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Abstract— In all-optical networks signals are transmitted
through physical layer with no regeneration. Therefore, physical
impairments along lightpath can severely reduce network
performance. For this reason, many efforts have been made to
develop impairment aware routing and wavelength assignment
algorithms (IRWA) in order to mitigate the impairments effe cts,
improving the network performance. In this paper we propose
and analyze the performance of an adaptive impairment aware
routing algorithm based on a set of chosen input network
parameters. The cost function of this routing algorithm is based
on a power series expansion. The routing algorithm, called Power
Series Routing (PSR), is trained by an optimization technique
called Particle Swarm Optimization. We show that this IRWA
algorithm can learn during the training stage and adapt itself to
the network conditions.

I. I NTRODUCTION

All-optical networks have been considered as the most
reliable and economic solution to achieve high transmission
capacities with proper quality of service (QoS). Nevertheless,
there are two main challenges to manage these networks
providing QoS: define an appropriate routing and wavelength
assignment algorithm (RWA) and obtain acceptable optical
signal-to-noise ratio (OSNR) for every established lightpath.

The RWA problem can be divided in the routing process
and the wavelength assignment process. A classical approach
to solve routing problem is to represent the network topology
by a graph, then use some metrics to evaluate the cost of each
branch of the graph, and finally, use an algorithm that finds
the minimum cost path between two given nodes [1], [2].
The wavelength assignment algorithm has to decide which
available channel should be used to establish the call [1],
[3]. Some routing algorithms use heuristics based on a pre-
defined metric, such as the shortest path (SP), minor delay,
load balance [4] and lower noise figure in lightpath [5].

Some RWA algorithms designed for opaque networks just
consider the wavelength availability. The main aim of these
approaches is to achieve an improved load distribution or to
minimize the use of the physical layer resources [6], [7].

In transparent all-optical networks there is no signal
regeneration at intermediate nodes along the lightpaths.
Therefore, the signals accumulate noise due to transmission
impairments. For this reason, the routing algorithm must
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be aware of these physical penalties to fetch routes that
minimize OSNR degradation due to optical noise. Recently,
many efforts have been made to develop RWA algorithms that
consider physical impairments (IRWA) [5], [8], [9], [10]. The
main goal of these approaches is to minimize the blocking
probability by finding routes considering physical layer status.
Although routing schemes based on optical impairments
outperform the most common approaches, the use of these
algorithms implies in higher computational complexity. Some
algorithms have been proposed to achieve a good performance
with a lower computational time [9].

In this paper we propose a method to build the link cost
function based on a set of relevant network parameters. This
is an important tool for routing algorithm design, since the
parameters selection is a relatively easy task for a network
specialist. Nonetheless, combining these parameters to obtain
optimal network performance is a complex task. For this
reason we propose an adaptive cost function for impairment
aware routing, which we call PSR (Power Series Routing).
We use PSR to provide the link cost for a lowest cost routing
algorithm (e.g. Dijkstra’s algorithm). The PSR training is
performed by the particle swarm optimization technique.

II. POWER SERIES AND ALGORITHM DESCRIPTION

In this section we present a method to determine a link cost
function for network routing. The proposed approach consists
of three steps: first, a number of input variables for the cost
function is chosen by a network specialist. Then, the cost
function is written in terms of a series of functions. And finally,
an optimization algorithm is used to find the series coefficients
that minimizes the network blocking probability.

In this paper, we focus our analysis in the series that make
use of a set of orthogonal polynomials

f(x) =

∞
∑

n=0

anxn. (1)

Assuming the continuity of the function and its derivatives,
the expansion in Eq. (1) can also be done for a multivariable
functions

f(x0, x1, ..., xk) =

∞
∑

n0=0

∞
∑

n1=0

...

∞
∑

nk=0

bn0,n1,...,nk

k
∏

j=0

x
nj

j .

