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An Efficient Method for Generating
Autocorrelated Non-Gaussian Seguences

José Candido Silveira Santos Filho and Michel Daoud Yhcou

Abstract— We propose a novel method for generating random the target ACC is attained. In this method, the knowledge of
sequences matching both a target non-Gaussian distributio the inverse of the target CDF is paramount; it is required to
and a target autocorrelation. In the proposed scheme, same  ogiaplish both the appropriate nonlinear transformatiod a
matching the target distribution are drawn independently and th iate G . ACC. H the i CDE
then suitably rearranged to match the target autocorrelaton. | e appr_Op”a e au_SS|an - However, he nverse
Our method overcomes the difficulties of the standard methodn IS sometimes unavailable. The gamma and beta CDFs, for
generating sequences with unknown inverse distribution. Bsides instance, which find large applicability in engineeringyéa
communications, our results find applicability in many different ng closed-form inverse [8]. In such cases, the CDF must be
areas concermned with non-Gaussian processes. Many example jnyerted numerically, a task that may be neither simple nor

are included. attractive [9].

In this work, we propose a novel method for generating au-
tocorrelated non-Gaussian sequences. In the proposehsche
samples matching the target CDF are drawn independently and

[. INTRODUCTION then suitably rearranged to match the target ACC. The ievers

Modern communication systems are increasingly comple, the target CDF may be used if available, but it is indeed
and their analysis, design, and optimization usually laglé dispensable. Therefore, our method is particularly ditrac
computer simulations. Analytical tools are certainly prable, When the inverse CDF is unknown. Besides communications,
but many times they either tackle the problem in a simplistRur method finds applicability in many different areas conce
manner or else prove impracticable. In such cases, sironlatned with non-Gaussian processes.
may be the only appropriate solution. In Section IlI, the standard method is revisited. The novel

Most communication systems involve random phenomertagthod is presented and justified in Sections Il and 1V,
which are usually specified by means of a cumulative distribtespectively. Finally, examples are given in Section V.
tion function (CDF) and an autocorrelation coefficient (A&C
As a result, a typical simulation task is the generation of a
random sequence matching a target CDF and a target ACC. Il. STANDARD METHOD
If the target CDF is Gaussian, the solution is straightfadya
because a linearly filtered Gaussian sequence remains Gauy¥e examine the problem of generating&arsample realiza-
sian [1], [2]. Passing a white Gaussian sequence throughtam sequencdy, } for a discrete-time random proces§g,, }
appropriate linear filter, one can achieve the target ACdewhihaving a target non-Gaussian CO¥ (-) and a target ACC
preserving the target Gaussian CDF. However, if the target E[Y,Yoim] — 12
CDF is non-Gaussidn the solution becomes more intricate py(m) £ %, (1)
[6], [7]- Linear filtering no longer applies, because it does . . ) g o
preserve non-Gaussian CDFs. For instance, by linearlyifige Wherem is a discrete-time lagl[-] denotes expectatiop, is
a white exponential sequence, the colored output sequefftég mean value o, and o? is the variance. The standard
is no longer exponential. And this holds true for any norfolution is as follows [7]:

Gaussian sequence. Therefore, other techniques are edquir 1) Generate arL-sample realization sequende,,} for a

in the non-Gaussian case. zero-mean unit-variance Gaussian proge¥s } with an
The standard method for generating an autocorrelated non-  appropriate ACCox (-).

Gaussian sequence is to modify an autocorrelated Gaussiap) Apply a memoryless nonlinear transformation{to, },

sequence by applying to it a memoryless nonlinear transfor-  forming {y,, }.

mation [7]. The transformation is chosen so that the target

CDF is attained, and the Gaussian ACC is chosen so that
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1Equivalently, an autocovariance function (ACF) can be ieec Indeed,
the ACC is the variance-normalized ACF.

2sample examples of non-Gaussian processes occurring imanivations
are given in [3]-[5]. Other examples are the common fadirancel models, Fig. 1. The standard method for generating autocorrelatztGaussian
including Rayleigh, Rice, Hoyt, Nakagami, Weibull, and nagmal. sequences.
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The scheme is illustrated in Fig. 1. In order to attain th€e scheme is illustrated in Fig. 2 and detailed in the next

target Fy (), the nonlinearity is chosen to be [7] paragraphs.
whereFy ! (-) is the inverse of’y () andFx () is the standard
Gaussian CDF. And in order to attain the target-), px (-) Tn —— RM{z2n};{2n}) —» Yn
is chosen to be the solution of [7]
py(m) = dipx(m)F, ®)
k=1
where -
b2 [ o)) x(a)da, @) 2

Hi(-) is the kth Hermite_ polynomig}, aanX(~) is the_ well- Fig. 2. The novel method for generating autocorrelated @anssian
known standard Gaussian probability density function (PDFsequences.

