Impairment Aware Routing Algorithm for
All-Optical Networks Based on Power Series and
Particle Swarm Optimization

Daniel A. R. Chaves, Douglas O. Aguiar, Carmelo J. A. Basittss, Joaquim F. Martins-Filho

Abstract—In all-optical networks signals are transmitted be aware of these physical penalties to fetch routes that
through physical layer with no regeneration. Therefore, ptysical minimize OSNR degradation due to optical noise. Recently,
impairments along lightpath can severely reduce network ,any efforts have been made to develop RWA algorithms that

performance. For this reason, many efforts have been made to . . .
develop impairment aware routing and wavelength assignmen consider physical impairments (IRWA) [3], [8], [9], [10].1iE

algorithms (IRWA) in order to mitigate the impairments effects, Main goal of these approaches is to minimize the blocking
improving the network performance. In this paper we propose probability by finding routes considering physical layeatss.

and analyze the performance of an adaptive impairment aware Although routing schemes based on optical impairments
routing algorithm based on a set of chosen input network outperform the most common approaches, the use of these

parameters. The cost function of this routing algorithm is based lgorith imolies in high tati | lexity S
on a power series expansion. The routing algorithm, called @ver ~ 290MNMS IMplies in higheér computational complexity.

Series Routing (PSR), is trained by an optimization technige algorithms have been proposed to achieve a good performance
called Particle Swarm Optimization. We show that this IRWA  with a lower computational time [9].

algorithm can learn during the training stage and adapt itséf to In this paper we propose a method to build the link cost
the network conditions. function based on a set of relevant network parameters. This
is an important tool for routing algorithm design, since the

|. INTRODUCTION parameters selection is a relatively easy task for a network

All-optical networks have been considered as the mo%?zazll'sﬁe':lvsonrektheéerfsosr’rﬁgrﬂt;'ni'ggathfosri p::)r(artr;ztkerséiomr Otﬁis
reliable and economic solution to achieve high transmissk?epason we propose an adaptive cost funf):tion for i.mpairment

capacities with proper quality of service (QoS). Neverbks . ) ; .

P proper g y (Qos) l Qégare routing, which we call PSR (Power Series Routing).

there are two main challenges to manage these netwo e use PSR to provide the link cost for a lowest cost routing
idi S: defi iat ti d I ) . . S
providing Qo €ine an appropria’e routing anc waveieng Ilgonthm €.g. Dijkstra’s algorithm). The PSR training is

assignment algorithm (RWA) and obtain acceptable optic% . L .
signal-to-noise ratio (OSNR) for every established ligittp performed by the particle swarm optimization technique.
The RWA problem can be divided in the routing process
and the wavelength assignment process. A classical agproac , ) ) )
to solve routing problem is to represent the network topglo In Fh|s section we pres_ent a method to determine a link qost

by a graph, then use some metrics to evaluate the cost of eli#ftion for network routing. The proposed approach cassis

branch of the graph, and finally, use an algorithm that fin@d three steps: first, a number of input variables for the cost
unction is chosen by a network specialist. Then, the cost

the minimum cost path between two given nodes [1], [2 e : ! ) -
The wavelength assignment algorithm has to decide whi ction is written in terms of a series of functions. And fina
optimization algorithm is used to find the series coeffitsie

available channel should be used to establish the call [i‘f‘ nilec ; »
[3]. Some routing algorithms use heuristics based on a pffat minimizes the network blocking probability.
defined metric, such as the shortest path (SP), minor delay!" this paper, we focus our analysis in the series that make
load balance [4] and lower noise figure in lightpath [5]. ~ US€ Of & set of orthogonal polynomials
Some RWA algorithms designed for opaque networks just e
consider the wavelength availability. The main aim of these fz) = Zanxn~ (1)
approaches is to achieve an improved load distribution or to n=0
minimize the use of the physical layer resources [6], [7]. Assuming the continuity of the function and its derivatives
In transparent all-optical networks there is no signhe expansion in Eq. (1) can also be done for a multivariable
regeneration at intermediate nodes along the lightpatfignctions
Therefore, the signals accumulate noise due to transmissio
impairments. For this reason, the routing algorithm must