(2)
It is well known that one can findbn0,n1,...,nk

by means
of derivatives (multivariable Taylor’s series) [11]. However,



this approach works only for a function with derivatives.
Nevertheless, the lack of an analytical form to findbn0,n1,...,nk

is not an obstacle if one is able to find these coefficients
by a non analytical procedure. Considering this, we used
the proposed approach to build an adaptive cost function for
impairment aware routing, which we call power series routing
(PSR).

The first step is to choose the input variables for the cost
function. In optical networks the information about link length,
link availability and number of hops have high correlation with
noise accumulated along the lightpath.

Furthermore, excessive noise can damage the signal
transmission quality as the link length increases, and higher
gains must be provided by the optical amplifiers to compensate
for the losses. Therefore, more ASE noise is added by optical
amplifiers in the lightpath. Link usage has impact in amplifier
saturation and ASE noise generation, since the amplifier gain
and noise figure depends on the total input signal power
[12], [13]. Besides, as the number of hops increases, more
crosstalk noise is added in intermediate nodes. Therefore,
these elementary network parameters could be used to build a
simple routing scheme, instead of using the noise information,
obtaining similar network performance as for schemes that use
optical noise information to compose the cost function [9].
For these reasons, we choose as input variables for the cost
function two simple network parameters: normalized link
availability and normalized route length.

The second step of the algorithm is to describe the cost
function in terms of a series as in Eq. (2), according to the
number of network parameters chosen. Therefore, the link cost
between nodesi and j can be expressed in a two variables
form of Eq. (2) by:

f(xi,j , yi,j) =

∞
∑

n0=0

∞
∑

n1=0

bn0,n1
xn0

i,jy
n1

i,j , (3)

wherexi,j , andyi,j are, respectively, the link availability and
normalized link length between the nodesi and j. xi,j is
defined as:

xi,j =
λa

i,j

λT
i,j

, (4)

whereλa
i,j and λT

i,j are, respectively, the number of unused
and total number of wavelengths in the link between nodesi

andj. The normalized link lengthyi,j is defined as:

yi,j =
di,j

dmax

, (5)

where di,j is link length between nodesi and j and dmax

is the maximum link length in the network. Since it is not
computationally possible to have an infinite number of terms
in Eq.(3), one must truncate the series in order to obtain an
approximation withN terms:

f(xi,j , yi,j) =
N

∑

n0=0

N
∑

n1=0

bn0,n1
xn0

i,jy
n1

i,j . (6)

One can note from Eq. (6) that this function has a constant
term, which can represent the hop cost.

The third step consists of using PSO to find the series
coefficients that optimizes a network performance parameter.
We used PSO because it achieves a better performance in high
dimensionality problems than other optimization techniques
(e.g. Genetic Algorithms) [14]. The optimization algorithm
can be either used to maximize the network throughput or
minimize network blocking probability. In this paper we find
thebn0,n1,...,nk

coefficients that minimize blocking probability
as will be described in the next section.

It must be highlighted that one can include an arbitrary
number of input parameters in order to build the cost function,
including direct information about the physical impairments.

III. PARTICLE SWARM OPTIMIZATION

In order find thebn0,n1
coefficients, as discussed in previous

section, we used an intelligent optimization technique called
Particle Swarm Optimization (PSO) [14]. PSO was proposed
by Kennedy and Eberhart in 1995 and it is inspired in bird
flocking [15]. In PSO, each particlei is a possible solution of
the problem and it has some properties such as its current
velocity −→v i, its current position−→x i and its best position
in the past−→p i. For the Swarm communication topology we
used the local topology in a ring model, also known as
Lbest, in which each particle has information about only two
neighborhoods of the swarm [16]. It is recommend in [16]
to use local best model, instead of global best model used
in first PSO definition, since the global best approach has a
higher probability to be trapped in local minima. Denoting
by vi,d the dth component of−→v i vector and using the same
notation for the other vectors we can state the pseudo code
algorithm that we used to implement the PSO optimizer as
shown in table I.g() returns the fitness of one particle and
mini(

−→p neighbors) returns the position−→p neighbor of the fitter
particle among the two neighbors of the particlei.

