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Joint Outage Probability: An Exact Formulation for
the Outage Problem in Wireless Systems
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Resumo— Este artigo apresenta uma nova formulaç̃ao para a
probabilidade de outage em sistemas de comunicaç̃ao limitados
por interfer ência, denominadaProbabilidade de Outage Conjunta
(JOP). Dado um conjunto de restriç̃oes para a relaç̃ao sinal inter-
ferência de um grupo de sinais mutuamente interferentes, a JOP
corresponde à probabilidade que ao menos uma restriç̃ao não
seja satisfeita. Uma soluç̃ao geral e exata para a probabilidade
deoutage conjunta é obtida, junto com uma condiç̃ao necesśaria e
suficiente para uma JOP ñao-nula. Além disso, uma formulaç̃ao
fechada para a JOP em um ambiente Rayleigh́e encontrada.
Os resultados apresentados podem ser utilizados diretamente em
diversos ceńarios práticos.

Palavras-Chave— Probabilidade de Outage, Sistemas Limita-
dos por Interfer ência, Relaç̃ao Sinal-Interferência, Rayleigh.

Abstract— This paper presents a useful, novel formulation
for the outage probability in interference-limited communication
systems, here namedJoint Outage Probability (JOP). Given a
set of SIR restrictions for mutually interfering signals, the
JOP corresponds to the probability that at least one of the
restrictions is not satisfied. A general exact solution for the
joint outage probability is derived, along with a necessaryand
sufficient condition for a non-null JOP. Furthermore, a closed-
form expression for the joint outage probability in a non-
identically distributed Rayleigh scenario with independent signals
is obtained. The results presented here can be directly applied
in a wide range of practical scenarios.

Keywords— Outage Probability, Signal-to-Interference Ratio,
Interference-limited Systems, Rayleigh.

I. I NTRODUCTION

Outage probability is a key figure of merit in wireless
communications. In interference-limited systems, outageprob-
ability is commonly defined as the probability that the signal-
to-interference ratio (SIR) of a received signal is below a given
threshold [1], [2]. Such a metric is directly related to system
capacity in spread spectrum schemes, such as CDMA systems
[3]. Furthermore, dense wireless networks, such as sensor and
ad hoc networks, are intrinsically interference-limited,having
the outage probability as a fundamental parameter for system
analysis, design, and implementation [4]–[6].

The difficulty of the analysis of an outage condition may
vary drastically. In some situations, it may be as simple
as obtaining the probability of the occurrence of a single,
straightforward event. In some others, it may involve the
calculation of the probability of joint, intricate events.For
instance, in call admission problems it may be desirable to
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have a call admitted if, with such an admission, the interfer-
ence experienced by all of the calls (i.e. those in progress as
well as the one entering the system) remains under a certain
tolerable threshold. In case the channels are independent and
identically distributed (i.i.d.) and the threshold conditions are
the same for all of the conversations (communications), one
may lay hold of a symmetry property to simplify this problem
and find an approximate solution as follows. Considering each
channel to be identically affected by all of the others, then
it approximately suffices to test the outage condition of any
arbitrary individual channel with the admission of the call.
But as said, this is an approximation even to the i.i.d. case.In
addition, in practical situations and in multi-rate, multi-service
networks, the channels are affected differently and the interfer-
ence threshold may vary for each communication. Therefore,
an exact solution for this general case is of paramount interest.

In light of the previous discussion, we present a useful,
novel formulation for interference-limited communication sys-
tems, here namedJoint Outage Probability (JOP). Given a
set of SIR restrictions forN mutually interfering signals
with a certain joint distribution, the JOP corresponds to the
probability that at least one of the restrictions is not satisfied
or, dually, that allN restrictions are attended. Hence, the JOP
gives a direct measure of the outage probability for a group of
signals detected by a receiver, not being limited to the outage
of an individual signal. Although the results presented here
have a theoretical nature, they can be directly applied in a wide
range of practical scenarios, such as multiuser detection [7],
power control [8], sensor positioning, wireless (multihopor
not) network dimensioning [9] and, as hinted earlier, admission
control problems [10]. To the best of the authors’ knowledge,
such a result is unprecedented in the literature.

The remainder of this paper is organized as follows. Section
II presents a formal definition of the JOP problem. Section
III derives the general, exact formulation to solve the JOP.
In addition, a necessary and sufficient condition for a non-
trivial JOP, dependent only on the SIR restrictions, and not
on the signals’ distribution, is found. Section IV presents
a closed-form expression for the JOP in an independent
non-identically Rayleigh distributed scenario with arbitrary
interference thresholds. Finally, Section V presents somecon-
cluding remarks and a summary of the results.

