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An Efficient Method for Generating
Autocorrelated Non-Gaussian Sequences
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Abstract— We propose a novel method for generating random
sequences matching both a target non-Gaussian distribution
and a target autocorrelation. In the proposed scheme, samples
matching the target distribution are drawn independently and
then suitably rearranged to match the target autocorrelation.
Our method overcomes the difficulties of the standard methodin
generating sequences with unknown inverse distribution. Besides
communications, our results find applicability in many different
areas concerned with non-Gaussian processes. Many examples
are included.
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I. I NTRODUCTION

Modern communication systems are increasingly complex,
and their analysis, design, and optimization usually lay hold of
computer simulations. Analytical tools are certainly preferable,
but many times they either tackle the problem in a simplistic
manner or else prove impracticable. In such cases, simulation
may be the only appropriate solution.

Most communication systems involve random phenomena,
which are usually specified by means of a cumulative distribu-
tion function (CDF) and an autocorrelation coefficient (ACC)1.
As a result, a typical simulation task is the generation of a
random sequence matching a target CDF and a target ACC.
If the target CDF is Gaussian, the solution is straightforward,
because a linearly filtered Gaussian sequence remains Gaus-
sian [1], [2]. Passing a white Gaussian sequence through an
appropriate linear filter, one can achieve the target ACC while
preserving the target Gaussian CDF. However, if the target
CDF is non-Gaussian2, the solution becomes more intricate
[6], [7]. Linear filtering no longer applies, because it doesnot
preserve non-Gaussian CDFs. For instance, by linearly filtering
a white exponential sequence, the colored output sequence
is no longer exponential. And this holds true for any non-
Gaussian sequence. Therefore, other techniques are required
in the non-Gaussian case.

The standard method for generating an autocorrelated non-
Gaussian sequence is to modify an autocorrelated Gaussian
sequence by applying to it a memoryless nonlinear transfor-
mation [7]. The transformation is chosen so that the target
CDF is attained, and the Gaussian ACC is chosen so that
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1Equivalently, an autocovariance function (ACF) can be specified. Indeed,
the ACC is the variance-normalized ACF.

2Sample examples of non-Gaussian processes occurring in communications
are given in [3]–[5]. Other examples are the common fading channel models,
including Rayleigh, Rice, Hoyt, Nakagami, Weibull, and lognormal.

the target ACC is attained. In this method, the knowledge of
the inverse of the target CDF is paramount; it is required to
establish both the appropriate nonlinear transformation and
the appropriate Gaussian ACC. However, the inverse CDF
is sometimes unavailable. The gamma and beta CDFs, for
instance, which find large applicability in engineering, have
no closed-form inverse [8]. In such cases, the CDF must be
inverted numerically, a task that may be neither simple nor
attractive [9].

In this work, we propose a novel method for generating au-
tocorrelated non-Gaussian sequences. In the proposed scheme,
samples matching the target CDF are drawn independently and
then suitably rearranged to match the target ACC. The inverse
of the target CDF may be used if available, but it is indeed
dispensable. Therefore, our method is particularly attractive
when the inverse CDF is unknown. Besides communications,
our method finds applicability in many different areas concer-
ned with non-Gaussian processes.

In Section II, the standard method is revisited. The novel
method is presented and justified in Sections III and IV,
respectively. Finally, examples are given in Section V.

II. STANDARD METHOD

We examine the problem of generating anL-sample realiza-
tion sequence{yn} for a discrete-time random process{Yn}
having a target non-Gaussian CDFFY (·) and a target ACC

ρY (m) ,
E[YnYn+m] − µ2

σ2
, (1)

wherem is a discrete-time lag,E[·] denotes expectation,µ is
the mean value ofYn, andσ2 is the variance. The standard
solution is as follows [7]:

1) Generate anL-sample realization sequence{xn} for a
zero-mean unit-variance Gaussian process{Xn} with an
appropriate ACCρX(·).