TABLE I

PSOALGORITHM FOR MINIMIZATION USED IN OUR METHOD.

initialize randon population
Do

For i = 1 to Population Size
if g(−→x i) < g(−→p i) then −→p i = −→x i
−→p g = mini(

−→p neighbors)
For d = 1 to Dimension

vi,d = χ(vi,d + c1ǫ1(pi,d − xi,d) + c2ǫ2(pg,d − xi,d))
xi,d = (vi,d + xi,d)

Next d
Next i

Until termination criterion is met

The particle velocities are updated using the constriction
factor approach [17]. In this approach the particle velocity is
updated using the following equation:

vi,d = χ[vi,d + c1ǫ1(pi,d − xi,d) + c2ǫ2(pg,d − xi,d)], (7)

where theχ is evaluated by:

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2. (8)



In [17] the authors found that ifϕ > 4, the algorithm runs
properly. For this reason, we have chosen the same approach
for our PSO implementation.

IV. SIMULATIONS SETUP

Our simulation software uses the following steps for solve
RWA problem. Upon a call request it selects an available
wavelength from a list, using the first fit algorithm. The
route is defined by a routing algorithm that uses one of
the following weight functions: Shortest Path algorithm (SP),
with physical length as the cost function, Least Resistance
Weight (LRW) described in [7], an algorithm that uses the
total OSNR of the lightpath as the cost function (OSNR-
R) proposed in [5], and our proposal. The OSNR of each
lightpath is evaluated using the same model used in [9].
This model considers the following impairments: ASE noise,
amplifier gain saturation effect, saturation of ASE noise in
EDFAs and homodyne crosstalk in optical switches. If the
OSNR of the lightpath is above the pre-determined level
(OSNRQoS), then it is established. Otherwise the call is
blocked. Our algorithm also blocks a call if there is no
wavelength available. The blocked calls are lost. The blocking
probability is obtained from the ratio of the number of blocked
calls and the number of call requests. For each network
simulation a set of107 calls are generated by choosing
randomly (uniform distribution) the source-destination pair.
The call request is characterized as a Poisson process. We
assume circuit switched bidirectional connections in two
different fibers and no wavelength conversion capabilities.
The default optical parameters used in our simulations are:
amplifier output saturation powerPSat = 19 dBm, transmitter
output powerPin = 0 dBm, input optical signal-to-noise
ratio OSNRin = 40 dB, optical signal-to-noise ratio for
QoS criterionOSNRQoS = 23 dB, optical filter bandwidth
Bo = 100GHz, channel spacing∆f = 100GHz, the lower
wavelength of the gridλi = 1550.12nm, zero dispersion
wavelength λ0 = 1510nm, fiber loss coefficientα =
0.2 dB/km, multiplexer lossLMux = 3 dB, demultiplexer loss
LDemux = 3 dB, switch lossLSwitch = 3 dB, amplifier
noise factor that corresponds toNF = 5 dB F0 = 3.162,
noise factor model parameterA1 = 100 noise factor model
parameterA2 = 4 W [13], switch isolation factorǫ = −41 dB.

Amplifier gains are set to compensate link losses. We used
the network topology shown in Figure 1, which is the optical
network of Finland, a well known network that is often used
as a benchmark.

We used the following PSO parameters in our simulations:
50 particles, 500 interactions, velocity update parameters
c1 = c2 = 2.05, ǫ1 and ǫ2 random numbers with uniform
distribution in the interval [0,1], Constriction factorχ =
0.72984, PSO search space interval [-1,+1], maximum and
minimum velocity equals to +1 and -1 respectively.

