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Abstract—Wireless data usage is growing now faster than ever « optimization problem formulation: objective functiongs)d
before. In order to attend the increasing demand for wireles problem constraints;

services and considering that frequency spectrum is a scaand | hroplem classification: linear, quadratic, convex, coegav
expensive resource, wireless are required to operate as eféntly . - .
or semi-definite problems, among others;

as possible. In this context, the application of mathemata - PER - ) .
optimization methods in the study and design of key function e nature of optimization variables: continuous, integer, or
alities of wireless systems has acquired great relevance.hik mixed-integer together with related aspects, such as-relax
papers surveys some applications of optimization methodsot ations;

wireless communications problems. Among them, game theory | multi-objective optimization;

and majorization theory have got increasing attention in the . . . .
last few years and are described in some more details. An ® duality, bounds and approximations; among other aspects.

application of optimization methods to solve a concrete prolem An overview of all these optimization concepts does not
ir}m(’dem dV_Vire|eSS Fgomfmugicatij(?“sl[ gaﬂel?{lgh_etmaﬁmiza?ﬁ fit into the scope of this work. However, all these topics
i e e capactof s Car Wl Fon ol adrecsd n spocaiz Hraure 6.
provided. among others.
This work is organized as follows. Section Il provides

a list of applications of optimization methods in wireless
communications, specially regarding resource allocafidre
applications are addressed only very briefly, more to give
an rough idea of the variety of optimization problems found

Wireless data usage is growing now faster than ever befoji¢ wireless communications. Sections III, IV, and V address
In order to attend the increasing demand for wireless sesvigpecific optimization tools which are gaining visibility the
and considering that frequency spectrum is a scarce ggngt few years. In these sections, the topics are addressed i
expensive resource, modern wireless networks are reqtiredome more details. Section Ill describes some key aspects
operate as efficiently as possible. of game theory, while section IV provides the fundamentals

In this context, the application of mathematical optimi@at of majorization theory. Section V illustrates an applioatof
methods in the study and design of key functionalities @fptimization methods to solve a concrete problem in modern

wireless systems has acquired great relevance. The myfiadyfreless communications. Finally, section VI presents som
methods that find application in wireless communications {gnclusions.

so extensive as the list of important problems that permeate
this area.

The list of methods includes classic optimization methods,
such as linear, convex, semi-definite, and integer optiimza ~ Optimization methods have found considerable application
multi-objective optimization tools, such as game theonyd a in resource allocation. A well-known example concerns the
approximative methods, such as the majorization theory amdiximization of the minimum Signal to Interference-plus-
statistical approximations. Noise Ratio (SINR) among a set of co-channel links through

The list of problems includes power allocation, subcarri@entralized power control [4, Ch. 6], which can be reduced to
assignment, linear and non-linear precoding, SDMA grogpinan eigenvalue problem using Lagrange methods.
multicast beamforming, and ergodic capacity maximization In more recent studies considering systems whose air inter-

In this work, it is not our intent to be either exhaustive ofaces base on Orthogonal Frequency Division Multiple Asces
intensive in the analysis of mathematical methods appled (OFDMA) and Multiple Input Multiple Output (MIMO), the
wireless communications, but to point out some key techesquoptimum resource allocation for a set of relevant scendréss
that have found considerable application in this area. been determined with the help of optimization methods. For

Most applications referred in this work require a converexample, considering that each subcarriee {1,2,..., N}
tional background on optimization methods, covering aspeof an OFDMA system is assigned to a Single-User (SU)
like j € 1,2,...,J, convex optimization can be used to show

Index Terms—wireless communications, optimization methods,
game theory, majorization theory.

I. INTRODUCTION

Il. RESOURCEALLOCATION IN MIMO SYSTEMS



that the total system throughput is maximized by decoupling wireless communications. In the sequel, some optinopati
power allocation from subcarrier assignment; by assigningols and problems that have been acquiring increasingrimpo
each subcarriet to the user: with the highest channel norm,tance in wireless communications are described.

