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Joint Outage Probability: An Exact Formulation for
the Outage Problem in Wireless Systems

Flavio du Pin Calmon and Michel Daoud Yacoub

Resumo— Este artigo apresenta uma nova formulago para a
probabilidade de outage em sistemas de comunica@p limitados
por interfer éncia, denominadaProbabilidade de Outage Conjunta
(JOP). Dado um conjunto de restrigges para a rela@o sinal inter-
feréncia de um grupo de sinais mutuamente interferentes, a JOP
corresponde a probabilidade que ao menos uma restrigo ndo
seja satisfeita. Uma solugo geral e exata para a probabilidade
de outage conjunta & obtida, junto com uma condiio necesaria e
suficiente para uma JOP ro-nula. Alem disso, uma formula@o
fechada para a JOP em um ambiente Rayleigteé encontrada.
Os resultados apresentados podem ser utilizados diretamtnem
diversos cer@rios praticos.

Palavras-Chave— Probabilidade de Outage, Sistemas Limita-
dos por Interferéncia, Rela@o Sinal-Interferéncia, Rayleigh.

Abstract— This paper presents a useful, novel formulation
for the outage probability in interference-limited communication
systems, here namedloint Outage Probability (JOP). Given a
set of SIR restrictions for mutually interfering signals, the
JOP corresponds to the probability that at least one of the
restrictions is not satisfied. A general exact solution for ke
joint outage probability is derived, along with a necessaryand
sufficient condition for a non-null JOP. Furthermore, a closd-
form expression for the joint outage probability in a non-
identically distributed Rayleigh scenario with independent signals
is obtained. The results presented here can be directly apigd
in a wide range of practical scenarios.

Keywords— Outage Probability, Signal-to-Interference Ratio,
Interference-limited Systems, Rayleigh.

I. INTRODUCTION

have a call admitted if, with such an admission, the interfer
ence experienced by all of the calls (i.e. those in progress a
well as the one entering the system) remains under a certain
tolerable threshold. In case the channels are independent a
identically distributed (i.i.d.) and the threshold coiglits are
the same for all of the conversations (communications), one
may lay hold of a symmetry property to simplify this problem
and find an approximate solution as follows. Considerindneac
channel to be identically affected by all of the others, then
it approximately suffices to test the outage condition of any
arbitrary individual channel with the admission of the call
But as said, this is an approximation even to the i.i.d. chse.
addition, in practical situations and in multi-rate, migdérvice
networks, the channels are affected differently and trerfiet-
ence threshold may vary for each communication. Therefore,
an exact solution for this general case is of paramountéster

In light of the previous discussion, we present a useful,
novel formulation for interference-limited communicatisys-
tems, here namedoint Outage Probability (JOP). Given a
set of SIR restrictions forN mutually interfering signals
with a certain joint distribution, the JOP corresponds te th
probability that at least one of the restrictions is notsfd
or, dually, that allNV restrictions are attended. Hence, the JOP
gives a direct measure of the outage probability for a grdup o
signals detected by a receiver, not being limited to the gauta
of an individual signal. Although the results presentedeher
have a theoretical nature, they can be directly applied inda w
range of practical scenarios, such as multiuser detectipn [

Outage probability is a key figure of merit in wirelespower control [8], sensor positioning, wireless (multihop

communications. In interference-limited systems, outagd-

not) network dimensioning [9] and, as hinted earlier, adinis

ability is commonly defined as the probability that the signacontrol problems [10]. To the best of the authors’ knowlgdge

to-interference ratio (SIR) of a received signal is belovivag
threshold [1], [2]. Such a metric is directly related to syst

such a result is unprecedented in the literature.
The remainder of this paper is organized as follows. Section

capacity in spread spectrum schemes, such as CDMA systdimgresents a formal definition of the JOP problem. Section

[3]. Furthermore, dense wireless networks, such as sensbr #I derives the general, exact formulation to solve the JOP.

ad hoc networks, are intrinsically interference-limiteédying In addition, a necessary and sufficient condition for a non-

the outage probability as a fundamental parameter for systérivial JOP, dependent only on the SIR restrictions, and not

analysis, design, and implementation [4]-[6]. on the signals’ distribution, is found. Section IV presents
The difficulty of the analysis of an outage condition magp closed-form expression for the JOP in an independent

vary drastically. In some situations, it may be as simpkon-identically Rayleigh distributed scenario with ardiy

as obtaining the probability of the occurrence of a singl#)terference thresholds. Finally, Section V presents soome

straightforward event. In some others, it may involve theuding remarks and a summary of the results.

calculation of the probability of joint, intricate eventBor

instance, in call admission problems it may be desirable to Il. OUTLINE OF THE PROBLEM
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given signal W; be greater than a tolerable threshadgd Noting that the firstV —1 inequalities and the last inequality
1=1,...,N , as specified for the particular communicationin (3) determine, respectively, upper and lower boundsHer t
Therefore, theN received signals must satisfy the set o¥alue of Wy, (3) can be rewritten as

inequalities (1), which describes a hypervolume in tNe

dimensional spacé™.