2) Apply a memoryless nonlinear transformation to{xn},
forming {yn}.

xn F−1
Y

(FX(xn)) yn

Fig. 1. The standard method for generating autocorrelated non-Gaussian
sequences.
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The scheme is illustrated in Fig. 1. In order to attain the
targetFY (·), the nonlinearity is chosen to be [7]

yn = F−1
Y

(FX(xn)) , g(xn), (2)

whereF−1
Y

(·) is the inverse ofFY (·) andFX(·) is the standard
Gaussian CDF. And in order to attain the targetρY (·), ρX(·)
is chosen to be the solution of [7]

ρY (m) =

∞
∑

k=1

d2
kρX(m)k, (3)

where

dk ,

∫

∞

−∞

g(x)Hk(x)fX(x)dx, (4)

Hk(·) is the kth Hermite polynomial, andfX(·) is the well-
known standard Gaussian probability density function (PDF).
As shown in [7], the coefficients{d2

k
}∞

k=1 decay rapidly. The
number of coefficients required to solve (3) accurately depends
on the probabilistic structure of{Yn}.

Additional concerns have to be addressed. First, some pairs
{FY (·), ρY (·)} are incompatible and can not be realized by
any simulation scheme [7]. The realizable range ofρY (·)
depends onFY (·) and is given by [7]

1

σ2

[
∫ 1

0

F−1
Y

(u)F−1
Y

(1 − u)du − µ2

]

≤ ρY (m) ≤ 1. (5)

Second, even when the targetρY (·) satisfies (5), the cor-
respondingρX(·) obtained from (3) may not be legitimate
(nonnegative definite) [7]. In this case, it is impossible to
achieve the targetρY (·) by using the scheme in Fig. 1. As
an approximate solution, one has to find a legitimateρX(·)
so that the resultingρY (·) will be close in some sense to its
target value. Different approaches can be used to reduce the
error between the target and achieved values ofρY (·). Refer
to [7] for a detailed explanation on some of them.

The main concern with the standard method is that it
requiresF−1

Y
(·), both to find ρX(·) via (3) and to apply

the nonlinearity (2) that produces{yn}. The problem is that
F−1

Y
(·) is sometimes not available. For instance, the gamma

and beta CDFs, which find large applicability in engineering,
have no closed-form inverse [8]. In such cases, the use of the
standard method requires the numerical inversion of the target
CDF, rendering the method more intricate and less accurate.
Next, we overcome these difficulties by proposing a novel
method in which the knowledge ofF−1

Y
(·) is dispensable.

III. N OVEL METHOD

For clarity, we start with a description of the novel method,
postponing its theoretical background until the next section.
The proposed method is as follows:

1) Generate anL-sample realization sequence{xn} for a
zero-mean unit-variance Gaussian process{Xn} with an
appropriate ACCρX(·).

2) Generate anL-sample realization sequence{zn} for an
i.i.d. process{Zn} having CDFFY (·).

3) Rearrange the samples in{zn} so as to match the rank
of the samples in{xn}, forming {yn}.

The scheme is illustrated in Fig. 2 and detailed in the next
paragraphs.

xn RM({zn}; {xn}) yn

zn

Fig. 2. The novel method for generating autocorrelated non-Gaussian
sequences.

In step 1,ρX(·) is chosen in the same way of the standard
method, i.e., as being the solution of (3). Note that solving
(3) depends ondk, given in (4), which depends ultimately on
F−1

Y
(·)—recall thatg(·) , F−1

Y
(FX(·)). Of course, one may

use (4) ifF−1
Y

(·) is available. On the other hand, by making
in (4) the substitution of variables

x = g−1(y) = F−1
X

(FY (y)) , h(y), (6)

and after some algebraic manipulations, we obtain an alterna-
tive expression fordk that does not requireF−1

Y
(·), namely

dk =

∫

SY

yHk (h(y)) fX (h(y)) ḣ(y)dy, (7)

where ḣ(·) denotes the first derivative ofh(·) and SY is the
support of the PDF ofYn. Since the inverse of the standard
Gaussian CDF is given by

F−1
X

(u) =
√

2 erf−1(−1 + 2u), (8)

whereerf−1(·) is the inverse error function, it follows from
(6) that

h(y) =
√

2 erf−1(−1 + 2FY (y)). (9)

In addition, it is easy to show that

ḣ(y) =
√

2π exp
[

erf−1 (−1 + 2FY (y))
2
]

fY (y), (10)

wherefY (·) is the PDF ofYn.
As in the standard method,ρY (·) must satisfy (5) as a

necessary condition for the resultingρX(·) to be legitimate.
But this condition is again not sufficient. ShouldρX(·) not be
legitimate, the same techniques used in the standard method
to find a legitimateρX(·) that minimizes the error inρY (·)
can be used in the proposed method as well. Refer to [7] for
some of those techniques.