ie.,

%

ji, = max A0l 1) [1l. GAME THEORY

with h;, being the channel coefficient for usgron sub- A. Introduction

carrier n; and by allocating power to each subcarrier us- Game theory is a branch of applied mathematics which
ing Water-Filling (WF) [5], [6]. The same result extendgrovides a basis for the analysis of interactive decisi@kimg
straightforwardly to SU MIMO (and Multiple Input Single processes [3]. It provides tools for predicting what might
Output (MISO) as particular case as well) systems considéappen when individuals with conflicting interests intérac
ing linear precoding based on Singular Value Decompositi@ more generally, for analyzing optimization problemshwit
(SVD) [7], with ||h;.|, replaced by an adequate channdnultiple conflicting objective functions. It also uses mizd®
norm (e.g.,|[H; [ or ||h;.|l,) and WF performed acrossStudy interactions with formalized incentive structuredied
spatial and subcarrier dimensions. Indeed, spatial pregodgames which are based on mathematical models of con-
is fundamental for an efficient resource allocation in MIMdlict and cooperation amongtional andintelligent decision-
systems and, considering perfect Channel State Informatio makers.
the Transmitter (CS|T)’ Optima| (or near-optimaD pre(ngji An individual is said to berational if each one of his
vectors can be determined with help of Lagrange and otH@gcision-making behaviors is consistent with the maxitiiza
optimization methods for several linear and nonlineaeciat ©Of an expected utility, and he is also said to ibeelligent if
such as Matched Filter (MF), Zero-Forcing (ZF), Wiener'd)e understands everything about the structure of the &ityat
and Minimum Mean Square Error (MMSE) criteria [8], [9]. including the fact that others individuals are also ratlcarad
Resource allocation in Multi-User (MU) MISO and |\/||Mointelligent decision-makers. In fact, these two assuml]stiare
scenarios also deserved considerable attention regapgitng fundamental for the structure of the game.
mal solutions. In [10], [11], the problem of SINR balancing Game theory can be applied in a variety of fields, includ-
with individual SINR constraints of [4] has been generalizeing economics, international relations, evolutionary|dyy,
and fast iterative algorithms for solving the problem in Mupolitical science, and military strategy.
MISO scenarios have been devised by exploiting uplink- The history of game theory originates from the works [23]
downlink duality [12]. The authors separate precoding ary Waldegrave (1713), Cournot (1838), Darwin (1871), Edge-
power optimization problems, with the former being formuworth (1881), Zermelo (1913), Borel (1921), and Ville (1938
lated as a generalized MMSE precoding problem and solvéd modern times the major works by Von Neumann and
with help of Lagrange optimization [11], [13]-[15] and theMorgenstern, e.gTheory of Games and Economic Behavior
latter being formulated as a standard eigenvalue problem,paiblished in 1944, provided an axiomatic development of
in [4], [11]. The two problems are solved alternately and thétility theory, which dominates the current economic thioiug
proposed algorithm is shown to converge after just a fe@nd also introduced the formal notion of a cooperative game.
iterations [10], [11]. Another important name is Jonh Nash, who contributed to
While in [10], [11], as well as in other works, the set othe development of both non-cooperative and cooperative
users being multiplexed in space is predefined, the seteofio game theory [24]-[26], e.g., with the existence proof of an
these users constitutes itself an important problem, narinel  equilibrium in finit¢ non-cooperative games, the so-called
Space Division Multiple Access (SDMA) grouping problemNash Equilibrium (NE), which is probably his most important
Since “half” users can not be selected to receive data, te@ntribution in the field.
SDMA grouping problem is an integer and usually non-linear,
non-convex optimization problem. Several works gave oatimg Non-cooperative Static Games Basics
or suboptimal solutions to the SDMA grouping problem using
different mathematical tools and heuristics, as listedli@]
[17]. For example, some authors select users according

In a non-cooperative game, eaplayer of a set of players
a,[(yusts his strategy to optimize his own ability (utility) t
ompete with others. It is relatively easy to delineate the

certain optimization criteria and solve the problem usin ain ingredients of a conflict situation: a player has to make
Semidefinite Programming (SDP) [18], [19]. In [20], [21]eth a decision and each possible decision leads to a different

SDMA grouping problem_ls f(_)rmulated asan mteger qgadratcl)cutcome or result, which are valued differently by that play
optimization problem, which is non-convex. By using diagbn

loading, integer relaxations, and rounding, an approinat This player may not be the only one who decides about a

problem is formulated and solved using convex-optlmlzatlop"’lrtICUIar outcome; a series of decisions by several iddafis .