II. OUTLINE OF THE PROBLEM

Let Wi, i = 1, . . . , N be the instantaneous powers of
interfering fading signals. In an interference-limited system,
in order for the system to operate adequately, it is required
that the signal-to-interference ratio at the receiver for any
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given signal Wi be greater than a tolerable thresholdβi,
i = 1, . . . , N , as specified for the particular communication.
Therefore, theN received signals must satisfy the set of
inequalities (1), which describes a hypervolume in theN -
dimensional spaceSN .

SN =



























































































W1

N
∑

i=2

Wi

≥ β1

W2

N
∑

i=1
i6=2

Wi

≥ β2

...
WN

N−1
∑

i=1

Wi

≥ βN

(1)

We define as Joint Outage Probability(PI) the probability
that at least one of the inequalities in (1) is not satisfied. The
value ofPI can be obtained as

PĪ =

∫

SN

fW(w1, . . . , wN ) dw1 . . . dwN , (2)

wherefW(w1, . . . , wN ) is the joint probability density func-
tion of W1, . . . , WN andPĪ = 1 − PI is the probability that
all the inequalities in (1) are satisfied.

III. T HE EXACT SOLUTION FOR THEJOP

In this section, the regionSN will be reformulated so as
to make the integration in (2) tractable. This is done through
four steps: (i)SN will be divided intoN −1 regions, denoted
by SN

j , j = 1, . . . , N − 1, each of which with well-defined
integration limits; (ii) the union

⋃N−1
j=1 SN

j is shown to be
equivalent toSN ; (iii) SN

i and SN
j (j 6= i) are proved to

form distinct integration regions; (iv) as a consequence ofthe
previous steps, the right side of (2) will then be rewritten as
the sum ofN − 1 integrals. The section is then finalized by
determining the condition for a non-trivialSN hypervolume.

A. Dividing SN into N − 1 Regions

The restrictions in (1) can be rearranged in terms of theWN
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−
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∑
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...
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−
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(3)

Noting that the firstN−1 inequalities and the last inequality
in (3) determine, respectively, upper and lower bounds for the
value ofWN , (3) can be rewritten as

βN

N−1
∑

i=1

Wi ≤ WN ≤ min
1≤k≤N−1







Wk

βk

−

N−1
∑

i=1
i6=k

Wi






. (4)

(Of course, from (3) and (4), null values ofβk will not impose
an upper limit toWN . With this observation in mind, and
without loss of generality, we shall considerβk 6= 0 for all k.)

Analyzing the upper limit forWN in (4), we find thatk = j,
1 ≤ j ≤ N − 1, when

Wj ≤
βj(1 + βi)

βi(1 + βj)
Wi ∀i < N . (5)

Consider a region such that (5) holds. Then (4) is rewritten
as

βN

N−1
∑

i=1

Wi ≤ WN ≤
Wj

βj

−

N−1
∑

i=1
i6=j

Wi . (6)

A necessary condition for (6) to be non-trivial is

(1 − βjβN )

βj(1 + βN )
Wj ≥

N−1
∑

i=1
i6=j

Wi . (7)

For convenience, we define the constants

Kj,k =
βj(1 + βk)

βk(1 + βj)
(8)

Cj,N =
(1 − βjβN )

βj(1 + βN )
. (9)

Combining (5) to (7), the following restriction is found for
WN−1:

KN−1,jWj ≤ WN−1 ≤ Cj,NWj −

N−2
∑

i=1
i6=j

Wi . (10)

In the same way, forWN−2,

KN−2,jWj ≤ WN−2 ≤ Cj,NWj −

N−3
∑

i=1
i6=j

Wi − WN−1 . (11)

Using the lower bound forWN−1 in (10), (11) can be
rewritten as

KN−2,jWj ≤ WN−2 ≤ (Cj,N−KN−1,j)Wj−

N−3
∑

i=1
i6=j

Wi . (12)

Proceeding in a similar manner forWN−3, WN−4, . . . , W1,
we find the following set of inequalities, which describe a
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region defined asSN
j :
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KN−1,jWj ≤ WN−1 ≤ Cj,NWj −

N−2
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i=1
i6=j

Wi

...
...