Il. POWERSERIES ANDALGORITHM DESCRIPTION
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this approach works only for a function with derivatives. The third step consists of using PSO to find the series
Nevertheless, the lack of an analytical formto find .., ... », coefficients that optimizes a network performance paramete
is not an obstacle if one is able to find these coefficient¥e used PSO because it achieves a better performance in high
by a non analytical procedure. Considering this, we uselimensionality problems than other optimization techeggu
the proposed approach to build an adaptive cost function f@.g. Genetic Algorithms) [14]. The optimization algorith
impairment aware routing, which we call power series rayutircan be either used to maximize the network throughput or
(PSR). minimize network blocking probability. In this paper we find
The first step is to choose the input variables for the cadteb,,, »,... », coefficients that minimize blocking probability
function. In optical networks the information about linkggth, as will be described in the next section.
link availability and number of hops have high correlatioithw It must be highlighted that one can include an arbitrary
noise accumulated along the lightpath. number of input parameters in order to build the cost fumgtio
Furthermore, excessive noise can damage the sigmalluding direct information about the physical impairrten
transmission quality as the link length increases, anddrigh
gains must be provided by the optical amplifiers to compensat I1l. PARTICLE SWARM OPTIMIZATION
for the losses. Therefore, more ASE noise is added by opticalIn order find theh
amplifiers in the lightpath. Link usage has impact in amplifie
saturation and ASE noise generation, since the amplifier g
and noise figure depends on the total input signal po
[12], [13]. Besides, as the number of hops increases, m

no.n, COEfficients, as discussed in previous
ection, we used an intelligent optimization techniquéedal
e?l’tide Swarm Optimization (PSO) [14]. PSO was proposed
(F)é Kennedy and Eberhart in 1995 and it is inspired in bird

crosstalk noise is added in intermediate nodes. Therefor[gd(ing [15]. In PSO, each particieis a possible solution of

these elementary network parameters could be used to buil\}/ﬁ;%)girtobl_e)fn ifjcl:dc:rrr;if Sggifogf Pe;::gsitzugzs?s gzit(i:(;Jr:rent
simple routing scheme, instead of using the noise infoirnati . y v v, P T . P
n the pastp’;. For the Swarm communication topology we

obtaining similar network performance as for schemes that U d the local toool : ) del. also k
optical noise information to compose the cost function [9 ised the jocal topology In-a fing model, aiso known as
, in which each particle has information about only two

For these reasons, we choose as input variables for the . ;
function two simple network parameters: normalized "nFelghborhoods of the swarm [16]. It is recommend in [16]
availability and normalized route length, 0 use local best model, instead of global best model used

The second step of the algorithm is to describe the c 'gtf'rSt PSO d_efmmon, since the global besfc gpproach hgs a
oo . . . igher probability to be trapped in local minima. Denoting
function in terms of a series as in Eq. (2), according to trbe

, th , i
number of network parameters chosen. Therefore, the ligk cgY Vid the d'" component ofu’; vector and using the same
between nodes and j can be expressed in a two variabIeQOtatlon for the other vectors we can state the pseudo code

. algorithm that we used to implement the PSO optimizer as
form of Eq. (2) b 9 P P
4 y: shown in table lLg() returns the fithess of one particle and
o X min; (P neighvors) TELUNS the positiony eignsor Of the fitter
F(@ig i) = Z Z brg,ni 2759 5 () particle among the two neighbors of the partitle
’no:O 77,1:0
TABLE |

wherex; ;, andy; ; are, respectively, the link availability and
PSOALGORITHM FOR MINIMIZATION USED IN OUR METHOD.

normalized link length between the nodésand j. z;; is

defined as: o initialize randon population
Tis = 37 @ |™
W_/\Tﬁ For ¢=1 to Popul ation Size
J i 9(@s) <_g(?z‘) then ;=712
a T H Pg= mlnl( p neighbors)
where \? ; and A ; are, respectlve_ly, the_number of ungsed Fof d—1 to Dimension
and total number pf Wayelengths in .the I|r?k between nades vig = X(iq + cre1(pig — Tia) + c2e2(Dg.a — Tia))
andj. The normalized link lengthy; ; is defined as: Wi (vi,d + Ti,a)
’ X
d; j Next i
Yig =7 = (5) Until termination criterion is net

max

whered; ; is link length between nodesand j and d,qz ] » . o
is the maximum link length in the network. Since it is not The particle velocities are updated using the constriction

computationally possible to have an infinite number of ternf@ctor approach [17]. In this appro_ach the particle vejowst
in Eq.(3), one must truncate the series in order to obtain 4Rdated using the following equation:
approximation withN terms:

Vi.d = X[Vi,a + c1€1(Pia — Tia) + cae2(Pg,a — Tia)], (7)

N N
F@igoyig) = D > bogm @i oul's. (6)

no=0n1=0

where they is evaluated by:

One can note from Eq. (6) that this function has a constant 5 = 2 »
term, which can represent the hop cost. 12— — /o2 —4g|’

=1+ co. (8)



In [17] the authors found that ip > 4, the algorithm runs
properly. For this reason, we have chosen the same approach
for our PSO implementation.