. . . may be necessary. If all these players value the possible
Moreover, in [21] the subcarrier assignment to SDMA groups . S
: . L outcomes differently, the seeds for a conflict situatiortiaege.
is formulated as an integer optimization problem, namel

: . ¥he players involved do not always have complete control ove
a standard assignment problem, and solved using Munkres o . .
. e outcome. Indeed, some uncertainties might influence the
algorithm [22].
_From the_ a_bov_e list of problems, it can be not(_ad _thatlThecIass of games in which the players ha¥iaite number of alternatives
different optimization methods have found many appliaagio to choose from is called finite games.



outcome in an unpredictable way so that it is (partly) based &) Zero-sum Games: the conflicts in a game determine a given
data not yet known and not determined by the other players’ game is classified as eitheero-sunmor nonzero-sumin a
decisions. zero-sum game, a gain for a player is exactly a loss for
Strategy: A strategyis a complete contingent plan, or a the other and the summation of the players’ utility equals
decision rule, that defines thaction a player will select in zero. Otherwise, the game is a nonzero-sum one.
every different state of the game. A simple real-world giora  2) Static Games: a static game is one in which all players
helps distinguishing between actions and strategies: i&gep make decisions (or select a strategy) simultaneously,-with
has to decide between fishing and going to work next day, then out knowledge of the other players’ strategies. Although
a strategy is “if the weather report predicts dry weatheenth  decisions may be made at different points in time, the game
the player will go fishing, otherwise he will go to his office”. is simultaneous because each player has no information
Thus, what actually will be done depends on quantities not about the decision of others.
yet known and not controlled by the decision-maker, e.@, t18) Non-cooperative Games: a game is said to be non-
weather condition. On the other hand, any consequence bf suc cooperative when all players make decisions indepen-
a strategy, after the unknown quantities are realized,llecca  dently. Thus, while they may be able to cooperate, any
an action. A player has pure-strategywhen he always picks  cooperation must be self-enforcing. Furthermore, players
a single strategyamong those available in hidrategy setAn can communicate with each other but cannot make a deal.
alternative for a player is to randomize over the strateigiéss Prisoner’s Dilemma: A classical (and fundamental) exam-
strategy set, in which case the player hasiged-strategyln ple game is the well-known “Prisoner’s Dilemma” [29], which
other words, a mixed strategy is an assignment of a probabilhas been popularized by the mathematician Albert W. Tucker.
to each pure strategy, whereas a pure strategy is seledied Whis example shows a hypothetical situation: two criminals
probability 1 and every other strategy with probabildly This e.g., Bonnie and Clyde, are arrested for committing a crime
work will only deal with pure strategies, but further defioits in unison, but the police do not have enough proof to convict
can be found in [3], [27]. either. Thus, the police separate the two and offer a deal:
Utility: A utility (payoff) function quantifies the motivationsif Bonnie testifies to convict (betrays) Clyde, she will get
of players. A utility function for a given player assigns a sentence of 10 years if he also betrays her, or go free
(real) number for every possible outcome of the game wititherwise. However, if Bonnie does not betray (i.e., bengjle
the property that a higher (or lower) number implies thatlyde, she will get a sentence of 20 years if Clyde betrays
the outcome is more (or less) preferred. Therefore, a phayefier, or otherwise get a sentence of 2 years. The same deal is
strategy may be formulated as “maximizing (minimizing) higffered to Clyde. The strategic form is shown in the matrix
utility (cost)”. below.
Strategic-form Game:  Strategic form (or normal form) Clyde
is a matrix representation of a simultaneous game. For a
two-player game, one player is the “row” (two-dimensional
matrix) and the other is the “column’. F6} players, each one
is a dimension of a)-dimensional matrix. Each dimension
represents a strategy, and each matrix entry represents the
utility to each player for every combination of strategies. Betray Not Betray
Nash Equilibrium: The NE is the most common solution

concept of a game. It is a joint strategy where no playgthys, each player's strategy is “Betray” or “Not Betray”.i§h

can increase his utility function by unilaterally deviaiff7], game is classified as non-cooperative and static because the
i.e., no player has anything to gain by changing his strateg)ayers do not exchange any information with each other.
while the other players keep their unchanged. Another NBesides, they make decisions independently (i.e., sepiat
interpretation is that it is a mutual best response from eaglierent rooms) and simultaneously. The only equilibriitm
player to other player's strategies. It is worth mentioninghis example game is "Betraetray". However, this solution
that a NE is not always clearly efficient (or Pareto optihal)s inefficient because "Not Betrajot Betray" provides a
Nevertheless, the NE remains the fundamental conceptygtter output than the NE. This Pareto-optimal solution can
game theory. be reached if Bonnie and Clyde cooperate.