Step 2 consists in drawingL independent samples from
FY (·). This can be accomplished by any method of ran-
dom number generation, such as the percentile transformation
method or the rejection method [9]. The former requires
F−1

Y
(·), the latter does not. Thus, shouldF−1

Y
(·) be known,

one can use either methods. Otherwise, one can use the
rejection method. It is noteworthy that standard computing
softwares include random number generators for most distri-
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butions in engineering.
Step 3 is a block-wise operation. We call itrank matching,

since it takes two sequences with identical lengths, in our case
{zn} and {xn}, and rearrange the samples in{zn} to form
a new sequence{yn}, so that the samples in{yn} exactly
match the rank of the samples in{xn}, that is, their minima
occur in the same position, their second minima occur in the
same position, and so on. We say that{yn} is rank-matched
to {xn}. Correspondingly, we introduce the notation

{yn} = RM({zn}; {xn}). (11)

The rank matching operation can be easily implemented in
standard computing softwares by means of built-in ordering
routines. In Matlab, for instance, a possible implementation is

[x,I]=sort(x);
y=sort(z);
y(I)=y;

IV. T HEORETICAL BACKGROUND

In the proposed method, since the output sequence is a
mere rearrangement ofL samples drawn i.i.d. fromFY (·)
(steps 2 and 3), then it certainly complies with the target
CDF. However, it is not equally clear why the rearrangement
proposed in step 3 should also comply with the target ACC.
In this section, we answer this question by showing that the
proposed rearrangement cause the output process of the novel
method to converge in probability to that of the standard
method as the sequence lengthL goes to infinity.

To begin with, recall that the standard and novel methods
start both with the same input Gaussian process{Xn}, 1 ≤
n ≤ L. In order to distinguish the resulting output processes,
we shall enhance the notation slightly, denoting the output
process of the standard method by{Ŷn}, and that of the novel
method by{Y̌n}, 1 ≤ n ≤ L. The novel method still includes
an additional process{Zn}, 1 ≤ n ≤ L.

From (2), each variatêYn is given by Ŷn = g(Xn). Since
g(·) is monotone nondecreasing [7],{Ŷn} happens to be rank-
matched to{Xn}, i.e., their minima occur in the same position,
their second minima occur in the same position, and so on.
In the same way, from (11),{Y̌n} is given by {Y̌n} =
RM({Zn}; {Xn}), which is clearly also rank-matched to
{Xn}. Thus the processes{Ŷn} and {Y̌n} are rank-matched
to each other.

Of course, rank-matched processes may be quite different
in general. However, if these processes have additionally the
same order statistics, then they are indeed identical (identical
sample orders+ identical sample sets= identical sequences).
We are not suggesting that{Ŷn} and{Y̌n} have the same order
statistics—they do not. But their order statistics converge in
probability asL goes to infinity, as shown next.

First, let us introduce some notation. As mentioned before,
each of the processes{Ŷn}, {Y̌n}, and {Zn} is a set ofL
variates. Now, definêY(1) as the minimum of{Ŷn}, Ŷ(2) as
the second minimum of{Ŷn}, and so on. In the same way,
define Y̌(1) as the minimum of{Y̌n}, Z(1) as the minimum
of {Zn}, Y̌(2) as the second minimum of{Y̌n}, Z(2) as the
second minimum of{Zn}, and so on. The new sets of variates

{Ŷ(n)}, {Y̌(n)}, and {Z(n)} are called the order statistics of
{Ŷn}, {Y̌n}, and{Zn}, respectively. Note that̂Y(1) ≤ Ŷ(2) ≤
· · · ≤ Ŷ(L), Y̌(1) ≤ Y̌(2) ≤ · · · ≤ Y̌(L), and Z(1) ≤ Z(2) ≤
· · · ≤ Z(L).

The aim is to compare{Ŷ(n)} with {Y̌(n)}. From {Y̌n} =
RM({Zn}; {Xn}), it is clear that{Y̌(n)} = {Z(n)}, since
{Y̌n} is a rearrangement of{Zn}. Thus, it suffices to compare
{Ŷ(n)} with {Z(n)}. By construction, the variates in{Zn} are
independent. In contrast, the variates in{Ŷn} are somehow
correlated, since they result from a memoryless nonlinearity
applied to an autocorrelated Gaussian process. However, all of
the variates in both{Z(n)} and{Ŷ(n)} follow the same target
CDF FY (·). From the asymptotic theory of order statistics, it
is known that thenth order statistic, 1 ≤ n ≤ L, of a set
of L variates following a given CDF, sayFY (·), converges
in probability to the quantileF−1

