

Vo1 (modp), r=0orN, the eigenvalued or —1 and odd eigenvectors are related to
Br = ! _ 19 N_1 the eigenvalueg or —j [17].
’ U R A A In this work, procedures for constructing FFFT eigenvestor
Since the matrices are unitary, types | and IV FFTT, the mare not discussed. However, we remark that, in this case,
trices of which are also symmetric, correspond to invohgio an even symmetric vectat, = (z.;) holds the condition
Such matrices are elements of ordein the general linear z.; = x.,—;; similarly, an odd symmetric vectat, = (z,,;)
group GL(N,GI(p)) [15]. Commonly, an element the orderholdsz,; = —x, —; [17]. Based on Propositions 1 and 2, the
of which isr is said to be a matrix of period. The inverse following propositions related to the FFCT-I and the FFST-I
FFCT-1I matrix, which is not symmetric, corresponds to theigenstructure are presented.
Proposition 3: The FFCT-I and FFST-I eigenvectors are
constructed from the FFFT eigenvectors according to the

TABLE | follow ati
FINITE FIELD TRIGONOMETRIC TRANSFORMS ofiowing re ations.
o If x = [x9,21,...,ZN_2,TN—1,TN—2,...,T1] IS @N
’ Transform matrix elements ‘ Matrix dimensions even eigenvector of the matriRF,y_o, then
FC 41 = V/2/N BiBx cosy (i) k,i=0,1,...,N
— XFG, = |20, V221, ..., V2T N—2, TN_1 3
FCH = V2IN rcow (i+3) | ki=0,1, N1 L= [T VAT ’ ®)
117 _ 9/N A. ; . . .
FC;VV = V2/N G Cosk+%(’)1 ki=01,...,N—-1 is an eigenvector of the matrikC?,.
FCy :\/Q/NCOSH% (i+3) k,i=0,1,...,N—-1 o If x =[0,21,22,...,2n,0, —2ZN, —ZN_1,...,—T1] IS
FSN_1 = V/2/N sing(i) ki=1,2,...,N—1 an odd eigenvector of the matrRF,y o, then
S k=1,2,...,N
FSN = \/2/N By siny, (i + §) , xps, = V2[x1,22,...,2N] (4)
i=0,1,...,N—1
— _ _ H . . I . .
FSUT = \/2/N B sin, , 1 (i) k=0,1,...,N—1 is an elgenvector of the matriFS; with associated
2 i=1,2,...,N eigenvaluej\.
FSV = /2/N sin 1 (i+1) k=01, .. N—1 Proof: It is similar to the proof of Proposition 3 in [8].
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TABLE Il

Proposition 5: The GFFFT matrix has, at most, four dis-
MULTIPLICITIES OF THE EIGENVALUES OF A TYPEI N X N FINITE FIELD

tinct eigenvalues{1,—1,j,—3j}, the multiplicities of which

COSINE OR SINE TRANSFORM MATRIX .
are presented in Table IV.

H N H Mult. of 1 | Mult. of —1 H

~ — TABLE IV
odd NtL b=l
1%] ]%] MULTIPLICITIES OF THE EIGENVALUES OF ANN X N GENERALIZED
even 2 2 FINITE FIELD FOURIER TRANSFORM MATRIX.
H N H Mult. of 1 | Mult. of —1 | Mult. of 5 | Mult. of —j H
Proposition 4: The FFCT-I and the FFST-I matrices haveg| 4-n n n n n

only the eigenvalued and —1. Their multiplicities are pre- || 4.5+ 1 n n n n+1
sented in Table IlI. 4L-nto ntl n n ntl

Proof: As we previously remarked, the FFCT-I is invo- i nts ntl - ntl 1

lutive, i.e., (FCf’V)2 = |y, wherel y is the N x N identity
matrix. Hence, the eigenvalues BT’ are the solutions of
A2 =1, ie., {-1,1}. The same argument is valid f&iSk. Proof: Using Property 1, we know thalFF$)?* = Ty.
The multiplicities of the eigenvalues can be determinedgisi Consequently, the eigenvalues ETF% correspond to the
a proof similar to that presented for the Proposition 4 in [8polutions of \* = 1, i.e., {1,—1,4,—j}. Their multiplicities
m are determined using a proof similar to that presented fot Fa
3in [7]. [ |
IV. EIGENSTRUCTURE OFTYPEIV FFTT Proposition 6: The eigenvectors of the GFFFT matrix are