As shown in [7], the coefficient§d; } 32, decay rapidly. The

number of coefficients required to solve (3) accurately ddpe  In step 1,px(-) is chosen in the same way of the standard

on the probabilistic structure dfY, }. method, i.e., as being the solution of (3). Note that solving
Additional concerns have to be addressed. First, some pdB}$ depends oy, given in (4), which depends ultimately on

{Fy (), py(-)} are incompatible and can not be realized by ' (-)—recall thatg(-) £ Fy, ' (Fx(-)). Of course, one may

any simulation scheme [7]. The realizable rangepef(-) use (4) ifF;l(-) is available. On the other hand, by making

depends orFy () and is given by [7] in (4) the substitution of variables

1 z=g""(y) = Fx'(Fy(y)) £ h(y), (6)

o? and after some algebraic manipulations, we obtain an altern
Second, even when the targef () satisfies (5), the cor- tive expression forl, that does not requiré“;l(-), namely
respondingpx (-) obtained from (3) may not be legitimate
(nonnegative definite) [7]. In this case, it is impossible to dy :/ yH, (h(y)) fx (R(y)) h(y)dy, @)
achieve the targepy (-) by using the scheme in Fig. 1. As Sy
an approximate solution, one has to find a legitimate(-) where/(-) denotes the first derivative df(-) and Sy is the

so that the resultingy (-) will be close in some sense to itssupport of the PDF o¥},. Since the inverse of the standard
target value. Different approaches can be used to reduce #gussian CDF is given by

error between the target and achieved valuegyof). Refer . .
to [7] for a detailed explanation on some of them. Fyt(u) = V2 erf 7 (=1 4 2u), (8)
The main concern with the standard method is that \Whereerf—!(.) is the inverse error function, it follows from
requiresF;l(-), both to find px(-) via (3) and to apply (6) that
the nonlinearity (2) that produceg, }. The problem is that h(y) = V2 erf 1 (=1 + 2Fy (y)). 9)
Fy'(-) is sometimes not available. For instance, the gamma
and beta CDFs, which find large applicability in engineeringn addition, it is easy to show that
have no closed-form inverse [8]. In such cases, the use of the ; 1 2
standard method requires the numerical inversion of thgetar hy) = Vamexp [erf (=14 28 (y) } fr(y),  (0)
CDF, rendering the method more intricate and less accurgfghere fy (. is the PDF ofY,.
Next, we overcome these difficulties by proposing a novel os in the standard methodsy () must satisfy (5) as a
method in which the knowledge df}"(-) is dispensable.  necessary condition for the resulting(-) to be legitimate.
But this condition is again not sufficient. Should (-) not be
1. NOVEL METHOD legitimate, the same techniques used in the standard method
) ) o to find a legitimatepx (-) that minimizes the error iy (-)
For clarity, we start with a description of the novel methogya, pe used in the proposed method as well. Refer to [7] for
postponing its theoretical background until the next &cti gome of those techniques.
The proposed method is as follows: Step 2 consists in drawing independent samples from
1) Generate arl-sample realization sequenge,, } for a Fy(-). This can be accomplished by any method of ran-
zero-mean unit-variance Gaussian prodess} with an  dom number generation, such as the percentile transfaymati

1
[ Rt 2] < <106

appropriate ACCx (+). method or the rejection method [9]. The former requires
2) Generate aL.-sample realization sequen¢e, } for an Fy *(-), the latter does not. Thus, shouid '(-) be known,
i.i.d. process{Z,} having CDFFy (-). one can use either methods. Otherwise, one can use the

3) Rearrange the samples {n,,} so as to match the rankrejection method. It is noteworthy that standard computing
of the samples i{x,,}, forming {y,}. softwares include random number generators for most distri
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butions in engineering. {Y(n)}, {Y(y}, and{Z,,)} are called the order statistics of
Step 3 is a block-wise operation. We calrénk matching, {Y,,}, {Yn}, and{Z,}, respectively. Note that(;) < Yy <
since it takes two sequences with identical lengths, in asec ... < Y(L), ff(l) < }7(2) < ... < f/(L), and Zy < Zp) <
{z.} and {z,}, and rearrange the samples{n,} to form ... < 7 L)
a new sequencgy,}, so that the samples ify,} exactly  The aim is to comparé¥,,,} with {V(,)}. From{¥, } =
match the rank of the samples {m,}, that is, their minima RM({Z,}; {X,}), it is clear that{Y(,)} = {Z}, since
occur in the same position, their second minima occur in tl'{g/n} is a réarrangement diZ, }. Thus nit suffices7tlo compare
same position, and so on. We say thgt} is rank-matched {Y(s)} with {Z,,)}. By construction, the variates {¥,,} are
to {zn}. Correspondingly, we introduce the notation independent. In contrast, the variates{ﬂ%;} are somehow
{yn} = RM{zn}; {zn}). (11) correlated, since they result from a memoryless nonliteari