Y
(limL→∞

n

L
) as L goes

to infinity, regardless of the amount of correlation between
the variates3 [10]. Thus, it follows that bothZ(n) and Ŷ(n),
1 ≤ n ≤ L, converge in probability to the same value
F−1

Y

(

limL→∞

n

L

)

asL goes to infinity.
We have shown that the output processes of the standard and

novel methods have not only the same rank statistics but also
order statistics that converge in probability to each otherasL

goes to infinity. The greater theL, the closer in probability the
output processes, and thus the better the expected performance
of the novel method. Of course, it remains to know whether the
convergence is fast enough to render the novel method accurate
for values of L of practical interest, e.g.,L = 220. Next,
we answer this question affirmatively by means of extensive
examples.

A last remark is required. By assumption, both the stan-
dard method and our method start with the generation of a
stationary, ergodic, autocorrelated Gaussian sequence. In the
standard method, a memoryless nonlinear transformation is
then applied to the Gaussian sequence to produce the output
non-Gaussian sequence. Therefore, the output sequence is also
stationary and ergodic. On the other hand, in our method,
it seems to be difficult to assess these issues in an exact
manner. However, as shown here, the output sequence of
our method converges in probability to that of the standard
method as the sequence size goes to infinity. In this sense, our
method provides sequences that are asymptotically stationary
and asymptotically ergodic. The larger the sequence size, the
higher the degree of stationarity and ergodicity.

V. EXAMPLES

We shall consider five CDFs (triangle, Rayleigh, Laplace,
uniform, and exponential) and four ACCs (linearly decaying,
exponentially decaying, exponentially-decaying cosine,and
Bessel4). We have intentionally selected only CDFs with
known inverse, for the aim is to compare the performance
of the novel method with the best-case performance of the
standard method, when the latter is not subject to inaccuracies
due to the numerical inversion of the target CDF. Of course,

3The indexn is allowed to be a function ofL, so thatlimL→∞
n
L

may
range from 0 to 1.

4We have used the Bessel function of the first kind and zeroth order,J0(·).
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should the inverse be unknown, the standard method loses
accuracy, whereas the novel method is not affected.

Table I shows the CDFs, the inverse CDFs, and the coeffi-
cients{dk}7

k=1 obtained via (4) or (7). We have dropped the
coefficients beyond the seventh, which are indeed negligible,
and normalized{dk}7

k=1 to ensure thatρY (0) =
∑7

k=1 d2
k

=
1. The same procedure has been used in [7]. Indeed, the
coefficients in Table I coincide with those in [7, Table I].

In each of the cases, the coefficients{dk}7
k=1 have been

replaced into (3) to compute the appropriateρX(·) that leads
to the targetρY (·), and an autocorrelated Gaussian sequence
with L = 220 samples has been generated accordingly,
using the autoregressive method. The simulations have been
run in Matlab. In those cases whereρX(·) happened not to
be legitimate (nonnegative definite), the spectrum truncation
method has been applied to render it legitimate. Refer to [7]
for explanations on the spectrum truncation method.

The Gaussian sequences have been then used to produce the
output sequences according to the standard and novel methods,
as explained in Sections II and III. Table II lists the distortion

δ ,
∑

m

wm(ρT

Y (m) − ρA

Y (m))2 (12)

observed in each case between the achieved5 (ρA
Y

(·)) and target
(ρT

Y
(·)) values ofρY (·), where

wm = 1 − min(|m|, 100)

100
(13)

is a triangle weighting sequence. The above distortion measure
and a similar weighting sequence have been used in [7]. Note
in all of the cases that the distortions of the two methods
are very small and, more important, very similar to each
other, which confirms the theory behind the novel method.
As in [7], the largest distortion appear in the exponential case.
This is expected, because the distortion should increase asd2

1

decreases [7] and the exponential CDF presents the smallest
d2
1, as shown in Table I.
The achieved and target values ofρY (·) are plotted in Fig. 3

for the triangle CDF and in Fig. 4 for the exponential CDF6.
The targetρY (·) is shown in solid lines, and the achieved
ρY (·) is shown in dashed lines for the novel method and
in dotted lines for the standard method. Note again that the
performances of the standard and novel methods are excellent
and indistinguishable, and slightly poorer in the exponential
case (Fig. 4).