Kk,jWj ≤ Wk ≤ (Cj,N −

N−1
∑

i=k+1
i6=j

Ki,j)Wj −

k−1
∑

i=1
i6=j

Wi

...
...

K1,jWj ≤ W1 ≤ (Cj,N −

N−1
∑

i=2
i6=j

Ki,j)Wj

0 ≤ Wj < ∞
(13)

B. Proof that
⋃N−1

j=1 SN
j = SN

Next, we prove that the region formed by the union
⋃N−1

j=1 SN
j is equal to that ofSN . From the derivation ofSN

j ,
it is clear that anN -tuple (W1, W2, . . . , WN ) belonging to
SN , with the jth element,1 ≤ j ≤ N − 1, satisfying
(5), will also be contained inSN

j . We note that, in case
(W1, W2, . . . , WN ) ∈ SN , there will always be at least
one element that satisfies (5), since the upper limit of (4)
necessarily has a minimum. Ifm elements satisfy (5), it is
straightforward to show that theN -tuple will belong tom

regions of the formSN
j . It follows that any givenN -tuple

belonging toSN will also be contained in
⋃N−1

j=1 SN
j .

The converse can be proved by contradiction. Assume that
anN -tuple (W1, W2, . . . , WN ) belonging to

⋃N−1
j=1 SN

j exists
that does not satisfy at least one of the inequalities in (3).
Then, we may consider that, for somek 6= N ,

WN >
Wk

βk

−

N−1
∑

i=1
i6=k

Wi . (14)

In caseWk satisfies (5), (14) confutes the first inequality in
(13), contradicting the initial assumption. Otherwise, suppose,
without loss of generality, that condition (5) holds forj 6= k.
Thus,

Wk

βk

< WN +

N−1
∑

i=1
i6=k

Wi

≤
Wj

βj

−

N−1
∑

i=1
i6=j

Wi +

N−1
∑

i=1
i6=k

Wi

⇒ Wk < Kk,jWj ,

contradicting the fact thatWj satisfies (5).

Whenk = N , we have

WN < βN

N−1
∑

i=1

Wi ,

contradicting the first inequality in (13). Therefore, an element
belonging to the region

⋃N−1
j=1 SN

j will also belong toSN .

C. Proof that SN
j and SN

k Form Distinct Integration Regions

We will prove that theN -dimensional hypervolume of
SN

j ∩SN
k (j 6= k) is zero, implying thatSN

j andSN
k are distinct

integration regions. In case an element(W1, W2, . . . , WN )
belongs to bothSN

j andSN
k , we find from (5) that

Wj = Kj,kWk . (15)

Since two elements are dependent, the fact that theN -
dimensional hypervolume is null follows directly. Intuitively,
this means that the regionsSN

j andSN
k have only “border”

points in common, with disjoint interiors. Therefore, the
integration region defined bySN

j does not overlap with the
one defined bySN

k .

D. Main Result

Based on the previous developments, (2) can be rewritten
as

PĪ =

N−1
∑

j=1

∫

SN
j

fW(w1, . . . , wN ) dw1 . . . dwN , (16)

or, equivalently,

PĪ =
N−1
∑

j=1

∫ ∞

0

∫

(Cj,N−

N−1
∑

i=2
i6=j

Ki,j)wj

K1,jwj

· · ·

×

∫ (Cj,N−

N−1
∑

i=j+1

Ki,j)wj−

j−2
∑

i=1

wi

Kj−1,jwj

∫ (Cj,N−

N−1
∑

i=j+2

Ki,j)wj−

j−1
∑

i=1

wi

Kj+1,jwj

. . .

×

∫

Cj,N wj−

N−2
∑

i=1
i6=j

wi

KN−1,jwj

∫

wj
βj

−

N−1
∑

i=1
i6=j

wi

βN

N−1
∑

i=1

wi

fW(w1, w2, . . . , wN )

× dwNdwN−1 . . . dwj+1dwj−1 . . . dw1dwj . (17)

We note that the indexj of the summation terms in (16) and
(17) will only span the values for whichβj 6= 0.