) . o applied to an autocorrelated Gaussian process. Howelsef, al
The rank matching operation can be easily implemented {fe variates in botH Z(,)} and{Y(n)} follow the same target

standard computing softwares by means of built-in orderigghg Fy(-). From the asymptotic theory of order statistics, it
routines. In Matlab, for instance, a possible implemeatei$ s known that thenth order statistic. 1 < n < L. of a set

[x,1]=sort(x); of L variates following a given CDF, sayy (-), converges
y=sort(z); in probability to the quantilngl(lim,;ﬂ00 7) as L goes
y(1)=y; to infinity, regardless of the amount of correlation between
the variate® [10]. Thus, it follows that bothZ(,,y and Y{,,),
IV. THEORETICAL BACKGROUND 1 < n < L, converge in probability to the same value

. Fut (limp .o ) as L goes to infinity.
In the proposed method, since the output sequence is )%Ne have shown that the output processes of the standard and

mere rearrangement of samples drawn i.i.d. fron¥y (-) o
(steps 2 and 3), then it certainly complies with the targgtoveI met.ho_ds have not only .the Same.fa”k statistics but also
' o[der statistics that converge in probability to each otk

CDF. However, it is not equally clear why the rearrangement o< to infinity. The greater thig, the closer in probability the

proppsed n step 3 should al_so comply with the t_arget AC%utput processes, and thus the better the expected perfoema
In this section, we answer this question by showing that th : :

of the novel method. Of course, it remains to know whether the
proposed rearrangement cause the output process of the ngve

method to converge in probability to that of the StanOlarfcdonvergence is fast enough to render the novel method aecura

S or values of L of practical interest, e.g.l = 22°. Next,
method as the sequence lengifgoes to infinity. we answer this question affirmatively by means of extensive
To begin with, recall that the standard and novel meth0%§<amples q y by
start both with the same 'Up“t GaUSSIa_n process}, 1 < A last remark is required. By assumption, both the stan-
n < L. In order to distinguish the resulting output processeg . .

. : : rd method and our method start with the generation of a
we shall enhance the notation slightly, denoting the outpu§l

process of the standard method g, and that of the novel (7GR B & BT EECES SRR TR
method by{Y,}, 1 < n < L. The novel method still includes ' y

an acitonl procest?, ), 1 <1 < 1. e e e
From (2), each variat&,, is given byY, = g(X,). Since q ’ ' X q

. . stationary and ergodic. On the other hand, in our method,
g(+) is monotone nondecreasing [T}, } happens to be rank- e ) )
. AR ) .. it seems to be difficult to assess these issues in an exact
matched to{ X, }, i.e., their minima occur in the same position

. A ) o manner. However, as shown here, the output sequence of
their second minima occur in the same position, and so on.

i the same way, from (11)(¥,) is gien by (¥,) = o BeRo BCE TS e . in this sense. o
RM{Z,};{Xn}), which is clearly also rank-matched to d g Y- '

5 - i method provides sequences that are asymptotically séation
t{cf(ga}\ér;r gltjﬁeihe processe} and {Y, } are rank-matched and asymptotically ergodic. The larger the sequence diee, t

Of course, rank-matched processes may be quite dif'fergr"ﬁher the degree of stationarity and ergodicity.