The network parameters, physical layer parameters and
devices characteristics were set for two different situations.
In the first scenario (S1) the blocked calls are mainly due to
OSNR degradation along the lightpath, i.e., the blocked calls
are due to crosstalk and amplifiers impairments and blocking

Fig. 1. Network topology used in our simulations.

due to lack of available wavelength is negligible. In the second
scenario (S2) the blocked calls are due to both, the lack of
wavelength and OSNR degradation. In the second situation,
the number of blocked calls by lack of wavelengths is quite
similar to number of blocked calls due to OSNR degradation.
The main difference betweenS1 and S2 scenarios is the
number of total wavelengths available in each link. InS1

scenario we set the number of available wavelengths to 36
in order to provide very low call blockings due to lack of
wavelengths. In theS2 situation we decreased the number of
available wavelengths to 21.

V. RESULTS

The first step before the assignment of the Eq. (6) as a cost
function for routing is to find the optimum values for thebn0,n1

parameters. We have performed a search inbn0,n1
space using

PSO as described in section III. The search was done using
network load of 80 Erlangs. We propose to optimize for higher
network loads since it is the worst case. The goal of this search
is to minimize the network blocking probability (BP ). In
order to evaluate the fitness for a given particle, each network
was simulated for a set of105 calls. The returned blocking
probabilityBP is assigned as the fitness value for this particle.
We call these network simulations as offline training process
since it should be done prior to network operation.

Figure 2 shows the convergence of PSO algorithm. The
lowest blocking probability found in each PSO iteration is
shown. We performed the same optimization 3 times for
N = 4. This value was chosen as a commitment between
computational time spent to solve the problem and resulting
network blocking probability found by PSO. AsN increases
the computational time necessary for PSO convergence also
increases. On the other hand, ifN is too small, it compromises
the cost function representation. We can see that for early
iterations, the function found by PSR has higher blocking
probability than OSNR-R algorithm. As the number of
generations increases, PSO converges and PSR reaches lower
blocking probabilities than the OSNR-R scheme.

As it was discussed in section II we chose two variables as
input parameters for PSR cost function: link availabilityxi,j
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Fig. 2. PSO convergence analysis for scenarioS1.
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Fig. 3. PSO convergence analysis for scenarioS2.

and normalized link lengthyi,j . Using the best parameters
bn0,n1

found by PSO, we can plot the link cost as a function
of xi,j andyi,j in terms of level curves, for bothS1 andS2

as shown in Figure 4 and Figure 5, respectively. One can note
that in both cases the link cost is high for long distances and
low link availabilities (white regions in graph) and the cost
is low for short distances and high link availabilities (black
regions in graph), as expected.

The cost function is found for the entire search space i.e.
for all possible choices of link length and link availability.
However, during the routing process, some values of link
length and link availability are more often checked than
others by the routing algorithm. In order to find which are
these more often checked values, we built an histogram with
the number of times the routing algorithm consults the cost
of a given link (in term of length and availability). These
histograms are shown in Figure 6 and Figure 7 forS1 andS2

scenarios, respectively. Each line in the staked graph represents
the normalized availability distribution for a given link.The
numbers in brackets indicate the source and destination nodes
for the link according to the node numbers presented in Figure
1. We can see from Figure 6 and Figure 7 that the most
checked availability values are between 0.6 and 0.9 forS1
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Fig. 4. Cost functionf(xi,j , yi,j) of Eq. 6 found by PSO as a function of
normalized link length and link availability forS1 scenario.
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Fig. 5. Cost functionf(xi,j , yi,j) of Eq. 6 found by PSO as a function of
normalized link length and link availability forS2 scenario.

scenario and between 0.3 and 0.8 forS2 scenario. Therefore,
the analysis of the generated PSR function must be realized
on these ranges. Comparing the regions of more often checked
values for availability in both scenarios, one can note that
the dependence of the cost function with availability is more
pronounced inS2 than in S1 as one can see from Figures 4
and 5. As most of the links have normalized length between
0.2 and 0.5, one can note from Figures 4 and 5 that the link
availability has a greater influence isS2 than inS1. The same
behaviour can be noted for the dependence with length i.e. as
the link length increases the cost function increases faster for
S2 than forS1 as one can see from Figures 4 and 5. It means
that PSR is able to find different cost functions for different
network scenarios and for this reason it can optimize the
network performance. Thus, the PSR algorithm has the ability
to learn with the changes in the network characteristics, inthis
case, with the change in the number of available wavelengths.