E. The Condition for a Non-Trivial SN

From (17), a necessary and sufficient condition for the
integration region defined in (1) to be a non-trivial one is

N
∑

i=1

βi

1 + βi

< 1 . (18)

This is proved as follows. In order for (13) to define a non-
trivial integration region, the upper limit must be necessarily
larger than the lower limit for every inequality. Therefore, from



XXVI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT’08, 02-05 DE SETEMBRO DE 2008, RIO DE JANEIRO, RJ

the restriction forW1 in (13) (or equivalently forW2 in case
SN

1 is considered), we have that

Cj,N >

N−1
∑

i=1
i6=j

Ki,j . (19)

We will proceed by induction to show that (19) is also a
sufficient condition for the integration regionSN

j to be non-
trivial. Assume that (19) is satisfied, which is the base caseof
the inductive argument. Suppose, also, that the upper limitof
the inequality corresponding toWk in (13) is necessarily larger
than the lower one. We consider, without loss of generality,
that k 6= j − 1. Therefore,

Kk,jWj < (Cj,N −

N−1
∑

i=k+1
i6=j

Ki,j)Wj −

k−1
∑

i=1
i6=j

Wi

⇒

k−1
∑

i=1
i6=j

Wi < (Cj,N −

N−1
∑

i=k
i6=j

Ki,j)Wj . (20)

Analyzing the upper limit fork + 1:

(Cj,N −

N−1
∑

i=k+2
i6=j

Ki,j)Wj −

k
∑

i=1
i6=j

Wi > (Kk,j + Kk+1,j)Wj − Wk

≥ Kk+1,jWj . (21)

The first inequality follows directly from (20), whereas the
second one is justified by (5), proving the induction step. Thus,
if the condition forW1 is satisfied in (13), the restriction for
W2, W3, ..., WN−1 will be non-trivial.

Finally, to prove thatWN will also have a non-trivial
restriction when (19) is satisfied, we note that its limits in
(13) depend on all the otherN −1 variables. Consequently, it
must be shown thatW1, W2, . . . , WN−1 can assume values
such that

Cj,NWj >

N−1
∑

i=1
i6=j

Wi , (22)

where the inequality follows from (7). However, given (19),
(22) will be satisfied whenW1, W2, . . . , WN−1 assume their
minimum values in (13), which concludes the proof. The
restriction (18) follows directly by summing1+KN,j to both
sides of (19).

It is interesting to note that (18) is independent ofSN
j ,

even though a specific region was considered in the proof.
Furthermore, (18) depends solely on the SIR thresholds, and
not on the signals’ distribution. This fact explicits that,even
though the inequalities in (1) may have a non-null probability
of being satisfied individually, there will always be at least
one signal outage unless (18) is attended.

IV. GENERAL, CLOSED-FORM EXPRESSION FOR A

RAYLEIGH ENVIRONMENT

In this section, a closed-form expression for the joint outage
probability in a Rayleigh environment is derived, assumingin-
dependent interfering signals. The probability density function

of Wi is given by

fWi
(wi) =

1

Ωi

exp

(

−
wi

Ωi

)

, (23)

whereΩi is the mean power, and the joint density distribution
of W1, W2, . . . , WN is the product

fW(w1, w2, , . . . , wN ) =

N
∏

i=1

fWi
(wi) . (24)

The integration of the joint distribution (24) presents a
regularity, since it is the product of exponential functions.
As a consequence, for a fixedj in the summation term, the
innermost integrals of (17) have a pattern, denoted byϕj(·).
For j = 1 in (17), ϕ1(·) is given by

ϕ1(r, s,Ω, β, c) =

N
∑

i=N−c

(1 + βN )ΩNΩc
i

(βNΩi + ΩN )
N
∏

j=N−c
j 6=i

(Ωi − Ωj)

×



exp



−
(r + s)βN

ΩN

− r

N−1
∑

j=N−c

(ΩN + βNΩj)

ΩjΩN

Kj,1





− exp









βis − r

βiΩi

+ r

N
∑

j=N−c
j 6=i

(Ωj − Ωi)

ΩjΩi

Kj,1

















, (25)

where,r and s are auxiliary variables, respectively, denoting
wj and the sum of the remainingwi which will be posteriorly
integrated;Ω = (Ω1, Ω2, . . . , ΩN ); β = (β1, β2, . . . , βN );
andϕ1(·) satisfies

ϕ1(r, s,Ω, β, 1) =

∫ C1,N r−s

KN−1,1r

e
− t

ΩN−1

ΩN−1

∫ r
β1

−s−t

βN (r+s+t)

e
− u

ΩN

ΩN

dudt

(26)
and

ϕ1(r, s,Ω, β, k) =

∫ (C1,N−

N−1
∑

i=N−k+1

Ki,1)r−s

KN−k,1r

e
− t

ΩN−k

ΩN−k

× ϕ(r, s + t,Ω, β, k − 1)dt . (27)