in general. However, if these processes have additionladly t
same order statistics, then they are indeed identical tficin
sample orders- identical sample sets identical sequences). We shall consider five CDFs (triangle, Rayleigh, Laplace,
We are not suggesting th@ffn} and{Yn} have the same orderuniform, and exponential) and four ACCs (Iinearly decaying
statistics—they do not. But their order statistics coneeiry €xponentially decaying, exponentially-decaying cosiaad
probability asL goes to infinity, as shown next. Bessel). We have intentionally selected only CDFs with
First, let us introduce some notation. As mentioned befofg)own inverse, for the aim is to compare the performance
each of the processe[yn}, {ffn}, and {Z,} is a set of L of the novel method with the best-case performance of the
variates. Now, definé/(l) as the minimum of{ffn}, }7(2) as standard method, when the latter is not subject to inac@msac
the second minimum O{Yn}, and so on. In the same Way,due to the numerical inversion of the tal‘get CDF. Of course,

defmey(l)v as the minimum Of{_Y,}}, Z(l) '?S the minimum 3The indexn is allowed to be a function of, so thatlim;,_, o % may
of {Z.}, Y(2) as the second minimum dfY,,}, Z) as the range from 0 to 1.
second minimum of Z,, }, and so on. The new sets of variates “we have used the Bessel function of the first kind and zeratarod (-).

V. EXAMPLES
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should the inverse be unknown, the standard method losetween the output samples of the two methods decreases
accuracy, whereas the novel method is not affected. steadily as the sequence length increases. Also note tisat th
Table | shows the CDFs, the inverse CDFs, and the coeffieviation does not exceed¥; for L = 22°.
cients{d;}’_, obtained via (4) or (7). We have dropped the
coefficients beyond the seventh, which are indeed negéigib
and normalized d;,}7_, to ensure thapy (0) = 3.7 _, d? =
1. The same procedure has been used in [7]. Indeed, o8f
coefficients in Table | coincide with those in [7, Table I]. 06l
In each of the cases, the coefficierig,}7_, have been
replaced into (3) to compute the appropriate(-) that leads
to the targetpy (-), and an autocorrelated Gaussian sequen
with L = 220 samples has been generated according
using the autoregressive method. The simulations have bt
run in Matlab. In those cases whepg (-) happened not to
be legitimate (nonnegative definite), the spectrum trionat
method has been applied to render it legitimate. Refer to | 061
for explanations on the spectrum truncation method. -08f
The Gaussian sequences have been then used to produc ) ‘ ‘ ‘ ‘
output sequences according to the standard and novel ngeth 0 20 discretetime g 8 100
as explained in Sections Il and Ill. Table I lists the digitmm

autocorrelation coefficient
o

A T A 2 Fig. 3. Autocorrelation coefficient for triangle distriint (target: solid;
6= Z Wm (py(m) Py (m)) (12) standard method: dot; novel method: dash).
m

observed in each case between the achiefgl(-)) and target
(pL(-)) values ofpy (-), where

min(|m|, 100) (13) 0sld

100 | ~~
is a triangle weighting sequence. The above distortion areas oer i
and a similar weighting sequence have been used in [7]. N o4r |
in all of the cases that the distortions of the two methoc
are very small and, more important, very similar to eac
other, which confirms the theory behind the novel metho
As in [7], the largest distortion appear in the exponentiedec
This is expected, because the distortion should increagg as
decreases [7] and the exponential CDF presents the smal —osl
d?, as shown in Table I.

The achieved and target valuesgf(-) are plotted in Fig. 3
for the triangle CDF and in Fig. 4 for the exponential CDF L 20 20 60 20
The targetpy (-) is shown in solid lines, and the achievec discrete-time lag
py () is shown in dashed lines for the novel method and
in dotted lines for the standard method. Note again that thig- 4. Autocorrelation coefficient for exponential dibtrtion (target: solid;

tandard method: dot; novel method: dash).
performances of the standard and novel methods are excelien
and indistinguishable, and slightly poorer in the expoiatnt
case (Fig. 4).

In order to assess the rate of convergence between the VI. CONCLUSIONS
output sequences of the standard and novel methods, w&Ve proposed a novel method for generating random sequen-
have run both methods for different sequence lengths, nameés matching a target non-Gaussian distribution and attarge
L =210 211 212/ /220 From the resulting output sequen-autocorrelation. In the proposed scheme, samples mattteng
ces, we have then estimated the average relative deviatigryet distribution are drawn independently and then agarr
between the samples generated by the methods. All of ifjed to match the target autocorrelation. The main advamfge
samples have been considered in the estimation. The resplis method is that it dispenses with the inversion of theetrg
are shown in Fig. 5. Note in all of the cases how the deviatiafistribution, thus easily accommodating the distribusiovith

unknown inverse. In contrast, the standard method requires
5The achieved value gfy () has been estimated by sample averaging ththe inversion by construction and has to resort to numerical
simulated output sequences. . _ approximations when the inverse is unknown in closed form.