N-1 Wk N—-1
Wi S 1% S min —_— — Wl . 4
W1 > 8, BN ; N <heN-1 | B ; 4)
N i£k
> Wi
i=2 (Of course, from (3) and (4), null values @f will not impose
Wa > By an upper limit toWy. With this observation in mind, and
N - without loss of generality, we shall consid&y # 0 for all k.)
N _ Z Wi Analyzing the upper limit foly in (4), we find thatt = 7,
SN =¢ = ) .
22 1<j<N-—1, when
WN | ﬁl(l + ﬁ])
~ = PN
Z w; Consider a region such that (5) holds. Then (4) is rewritten
=1 as
We define as Joint Outage Probabil{ti#;) the probability = W; e
that at least one of the inequalities in (1) is not satisfidue T P Z Wi < Wy < B; Z Wi . ©6)
value of P; can be obtained as =t i;}
P; = fw(wi,...,wx) dwy ...dwy , (2) A necessary condition for (6) to be non-trivial is
SN
where fw (w1, ..., wy) is the joint probability density func- (1—B;Bn) N-1
tion of W1,...,Wy and P; = 1 — P; is the probability that mwj > Z Wi . (7
all the inequalities in (1) are satisfied. I N ;ﬁ;%

I1l. THE EXACT SOLUTION FOR THEJOP
In this section, the regios™ will be reformulated so as

For convenience, we define the constants

to make the integration in (2) tractable. This is done thioug K, = Bi (1 + Br) (®)
four steps: (i\S™ will be divided into N — 1 regions, denoted PR B+ B))

by SJN, j=1,...,N — 1, each of which with well-defined S (1—-p5;6n) )
integration limits; (ii) the unionJ;";' SV is shown to be N0+ By)

equivalent toS"; (ii) S and S} (j # i) are proved to

form distinct integration regions; (iv) as a consequencthef ~ Combining (5) to (7), the following restriction is found for
previous steps, the right side of (2) will then be rewritten dV~N-1:

the sum of N — 1 integrals. The section is then finalized by

determining the condition for a non-trivid"¥ hypervolume. =
g yp Kyn_1,,;W; < Wn_1 <CjnW; — Z Wi . (10)
A. Dividing SV into N — 1 Regions 125
aSThe restrictions in (1) can be rearranged in terms ofithe In the same way, foiVy_»,
) N-1
Wh N-3
Wy < — — W;
M= ; Ky_o jW; < Wn_o <Cj nW; — Z Wi = Wn_1. (11)
N-1 i=1
W- i#]
Wy < 5_2 - Z W;
2 ;ﬁ;l Using the lower bound foi¥/y_; in (10), (11) can be
3) rewritten as
N-3
Wy < Wyn-1 NEQW Ry—2,jW; < Wn_2 < ((Cj,N_KN—l,j)Wj_Z Wi. (12)
~ BN — ’ 2;%
N-—-1 . . o
Wy > Oy Z W, Proceeding in a similar manner fo¥'y _s, Wn_4, ..., W1,
N P we find the following set of inequalities, which describe a
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region defined a§JN: Whenk = N, we have
N-1
N-1 N-1
W; :
ﬁNZWiSWNS—J— W; WN<5NZW1,
i=1 Bi i=1 i=1
7 N contradicting the first ine}g}uahtyin (13). Therefore, aamaknt
= belonging to the regio ' SN will also belong toS™ .
Ky-1,W; < Wy SCaW; = > W, ging 9o 5, g
i=1
7 C. Proof that S} and S} Form Distinct Integration Regions
We will prove that the N-dimensional hypervolume of
k-1 SNNSY (j # k) is zero, implying thatS}" andsS; are distinct
Ky, W; < Wi < (Cjn — Z K; ;) )W; — ZWZ' integration regions. In case an elemémty, Ws, ..., Wx)
i1 ! belongs to bothSY and S}, we find from (5) that
i#£j 1] :
W; =K; Wy . (15)
Since two elements are dependent, the fact that ihe
Ky ,W; < W), < (Cjn — Z K, )W, dimensional hypervolume is null follows directly. Intwiily,
this means that the regiod" andS; have only “border”
17&3 points in common, with disjoint interiors. Therefore, the
0<W; <oco integration region defined b§$JN does not overlap with the

(13)  one defined bysY.