In this section, the FFCT-IV and the FFST-IV eigenstructuréonstructed according to the following rules. alf < Xy,
is discussed. In this case, there is also a connection with then:
eigenvalues and the eigenvectors of the finite field Fouriers the even symmetric vectaxg = E{z;} ¥ j - £{X;}
transform. Therefore, a generalized finite field Fouriengra is an eigenvector of the matriEF$, associated to the
form (GFFFT) is defined. Initially, the eigenstructure otth eigenvalue\ = +j.
GFFFT is analyzed and, hence, propositions concerning the the odd symmetric vectoxe = O{z;} + O{X;} is

FFCT-IV and the FFST-IV eigenstructure are derived. an eingenvector of the matrifF$ associated to the
eigenvalue\ = +1.
A. The Generalized Finite Field Fourier Transform Proof: The proof is based on Properties 1 and 2. It is

The GFFFT of a vectok = (z;), 2; € GF(p), is a vector similar to those presented for Propositichand4 in [3]. ®
X = (X), X € GF(p™), computed by Equation (1), with

the matrixM substituted by B. Eigenvalues and Eigenvectors of Type IV FFTT

FF§ = VN1 oli3) (v+3), (5) Based on the GFFFT eigenstructure, the following proposi-
tions related to the FFCT-IV and the FFST-IV eigenstructure
are presented.
(Fpg)*1 — VN-T. o (i+5)(k+3) (6) Proposition 7: The FFCT-IV and the FFST-IV eigenvectors
are constructed from the GFFFT eigenvectors accordingeto th
In the following, some properties used for studying FiES,  following relations.

wherea € GF(p™) and orde) = N. The inverse offF is

eigenstructure are presented. o Ifx=[x0,...,2N_1,—TN_1,--.,—To] IS @an odd eigen-
Property 1: LetJ be anN x N anti-diagonal matrix, where vector of the matri><FF§N, then
every nonzero element equalsThen, (FF$)? = —J.
Proof: It is similar to the proof of Fact in [7]. ] XFC;y = [T0,-- - TN-1] (1)

Based on Property 1 and denoting ;by& X, the relation
betweenx and its generalized finite field Fourier transfoln
the relationX; FAZIN —x_p_1 1S valid.

In order to analyze the GFFFT of symmetric vectors, differ-
ently from the FFFT, we consider even symmetric vectars

is an eigenvector of the matrikCL) .
o If x = [zg,...,2N-1,ZN_1,...,Z0] IS @N even eigen-
vector of the matrixFFSy,, then

holding the condition:. ; = z.,,—1. They can be constructed Xesry = [20, - ox-1] ®

from any vectorx by z.; = &{zi} = 27" - (zi + 2i-1); is an eigenvector of the matrikS4’ .

symmetric odd vectors hold, ; = —z, ;-1 and they can be Proof: It is based on the same principles applied to

obtained byz,; = O{z;} = 27" - (z; —2_;_1). demonstrate Proposition 3. n
Property 2: If z; <% X, then, the relationg {z,} << Proposition 8: The FFCT-IV and the FFST-IV transform

E{Xi} and O{x;} SN O{X}} are valid. matrices have only the eigenvaluesind—1. Their multiplic-

Proof: This property can be demonstrated using Equéties are presented in Table V.
tion (5) and the established symmetry conditions. ] Proof: It is similar to the proof of Proposition 4. =
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TABLE V

the periods of types Il and Il matrices are said to be zero.
MULTIPLICITIES OF THE EIGENVALUES OF ANN X N TYPEIV FINITE

Naturally, for the FFTT case; is always positive and finite.

FIELD COSINE OR SINE TRANSFORM MATRIX . .
Briefly, we can assert that the computation of types Il and

[~ [ mut of 1 [ mutt of —1 | Il FFTT matrices eigenvalues requires the computatiorhef t
odd Ni1 N1 roots of t.he respective charateristic polynomials. In thasy,
oven N N related eigenvectors can be constructed.