IV. SIMULATIONS SETUP

Our simulation software uses the following steps for solve
RWA problem. Upon a call request it selects an available
wavelength from a list, using the first fit algorithm. The
route is defined by a routing algorithm that uses one of
the following weight functions: Shortest Path algorithnP}{S
with physical length as the cost function, Least Resistance
Weight (LRW) described in [7], an algorithm that uses the
total OSNR of the lightpath as the cost function (OSNR-
R) proposed in [5], and our proposal. The OSNR of each
lightpath is evaluated using the same model used in [$Jg. 1. Network topology used in our simulations.

This model considers the following impairments: ASE noise,

amplifier gain saturation effect, saturation of ASE noise in ) ) o

EDFAs and homodyne crosstalk in optical switches. If th@ue to lack of available wavelength is negligible. In theoset
OSNR of the lightpath is above the pre-determined levéfenario £2) the blocked calls are due to both, the lack of
(OSNRgos), then it is established. Otherwise the call jwavelength and OSNR degradation. In the second situation,
blocked. Our algorithm also blocks a call if there is ngh® number of blocked calls by lack of wavelengths is quite
wavelength available. The blocked calls are lost. The bifagk Similar to number of blocked calls due to OSNR degradation.
probability is obtained from the ratio of the number of bledk The main difference betwees; and S, scenarios is the
calls and the number of call requests. For each netwdikmber of total wavelengths available in each link. 3n
simulation a set ofl07 calls are generated by choosingCenario we set the number of avallab_le wavelengths to 36
randomly (uniform distribution) the source-destinatioairp 'M order to provide very low call blockings due to lack of
The call request is characterized as a Poisson process. Wvelengths. In the5; situation we decreased the number of
assume circuit switched bidirectional connections in twdvailable wavelengths to 21.

different fibers and no wavelength conversion capabilities

The default optical parameters used in our simulations are: V. RESULTS

amplifier output saturation powers,; = 19dBm, transmitter  The first step before the assignment of the Eq. (6) as a cost
output power P, = 0dBm, input optical signal-to-noise function for routing is to find the optimum values for the, ,,,
ratio OSNR;, = 40dB, optical signal-to-noise ratio for parameters. We have performed a seardh,jn,, space using
QoS criterionOSN Rq,s = 23dB, optical filter bandwidth PSO as described in section Ill. The search was done using
B, = 100GHz, channel spacing\f = 100GHz, the lower network load of 80 Erlangs. We propose to optimize for higher
wavelength of the grid\; = 1550.12nm, zero dispersion network loads since it is the worst case. The goal of thisckear
wavelength \y = 1510nm, fiber loss coefficienta: = is to minimize the network blocking probabilityBP). In

0.2 dB/km, multiplexer loss. .. = 3 dB, demultiplexer loss order to evaluate the fitness for a given particle, each mitwo
Lpemuz = 3dB, switch loss Lsyitcn = 3dB, amplifier was simulated for a set df0® calls. The returned blocking
noise factor that corresponds f6F = 5dB Fy = 3.162, probability BP is assigned as the fitness value for this particle.
noise factor model parametel; = 100 noise factor model We call these network simulations as offline training prsces
parameterd, = 4 W [13], switch isolation factor = —41dB. since it should be done prior to network operation.

Amplifier gains are set to compensate link losses. We usedrFigure 2 shows the convergence of PSO algorithm. The
the network topology shown in Figure 1, which is the opticabwest blocking probability found in each PSO iteration is
network of Finland, a well known network that is often usedhown. We performed the same optimization 3 times for
as a benchmark. N = 4. This value was chosen as a commitment between

We used the following PSO parameters in our simulationsomputational time spent to solve the problem and resulting
50 particles, 500 interactions, velocity update pararsetatetwork blocking probability found by PSO. AN increases
c1 = ca = 2.05, g and ez random numbers with uniform the computational time necessary for PSO convergence also

distribution in the interval [0,1], Constriction factoy = increases. On the other handNfis too small, it compromises
0.72984, PSO search space interval [-1,+1], maximum arttie cost function representation. We can see that for early
minimum velocity equals to +1 and -1 respectively. iterations, the function found by PSR has higher blocking

The network parameters, physical layer parameters apmbbability than OSNR-R algorithm. As the number of
devices characteristics were set for two different sitregi generations increases, PSO converges and PSR reaches lower
In the first scenarioq;) the blocked calls are mainly due toblocking probabilities than the OSNR-R scheme.