B. Proof that (J),' S = SV D. Main Result

Next we prove that the region formed by the union Based on the previous developments, (2) can be rewritten
U SN is equal to that o5™. From the derivation ofSY, as

it |s clear that anN-tuple (W1, Wy, ..., Wx) beIongmg to
SV, with the jth element,1 < j g N — 1, satisfying Z fw (wi,...,wy) dwy...dwy ,  (16)
(5), will also be contained inS‘JN We note that, in case
N
(W1, Wa,...,Wy) € SV, there will always be at Ieastz?r equwalently,
one element that satisfies (5), since the upper limit of (4)
necessarily has a minimum. th elements satisfy (5), it is
straightforward to show that thé/-tuple will belong tom Can= ZK”)W’
regions of the formSN It follows that any g|venN tuple Pr = Z / i
belonging toS™ will also be contained |rU JN Krgw;
The converse can be proved by contradlctlon Assume that Ki ;)w, w: . Ki ;)w, ws

an N-tuple (W, Wa, ..., Wy belonging ton.V:_ll SN exists 1%:“ o Z / o 12];2 o Z
that does not satisfy at least one of the inequalities in (3). Jk;_; ;w; Kj1,jw;
Then, we may consider that, for sorheZ N, N_2 w, N

(CJ ij—zwi W_Z:IwT

i=1 =
WN> —_— = ZW (14) x/ i / N,fj fw(wi,wa, ..., wN)
Kn—1,5w; ﬁNZwi
i=1
i#k i=1

X dwonydwy_1...dwip1dw;_q...dwidw; . (17
In caseW,, satisfies (5), (14) confutes the first inequality in wNdoN-1 . dwjrdwjor - dwrdwg . (17)

(13), contradicting the initial assumption. Otherwiseppose, We note that the index of the summation terms in (16) and
without loss of generality, that condition (5) holds fpe£ k. (17) will only span the values for which; # 0.
Thus,

W N-1 E. The Condition for a Non-Trivial SV
Wi
B <Wn + Z Wi From (17), a necessary and sufficient condition for the
gi,lc integration region defined in (1) to be a non-trivial one is
< Wi + Wi 18
<% Zl Z Z 7 < (18)
i#j i;ék o )
= Wy < Ki,W; | This is proved as follows. In order for (13) to define a non-

trivial integration region, the upper limit must be neceiga
contradicting the fact theltt/; satisfies (5). larger than the lower limit for every inequality. Therefpii®m
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the restriction forl¥; in (13) (or equivalently fodV, in case of W; is given by

SN is considered), we have that
1 w;
Vo i) = - ow () @3)
Cin> Y Kij. (19) , . T
= where(); is the mean power, and the joint density distribution
i#J of Wi, Wa, ..., Wy is the product
We will proceed by induction to show that (19) is also a N
sufficient condition for the integration reglo.‘ﬁg-\’ to be non- Fw(wy,wa,, ... wy) = wai (w;) - (24)

trivial. Assume that (19) is satisfied, which is the base @ise
the inductive argument. Suppose, also, that the upper tifmit
the inequality corresponding &, in (13) is necessarily larger
than the lower one. We consider, without loss of generali

i=1

The integration of the joint distribution (24) presents a
gularity, since it is the product of exponential functon

thatk # j — 1. Therefore, As a consequence, for a fixedin the summation term, the
Nt s innermost integrals of (17) have a pattern, denotedobfy).
— _ Forj =1 in (17), p1(-) is given by
Ki,;Wj < (Cin— Y Kij) W = > Wi 10)
i=k+1 =1 N
it] i) 14 6n)QNG
- e ’ prnsRB0= 3 — ( . N)NNQ .
i=N—c i+ i — 82,
S W< (G 3K (20) Pvitein I1 (=)
i=1 i=k I
i#£] iy N-—1
. . + QN + B89
Analyzing the upper limit fork + 1: x | exp —m -7 MKJJ
Qn vl Q,;Qn
N—-1 k Jj= c
Cinv— Y Kip)W; = > Wi > (Kij + Kip /)W, — Wi 5 N -
i=k+2 =1 S —T =
i#j i#] - exp | oo +r _XN: WKJ}I , (25)
> Ki1,;Wj - (21) Uit