VI. BLIND SEQUENCESEPARATION

V. TYPESII AND Il FFTT EIGENSTRUCTURE In communications theory, the problem of separating infor-

Since types Il and Ill FFTT matrices are not symmetrignation coming from different sources, after they are “mixed
in order to analyze their eigenstructures, it is not possiblinder some assumptions, has been extensively studie@]1], [
to use arguments similar to those applied to types | and Among different techniques for recovering the data oritiyna
FFTT. In fact, the eigenstructure of the real-valued typesitl transmitted by each user, a particularly interesting case i
[l trigonometric transforms remains unclear, being riestd the separation without explicit knowledge of the inforroati
to some conjectures supported by numerical simulations [8lated to each source (or user), that is, the blind separati
In this section, we also discuss a conjecture and investig&then different users share the same frequency band at the
some aspects concerning the eigenstructure of the medtiosame time, well established techniques perform such a sepa-
transforms in the finite field case. ration using statistical properties of sequences and cosied

The conventional procedure for obtaining the eigenvaldes as “digital carriers”.
a matrix consists in evaluating the roots of its charadieris In this section, using the above described scenario as
polynomial. Since the FFTT matrices are orthogonal, theference, we show how the FFTT eigenstructure can be

following theorem is valid. used for blind sequence separation. We consider a noise free
Theorem 1:The characteristic polynomial of an orthogonafinite field adder channel which is synchronously shared by
matrix modulop is a reciprocal polynomiaf (). different users [21]. The procedure consists in assogjeim
Proof: It is similar to the proof of Theorent in [5], all eigenvalue and, therefore, a set of eigenvectors of a given
computations being modulp. B FFTT to each user. The information to be sent by an user
The polynomialf () is also called palindromic, if (A\) = is mapped on such eigenvectors. Since eigenvectors related

AN £(1/)), or anti-palindromic, iff(\) = =AY f(1/)). The to different eigenvalues are orthogonal, after being suchme
computation of the roots of such polynomials is simplified blgy the channel, they can be recovered by solving a linear
the use of a variable substitution method reducing its degreystem of equations. This scheme is ilustrated in the fatigw
by half [18]. Therefore, it is possible to use closed formsula subsections.
evaluate the roots of palindromic polynomials with degraes
to 10. In this extreme case, after excluding rodt$(mod p),
the degree is reduced to For f()) with degree greater than” 2-User Scheme
10, factorization techniques are used [19]. With the purpose of presentingauser scheme, we consider
It has been conjectured, after computing the roots of tl®a N > 2 length FFCT-I, although any other FFTT whose
characteristic polynomial of the matriECfv’ for different transform matrix has at lea$t distinct eigenvalues can be
values of N, that all eigenvalues of the FFCT-II transformused. As demonstrated in Section Ill, the FFCT-I matrix has
matrix are distinct. This conjecture has also been proposeidenvalues\; = 1 and A\, = —1. We asssociate to these
for the FFCT-IIl, FFST-Il and FFST-1I transforms. Moreaye eigenvalues and to usersand2, respectively, the eigenvectors
although the considered matrices have all elements i(pGF x; = (z1;) andx, = (x2;), which are constructed according
their eigenvalues can be located in extension fields [20]. to Proposition 3.

The period of the matriceBCY/, FCI!!, FSK andFSY!  From the vectoly = (y;) given by
can be investigated by writing them in diagonal form. Let us
consider again the FFCT-II transform matrix and write it as Yi = X1, + T2, 9)

FCL = UAU* (U is a unitary matrix, the columns of which
are eigenvectors dfCL/, and U* is its conjugate transpose;
A is a diagonal matrix whose elements are the eigenvalues;%
FCL)). SinceU*U = I, powers of FCY can be computed
from powers ofA, which are cqmpgted taking the respecti\{e Yi = ATy + Aalo; = T1,4 — T (10)
power of each element in its main diagonal. Hence, the oalati

(FCJIVI)’“ = UA"U” holds. The least positive integersuch Solving the linear system formed by Equations (9) and (10),
that (FCY/)" = | also impliesA” = I. From this condition, the users sequences are recovered from= (y; +Y;)/2 and

we conclude that the period is the least common multiple z2; = (y; —Y;)/2. A block diagram ilustrating the recovering
among the multiplicative orders of the eigenvaluesFﬁr]’\{. of the sequences; andx, can be viewed in Figure 1.

For types Il and Il real-valued trigonometric transforrisgre An important aspect to be remarked concerns the arithmetic
is a conjecture stating that no suchexists [9]. By definition, complexity involved in the described procedure. The number

where “++" denotes componentwise addition, it is possible to
over the users sequences. By compufiig= (Y;) =
L xyT, we have
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@—» the solutions of which are
X

1
y | T4 = 64y2 + 64 Y'i///7
72 N-FFCT-I ,
| T2i = 49 Yi + 36 }/;/ + 78 }/Ti// + 91 }/i///7
_ X,
U w3 = 36y +49Y/ +91Y/ +78Y/",
re; = 106y; +42Y/ +85Y +21Y/".