It is straightforward to show that (25) satisfies (26) and (27).
The value ofϕi(·) for i 6= 1, as well as the corresponding

properties (26) and (27), can be obtained directly from (25)
with the appropriate change of indexes. When two signals
Wm and Wn have the same mean power, the corresponding
expression forϕ1(·) can be found by taking the limitΩm →

Ωn in (25).
Using (17) and the property (27) ofϕi(·), the value ofPĪ

for the Rayleigh scenario under investigation is

PĪ =
N−1
∑

m=1

PĪ,m , (28)

where

PĪ,m =

∫ ∞

0

e−
r

Ωm

Ωm

ϕm(r, 0,Ω, β, N − 2) dr . (29)
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Evaluating the integral in (29), and after tedious and lengthy
simplifications,PĪ,m is found to be

PĪ,m =

(

(1 + βN )βm

1 + βm

)



1 −

N
∑

j=1

βj

1 + βj





N−1

(

N
∏

l=1

Ωl

)





N−1
∑

j=1

βj

1 + βj

(

βNΩj + ΩN

ΩjΩN

)





×

N
∏

i=1
i6=m





1

Ωi

+
N
∑

j=1

βj (Ωi − Ωj)

(1 + βj) ΩiΩj





−1

. (30)

Substituting (30) in (28) and performing further simplifica-
tions, we arrive at the final exact, closed-form expression for
PĪ :

PĪ =



1 −

N
∑

j=1

βj

1 + βj





N−1

N
∏

i=1



1 −

N
∑

j=1

βj

1 + βj

(

1 −
Ωi

Ωj

)





. (31)

This expression is general, and may be applied even when
one or more signals have the same average power or a null
restriction value, i.e.,βj = 0. It is noteworthy that condition
(18) appears explicitly in the numerator of (31).

Whenβj = β andΩj = Ω for all j, (31) simplifies to

PĪ =

(

1 − (N − 1)β

1 + β

)N−1

. (32)

Equation (32) is illustrated in Fig. 1.

V. CONCLUSIONS

In this paper, we presented a new formulation for
interference-limited wireless systems, namely joint outage
probability. An integral form for the JOP was derived in
terms of the individual SIR restrictions and the signals’ joint
probability distribution. Through further analysis, a necessary
and sufficient condition for a non-null JOP was found, which
depends solely on the SIR restrictions. An application of
these results led to anexact, simple, closed-form expression
of the joint outage probability in a Rayleigh environment,
considering independent signals. The formulations derived
here are general, and may be applied in various practical
scenarios.
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for a Rayleigh i.i.d. environment with equal restrictionsβ.

REFERENCES

[1] M. D. Yacoub, Fundamentals of Mobile Radio Engineering, 1st ed.
CRC-Press, Apr. 1993.

[2] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication.
Prentice Hall PTR, Apr. 1995.

[3] K. Gilhousen, I. Jacobs, R. Padovani, A. Viterbi, L. Weaver, and
C. Wheatley, “On the capacity of a cellular CDMA system,”IEEE Trans.
Veh. Technol., vol. 40, no. 2, pp. 303–312, May 1991.

[4] S. Weber, X. Yang, J. Andrews, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with outage constraints,” IEEE
Trans. Inform. Theory, vol. 51, no. 12, pp. 4091–4102, Dec. 2005.

[5] J. Andrews, S. Weber, and M. Haenggi, “Ad hoc networks: Tospread or
not to spread?”IEEE Commun. Mag., vol. 45, no. 12, pp. 84–91, Dec.
2007.

[6] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[7] J. Andrews, “Interference cancellation for cellular systems: a contempo-
rary overview,”IEEE Wireless Commun. Mag., vol. 12, no. 2, pp. 19–29,
Apr. 2005.

[8] R. Yates, “A framework for uplink power control in cellular radio
systems,”IEEE J. Select. Areas Commun., vol. 13, no. 7, pp. 1341–
1347, Sept. 1995.

[9] A. A. M. de Medeiros and M. D. Yacoub, “An analytical approach for di-
mensioning wireless multihop networks,” inIEEE Global Telecommun.
Conf., Nov. 2007, pp. 4687–4691.

[10] S. Singh, V. Krishnamurthy, and H. Poor, “Integrated voice/data call
admission control for wireless DS-CDMA systems,”IEEE Trans. Signal
Process., vol. 50, no. 6, pp. 1483–1495, June 2002.