OSNR degradation along the lightpath, i.e., the blocketscal As it was discussed in section Il we chose two variables as
are due to crosstalk and amplifiers impairments and blockiimgput parameters for PSR cost function: link availability;
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Fig. 3. PSO convergence analysis for scenato
Fig. 5. Cost functionf(z;,;,y:,;) of Eq. 6 found by PSO as a function of
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and normalized link lengthy; ;. Using the best parameters
b, .n, found by PSO, we can plot the link cost as a function
of ; ; andy; ; in terms of level curves, for botl§; and S, scenario and between 0.3 and 0.8 frscenario. Therefore,
as shown in Figure 4 and Figure 5, respectively. One can ntibe analysis of the generated PSR function must be realized
that in both cases the link cost is high for long distances ana these ranges. Comparing the regions of more often checked
low link availabilities (white regions in graph) and the tosvalues for availability in both scenarios, one can note that
is low for short distances and high link availabilities @Ha the dependence of the cost function with availability is enor
regions in graph), as expected. pronounced inS; than in S; as one can see from Figures 4

The cost function is found for the entire search space i@d 5. As most of the links have normalized length between
for all possible choices of link length and link availakyjlit 0.2 and 0.5, one can note from Figures 4 and 5 that the link
However, during the routing process, some values of lirvailability has a greater influence$s than inS;. The same
length and link availability are more often checked thabehaviour can be noted for the dependence with length i.e. as
others by the routing algorithm. In order to find which aréhe link length increases the cost function increasesféaste
these more often checked values, we built an histogram with than forS; as one can see from Figures 4 and 5. It means
the number of times the routing algorithm consults the codtat PSR is able to find different cost functions for differen
of a given link (in term of length and availability). Thesenetwork scenarios and for this reason it can optimize the
histograms are shown in Figure 6 and Figure 79¢randS;  network performance. Thus, the PSR algorithm has the wbilit
scenarios, respectively. Each line in the staked graptesepts to learn with the changes in the network characteristict)is
the normalized availability distribution for a given linkhe case, with the change in the number of available wavelengths
numbers in brackets indicate the source and destinatioasnod Since we have found a link cost function (Figures 4 and 5)
for the link according to the node numbers presented in Eiguve can assign it as the network link cost and evaluate
1. We can see from Figure 6 and Figure 7 that the mod¢ network performance of the proposed routing scheme.
checked availability values are between 0.6 and 0.99por We compared the PSR against three other cost function
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Topology: Finland

reported in literature: SP, LRW, OSNR-R. These algorithm

were chosen for comparison due to following reasons: SP 10" m—m—m—=—=—R—ETET

is simple and most largely used cost function for routing © __A__A__A__.A_A—-A—A—""""
comparison purposes; LRW is an algorithm capable of finding > 10 8
less congested routes and, for this reason, leads to an=< =
improved network load distribution; and OSNR-R is a routing '§ /././

scheme that uses the physical impairments informatiorhert o 10°+ /'/o/

routing procedure. Figure 8 shows the blocking probability & /°/0

as a function of total network load for these four different ‘Eg 10° /'  d —e—PSR
algorithms forS;. One can note that our proposed PSR far m o 0/ o OSNRR
outperforms the results obtained using either SP or LRW pe —m—LRW
algorithms. Furthermore, when compared with the IRWA 10°+—————————
approach (OSNR-R), PSR has better network performance 25 30 35 40 45 50 55 60 65 70 75 80 85
in terms of blocking probability. It means that PSR is Network Load (Erlangs)

capable to r_eaCh _the high pe_rformance to _the IRWA_‘ approaﬁg. 8. Network blocking probability as a function of netkdpad for the
not evaluating directly the impairments in real time. Therw, SP, OSNR-R and PSR algorithms $h scenario.

impairment information was considered in the offline (thag)

stage only. Performing the same analysis$or PSR also far

outperforms either SP or LRW algorithms and achieved a quitee RWA problem for each call. We used an Intel® Core™?2

similar performance to the OSNR-R algorithm. @2.13 GHz with 3GB of RAM computer to perform this
PSR and OSNR-R routing algorithms have quite similamomparison. The results for the average time spent to solve

performance in terms of blocking probability. However, wéhe RWA per call, performing 50000 calls, are shown in

must also compare the time spent by these approaches to stdbde 1l. The PSR algorithm solves the RWA problem 9.4



impairments in the series parameters. This characteristic

Topology: Finland T . : . |
a priori knowledge brings to our weight function a drastic

_____ [ ] . . . . K .
10"y s—m—a—=—E—H ":,:J—-A reduction in the computation time for real time routing
—aA A_—A/A/A’A i decision as compared to noise based approaches.
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