Fig. 1. Sequence recovering in2auser scheme.
Therefore, fromy, we obtainY’, Y” and Y’ and use the
above equations for recovering each user sequence. A block
of multiplications and additions necessary for separativey diagram ilustrating this procedure is shown in Figure 2. The

N-length vectorsx; andxs are, respectively, given by number of multiplications and additions necessary for spa
ing the N-length vectorsx;, x3, x3 andx, are, respectively,
and My(N) = 7N + 3Mpcii (N) (13)
As(N) =2N + Apc:(N), (12) and
In the above equations, the subscript “2” indicates the as- A4(N) =8N +3Apcir(N). (14)

sociation with the2-user schemeMro:(N) and Apci (N) )

respectively, denotes the number of multiplications andi-ad'" the above equations\pcr:(N) and Apcrr (N) denote,
tions for calculating anV-length FFCT-I, which can be done'@SPectively, the number of multiplications and additidos
by fast algorithms. Exact numbers foilz(N) and A»(N) calculating anN-length FFCT-Il. Following these principles,

can be obtained by using closed formulae fd§.-: (N) and schemes with a larger number of simultaneous users can be

Apcr(N) [22]. implemented.
_ X4

B. 4-User Scheme y ) % z 9+

According to our previous discussions, we must choose n 5 + %3
types Il or Il FFTT for constructing @-user scheme. More- N-FFCT-II a
over, if a transform over Glp) is chosen, the eigenvalues v T 2
used for implementing such a scheme should also be located S
in GF(p), in order to avoid computations in extension fields. N-FFCT-I >+ X2
As an example, let us consider thielength FFCT-II over N ffb
GF(127). If the transform matrix is constructed using the N
unimodular element = 119 + j119, its eigenvalues are N-FFCT-II 26
A1 =1, A2 = 20, A3 = 108 and A4 = 126; the users sequences " Ve X
are, respectively, the eigenvectats = (z1,), xa = (z2.), \@* o

X3 = (1‘3,1‘) andxy = (x47i).
Analogously to the2-user scheme, the adder channel prg=9- 2. Sequence recovering indauser scheme.
duces the vectoy = (y;). By computing successive trans-
forms ofy, we haveY’ = (V) = FCX xy7, Y" = (V') =
(FC¥)?2 xyT andY” = (Y}") = (FCY)? x yT. Hence, C. Discussion

the fOIIOWing linear SyStem of equations is obtained: 1) Computationaj Comp|exity8ince we assume the eigen_
values used in a specific scheme are fixed, the system of
Tl T+ T30+ Tai = Y equations from which the users sequences are recovered has
AT+ Ao + Asxs + Aaxa; = Y/ to be solved only once. In fact, the solution has to be applied
again for each received vectgr However, such a solution is
M1+ A3r2i + Ajrai + Azas = Y/ already known. Furthermore, from the previous resultss it i
N3z 4+ N3wa ;i + Ndwg i + Njwy,;, = Y/ possible to conclude that the sequence recovering in scheme

using N-length transforms involve®) (N log N) operations
and can be implemented by standard DSPs.

2) A multiuser communication hierarchy over the finite field
adder channel:As we remarked, the presented blind sequence

Substituting the values of;, i = 1,...,4, in the above
system, we have

T1i + @2, F T30+ Tai = U separation method restricts the number of simultaneous use
1+ 2029, + 10823, + 1264, = Y/ of a channel to the number of distinct eigenvalues of the used
FFTT. However, similarly to the time division multiplexing
i+ 19x9,; + 107 x5, ; =Y/ ’ S L .
Tri T2+ i T B4 ¢ (TDM) and the frequency division multiplexing (FDM), it

x1,; + 12629, + 12625, + 12624, = Y/, is possible to implement a hierarchic scheme. This strategy
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allows a larger number of users being multiplexed, when dispects were discussed. Implementations of such schemes
ferent signals are combined in order to form a new hierarchian be done via standard DSPs. In practical environments,
level. Figure 3 ilustrates an example of such a procedumdditional aspects concerning the developed theory should
applied to the eigenstructure based multiuser commubitati be considered. Moreover, other application scenariosHer t

In this case, in order to provide the appropriate diversity @resented eigenstructures may be investigated. As example
eigenvectors, an extension field mapping and, consequentlyve cite error correcting codes and public-key watermarking
transform over such a field is required.
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