The first inequality follows directly from (20), whereas theyhere,r and s are auxiliary variables, respectively, denoting

second one is justified by (5), proving the induction stepusth 4; and the sum of the remaining; which will be posteriorly
if the condition forW; is satisfied in (13), the restriction forintegrated;2 = (Q1,99,...,9n); 8 = (61, 52,-...0n);

Wa, W3, ..., Wx_1 will be non-trivial. and o (-) satisfies
Finally, to prove thatiWy will also have a non-trivial , ‘

restriction when (19) is satisfied, we note that its limits in Cinr—s ,“Oy_1 (5"t e oy
(13) depend on all the othé¥ — 1 variables. Consequently, it ¥ (r,5,92,8,1) = /K O / . On dudt
must be shown thatl;, Ws,..., Wxy_; can assume values N Onlren (26)
such that and

N-1

CjnW; > ; Wi, (22) S

2 o1(r, s, Q, 8, k) = / =N Rt GQ
where the inequality follows from (7). However, given (19), Kn—kar N—k
(22) will be satisfied whe;, W, ..., Wx_1 assume their X p(r,s+t,9Q,8,k—1)dt . (27)

minimum values in (13), which concludes the proof. The js straightforward to show that (25) satisfies (26) and)(27

r(_astriction (18) follows directly by summing+ Ky ; to both The value ofyp;(-) for i # 1, as well as the corresponding

sides of (19). o properties (26) and (27), can be obtained directly from (25)
It is interesting to note that (18) is independent®F, \jth the appropriate change of indexes. When two signals

even though a specific region was considered in the progf: and 1w, have the same mean power, the corresponding

Furthermore, (18) depends solely on the SIR thresholds, ression forp; (-) can be found by taking the limi®,,, —

not on the signals’ distribution. This fact explicits thaten ¢ i, (25).

though the inequalities in (1) may have a non-null probapili Using (17) and the property (27) of;(-), the value ofP;

of being satisfied individually, there will always be at leasg, ipe Rayleigh scenario under investigation is
one signal outage unless (18) is attended.

N-1
IV. GENERAL, CLOSED-FORM EXPRESSION FOR A Pr= Z:lpfvm ’ (28)
RAYLEIGH ENVIRONMENT "=
In this section, a closed-form expression for the joint gata where
probability in a Rayleigh environment is derived, assuniimg S e e Tm
dependent interfering signals. The probability densityction Prom = o N, ©m(r,0,Q,8,N —2) dr . (29)
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Evaluating the integral in (29), and after tedious and lbpgt
simplifications, Pr ,,, is found to be
N N-—-1
((1+ﬁN)5m) -3 Bj
1+ B — 1+ f3;
Jj=1 o
Lm =N N—1 Zﬁ
(HQl> Z B; (51\79]- +QN) Si,
Py o 1+5; Q;Qn
-1
N N
1 B (4 — ;)
Xil:[l Qﬁgi(uﬁj)ﬂiﬂj . (30)

Substituting (30) in (28) and performing further simplifica
tions, we arrive at the final exact, closed-form expressan f

N N-1
Bj
1_;1+ﬁj
Pr=— ~ (31) Fig.
-3 bi (1—&>
i=1 j:11+ﬁj &

This expression is general, and may be applied even wheq

restriction value, i.e.3; = 0. It is noteworthy that condition [2!

(18) appears explicitly in the numerator of (31). (3]
Wheng; = g andQ; = 2 for all j, (31) simplifies to
1—(N-—1)B\V [4]
Pr=|——— . 32
(=) 42
Equation (32) is illustrated in Fig. 1. [5]

V. CONCLUSIONS
[6]

In this paper, we presented a new formulation for
interference-limited wireless systems, namely joint geta [7]
probability. An integral form for the JOP was derived in
terms of the individual SIR restrictions and the signalshfo (g
probability distribution. Through further analysis, a assary
and sufficient condition for a non-null JOP was found, Whicl’t
depends solely on the SIR restrictions. An application o
these results led to aexact, simple, closed-form expression
of the joint outage probability in a Rayleigh environmen{!¥
considering independent signals. The formulations ddrive
here are general, and may be applied in various practical
scenarios.

1.0
I

0.3 0.4 0.5

1. P; for a Rayleigh i.i.d. environment with equal restrictiofis
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