Since we have found a link cost function (Figures 4 and 5)
we can assign it as the network link cost and evaluate
de network performance of the proposed routing scheme.
We compared the PSR against three other cost function
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Fig. 6. Histogram for the number of consults made by the PSR algorithm
as a function of availability for all the links of network forscenarioS1.

reported in literature: SP, LRW, OSNR-R. These algorithm
were chosen for comparison due to following reasons: SP
is simple and most largely used cost function for routing
comparison purposes; LRW is an algorithm capable of finding
less congested routes and, for this reason, leads to an
improved network load distribution; and OSNR-R is a routing
scheme that uses the physical impairments information for the
routing procedure. Figure 8 shows the blocking probability
as a function of total network load for these four different
algorithms forS1. One can note that our proposed PSR far
outperforms the results obtained using either SP or LRW
algorithms. Furthermore, when compared with the IRWA
approach (OSNR-R), PSR has better network performance
in terms of blocking probability. It means that PSR is
capable to reach the high performance to the IRWA approach
not evaluating directly the impairments in real time. The
impairment information was considered in the offline (training)
stage only. Performing the same analysis forS2, PSR also far
outperforms either SP or LRW algorithms and achieved a quite
similar performance to the OSNR-R algorithm.

PSR and OSNR-R routing algorithms have quite similar
performance in terms of blocking probability. However, we
must also compare the time spent by these approaches to solve
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Fig. 7. Histogram for the number of consults made by the PSR algorithm
as a function of availability for all the links of network forscenarioS2.
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Fig. 8. Network blocking probability as a function of network load for the
LRW, SP, OSNR-R and PSR algorithms inS1 scenario.

the RWA problem for each call. We used an Intel® Core™2
@2.13 GHz with 3 GB of RAM computer to perform this
comparison. The results for the average time spent to solve
the RWA per call, performing 50000 calls, are shown in
table II. The PSR algorithm solves the RWA problem 9.4
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Fig. 9. Network blocking probability as a function of network load for the
LRW, SP, OSNR-R and PSR algorithms inS2 scenario.

times faster than OSNR-R. This occurs due to the offline
training based on the physical impairments evaluation. In the
OSNR-R algorithm, as well as in other physical impairment
based algorithm, these calculations occur during the online
(call by call) solution of the RWA problem. Table II also
shows that PSR is up to 1.25 times slower than LRW. This
small difference should be due to the simple mathematical
formula of the LRW function, which involves just a single
division operation. We did not consider the SP algorithm for
computation time analysis since it has a fixed routing table.

TABLE II

AVERAGE T IME SPENT TOSOLVE RWA PERCALL IN S1 .

Algorithm Time Normalized time
LRW 0.078ms 0.0975
PSR 0.098ms 0.11

OSNR-R 0.886ms 1.00

VI. CONCLUSIONS

In this paper we propose a systematic form to build the link
cost function based on a set of relevant network parameters.
We apply the proposed scheme to build an adaptive cost
function (PSR) for impairment aware routing in all-optical
networks. The proposed PSR is based on simple network
parameters such as link availability, link length and hop count.
Since PSR indirectly takes into account the network physical
impairments we demonstrated that it outperforms or, in worst
case, provides similar performance to other algorithm that
use OSNR degradation as a weight function. However, the
computation time for our weight function was 9.4 times faster
than for the OSNR based one, for the network simulation
conditions used.

It must be highlighted that the proposed weight function
does not rely on online physical impairments evaluation to
infer about signal noise in the network. Therefore, it is not
mandatory to perform complex evaluations to obtain values for
optical noise based weight functions. However, PSR requires
an offline simulation to store the awareness of physical

impairments in the series parameters. This characteristicof
a priori knowledge brings to our weight function a drastic
reduction in the computation time for real time routing
decision as compared to noise based approaches.
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