In order to assess the rate of convergence between the
output sequences of the standard and novel methods, we
have run both methods for different sequence lengths, namely
L = 210, 211, 212, . . . , 220. From the resulting output sequen-
ces, we have then estimated the average relative deviation
between the samples generated by the methods. All of the
samples have been considered in the estimation. The results
are shown in Fig. 5. Note in all of the cases how the deviation

5The achieved value ofρY (·) has been estimated by sample averaging the
simulated output sequences.

6The corresponding curves for the Rayleigh, Laplace, and uniform CDFs
were observed to be quite similar to those for the triangle CDF and have been
omitted for the lack of space.

between the output samples of the two methods decreases
steadily as the sequence length increases. Also note that this
deviation does not exceed3% for L = 220.
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Fig. 3. Autocorrelation coefficient for triangle distribution (target: solid;
standard method: dot; novel method: dash).
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Fig. 4. Autocorrelation coefficient for exponential distribution (target: solid;
standard method: dot; novel method: dash).

VI. CONCLUSIONS

We proposed a novel method for generating random sequen-
ces matching a target non-Gaussian distribution and a target
autocorrelation. In the proposed scheme, samples matchingthe
target distribution are drawn independently and then rearran-
ged to match the target autocorrelation. The main advantageof
our method is that it dispenses with the inversion of the target
distribution, thus easily accommodating the distributions with
unknown inverse. In contrast, the standard method requires
the inversion by construction and has to resort to numerical
approximations when the inverse is unknown in closed form.
We have compared our method to the standard method in its
best-case performance (known inverse), and indistinguishable
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Triangle Rayleigh Laplace Uniform Exponential

fY (y) 1 − |y|, |y| ≤ 1 ye−y2/2, y ≥ 0
1

2
e−|y|, |y| < ∞ 1, 0 ≤ y ≤ 1 e−y, y ≥ 0

FY (y)

8

>

<

>

:

1

2
(1 + 2y − y2) 0 < y ≤ 1

1

2
(1 + 2y + y2) −1 ≤ y ≤ 0

1 − e−y2

8

>

<

>

:

ex

2
x < 0

e−x

2
(−1 + 2ex) x ≥ 0

y 1 − e−x

F−1

Y (y)



−1 +
√

2y 0 < y ≤ 1/2

1 −
p

2(1 − y) 1/2 < y ≤ 1

p

− ln(1 − y)



ln(2y) 0 < y ≤ 1/2
− ln(2(1 − y)) 1/2 < y ≤ 1

y − ln(1 − y)

d2

1
0.9927701 0.9724690 0.9632098 0.9550627 0.8157660

d2

2
0.0 0.0264400 0.0 0.0 0.1773910

d2

3
0.0071243 0.0010467 0.0352063 0.0044768 0.0066847

d2

4
0.0 0.0000113 0.0 0.0 0.0001343

d2

5
0.0000010 0.0010467 0.0013255 0.0044768 0.0000169

d2

6
0.0 0.0000017 0.0 0.0 0.0000073

d2

7
0.0000100 0.0000007 0.0002592 0.0006662 0.0

TABELA I

CDFS, INVERSECDFS, AND COEFFICIENTSd2

k .

ρY (m) Triangle Rayleigh Laplace Uniform Exponential
standard novel standard novel standard novel standard novel standard novel

1 − min(|m|, 100)/100 3.82e-5 3.82e-5 4.51e-4 4.89e-4 2.70e-4 3.80e-4 7.55e-4 7.72e-4 2.32e-3 1.94e-3
exp(−0.05|m|) 2.90e-4 2.95e-4 2.02e-4 2.05e-4 2.92e-4 2.76e-4 8.94e-5 8.89e-5 2.78e-4 2.41e-4

exp(−0.05|m|) cos(0.25|m|) 3.41e-4 3.43e-4 1.49e-4 1.51e-4 9.14e-4 9.63e-4 2.84e-4 2.79e-4 1.13e-2 1.12e-2
J0(0.1π|m|) 2.91e-3 2.92e-3 3.60e-3 3.62e-3 6.33e-3 6.23e-3 6.54e-3 6.56e-3 5.60e-2 5.60e-2

TABELA II

DISTORTIONδ WITH TRIANGLE WEIGHTING AND SPECTRUM TRUNCATION.
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Fig. 5. Mean relative deviation between output samples of standard and
novel methods, as a function of sequence size.

results have been observed in all of the cases. Besides com-
munications, our method finds applicability in many different
areas concerned with non-Gaussian processes.
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