The corresponding curves for the Rayleigh, Laplace, antbxmi CDFs L
were observed to be quite similar to those for the trianglé-@Dd have been We have Compared our method to the standard method in its
omitted for the lack of space. best-case performance (known inverse), and indistingbigh

Wy, = 1 —

0.2 ~

autocorrelation coefficient
o

100
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Triangle Rayleigh Laplace Uniform Exponential
T
fr (W) 1—yl, Jyl <1 ye v*/2, 4y >0 3¢yl < o0 L0<y<1l|e¥, y>0
1 e’
“(14+2y—3?) O0<y<l1 . - z<0
Fy (y) 1—e¥ o2 2 y 1—e®
5(1+2y+y2) -1<y<o0 5 (-142e%) 220
) —1+vV2% 0<y<1/2 In(2y) 0<y<1/2
By () { 1-\2(1—y) 1/2<y<1 In(1 —y) —Im(2(1—y)) 1/2<y<1 Y In(1-y)
df 0.9927701 0.9724690 0.9632098 0.9550627 0.8157660
d3 0.0 0.0264400 0.0 0.0 0.1773910
d§ 0.0071243 0.0010467 0.0352063 0.0044768 0.0066847
dj 0.0 0.0000113 0.0 0.0 0.0001343
dz: 0.0000010 0.0010467 0.0013255 0.0044768 0.0000169
d% 0.0 0.0000017 0.0 0.0 0.0000073
dz 0.0000100 0.0000007 0.0002592 0.0006662 0.0
TABELA |
CDFs, INVERSECDFS, AND COEFFICIENTSd? .
py (m) Triangle Rayleigh Laplace Uniform Exponential
standard] novel | standard| novel | standard] novel | standard] novel | standard] novel
1 — min(]m], 100)/100 3.82e-5 | 3.82e-5| 4.51e-4 | 4.89%e-4| 2.70e-4 | 3.80e-4| 7.55e-4 | 7.72e-4| 2.32e-3 | 1.94e-3
exp(—0.05]m]) 2.90e-4 | 2.95e-4| 2.02e-4 | 2.05e-4 | 2.92e-4 | 2.76e-4 | 8.94e-5 | 8.89e-5| 2.78e-4 | 2.41e-4
exp(—0.05/m]) cos(0.25]m]) || 3.41e-4 | 3.43e-4| 1.49e-4 | 1.51e-4| 9.14e-4 | 9.63e-4| 2.84e-4 | 2./9e-4| 1.13e2 | 1.12e-2
Jo(0.17[m]) 2.91e-3 | 2.92e-3| 3.60e-3 | 3.62e-3| 6.33e-3 | 6.23e-3| 6.54e-3 | 6.56e-3| 5.60e-2 | 5.60e-2
TABELA Il
DISTORTIONS WITH TRIANGLE WEIGHTING AND SPECTRUM TRUNCATION
10° [4] H. Poor and M. Tanda, “Multiuser detection in flat fadingmGaussian
& e STnangIe channels,"|EEE Trans. Commun., vol. 50, no. 11, pp. 1769-1777, Nov.
—*— Rayleigh 2002. ] . . ‘ .
F! —+— Laplace [5] C. Luschi and B. Mulgrew, “Nonparametric trellis equation in the
.8 —¥— Uniform presence of non-Gaussian interferen¢&EE Trans. Commun., vol. 51,
§5 | —5— Exponential | no. 2, pp. 229-239, Feb. 2003.
2 = [6] U. G. Gujar and R. J. Kavanagh, “Generation of random algynvith
25‘ specified probability density functions and power dengitgctra,”| EEE
ke "é Trans. Automat. Contr., vol. AC-13, pp. 716-719, Dec. 1968.
§§ 107t [7] B. Liu and D. C. Munson, “Generation of a random sequeraeéry a
2§ jointly specified marginal distribution and autocovariefid EEE Trans.
EZ Acoust., Speech, Signal Process., vol. ASSP-30, no. 6, pp. 973-983,
a2 Dec. 1982.
éz | [8] K. V. Bury, Satistical Distributions in Engineering. Cambridge:
£ ' Cambridge University Press, 1999.
[9] A. Papoulis and S. U. PillaiProbability, Random Variables and So-
chastic Processes, 4th ed. New York: McGraw-Hill, 2002.
& [10] H. A. David and H. N. NagarajaQrder Satistics, 3rd ed.  Wiley-

200 201 202 203 2014 285 2816 207 288 2819 2020 Interscience, 2003.

sequence size

Fig. 5. Mean relative deviation between output samples afiddrd and
novel methods, as a function of sequence size.

results have been observed in all of the cases. Besides com-
munications, our method finds applicability in many diffiere
areas concerned with non-Gaussian processes.
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