In [28], Nash proved that every finite strategic-form game Application Problems: In modern wireless networks, sig-
has at least one mixed-strategy NE. As for pure-strategyling is normally used to obtain information, such as clenn
NE, the uniqueness or even existence of such a NE is r@inditions, used to perform, e.g., optimal resource aflona
guaranteed. For it, some desirable properties of the siriCtHowever, this signaling represents a considerable overhea
of a game must be established. for communications and its reduction can greatly increase

Further Game Aspects: A game can be classified accordingpectrum utilization and the number of served users, thus
to multiple aspects [3], [27], [29]. Some relevant types Gmproving the network performance.
games are described in the sequel. One form of reducing signaling overheads is to do resource

) . o . _optimization using only local information. This is espdiia
A Pareto-optimal solution is a joint decision of the playersade in

cooperation such that no other solution can improve theopeence of at important if the SySt_em FO_pOIOgy IS d'St_”bL!t?d' In someewir
least one them, without degrading the performance of theroth less network scenarios, it is hard for an individual usemtovk

10,10 0,20 Betray

Bonnie

20,0 2,2 Not Betray




the channel conditions of the other users. The users canfrom its coordinates. For that purpose, we consider theovect

cooperate with each other. They act selfishly to maximize théx] = (mm, T, m[n]) and[y] = (y[l], Y y[n])

own performance in a distributed fashion. also of R™ obtained by reordering the coordinates in a de-
There are some major problems in wireless communicationigasing order from the vectossandy, respectively. Thus,

that may fit into such model of competition for resources:y; > xpy > - > xp,) @ndypy > Yy > -+ > Y- The

Namely, we may cite power control, antenna selection, reectorx is majorized byy, and writesx < vy, if the following

source allocation, spectrum sharing, interference ntitga conditions are met [35]:

among several other. For optimization methods in those-prob & &

lems we refer the reade.rto.the following referenc;es _[21]]—{3 me < Zy[ﬂ’ 1<k<n-—1, (2a)

[32]. A very recent application on antenna selection is regab Pl Pl

in [33]. A very good collection of papers dealing with game n n

theory in wireless systems can be found on [34]. Z:pm = Zy[i]' (2b)

i=1 =1

IV. M AJORIZATION THEORY

) In other words, the vectoy majorizes the vectox if the
A. Introduction

coordinates ofy are more “dispersed” or “spread out” than
Majorization theory has been developed from the expansiffe coordinates ok [35], [37]. To the understanding of this
of the mathematical theory of inequalities. It establisiaes definition, we consider the vectors = (3; 3; 3; 3; 3),
comparison between two vectors &" from the decreas- y — (5; 4; 3; 2; 1) andz = (7; 5; 2; 0,8; 0,2) of R®.
ing reordering of the their coordinates and following somRote that, we have the following majorization relationship

restrictions. Some known results of the majorization tieok < y < z. Figure 1 illustrates the behavior of the coordinates
include theLorentz curve(1905), which determines how theof its vectors.

distributions of income or wealth can be compared for a given
population; theprinciple of transferof Hugh Dalton (1920),
which also applies to the context of income distributiong an
the Hadamard inequalityintroduced by Issai Schur (1923),

7
4
33 3 3 3 3
among other results [35]. 9 9
In order to formalize these ideas, among others, the lhimok = I 1~ I 0,8
equalitiesof Hardy, Littlewood and Pdlya (1934) [36], was the [ ne?
first to unify the existing s_up!ects abouF majorization theo Figure 1. Geometric interpretation of the majorizatioratieinship.
They have presented definitions, notations and development
of results of this new mathematical formalism. After that, 1here js an extensive list of properties involving the ma-
important results have emerged, e.g., in matrix analyisieal 5ization relationship, which can be found in [35], [41].

algebra, optimization, and in statistical problems, whigre However, for this work, we highlight the following:
documented in the bookequalities: Theory of Majorization

vectorx vectory vectorz

and its Applicationsby Marshall and Olkin [35], that is El < x, (3)
considered the leading reference on the subject. n

The majorization theory has interesting results applied {gherex; >0, -7 , = X and 1 is a vector ofR™ whose
optimization problems, such as the reformulation of nomoordinates are equal to 1, i.d.= (1,1,---,1).

convex problems into equivalent convexs problems [6], [37] In the mathematical fundamentals, a real functjon c
Consequently, majorization theory became an ally in sgIvilR — R is said to be nondecreasinginf, Vo1, 25 € I, 21 <
problems in various subject areas, including wireless cammy,, f(z;) < f(x5). Similarly, Schur (1923) [35] generalized
nication [37], [38]. Zhanget al. [39] lists some applications this concept of order preservation by considering the cése o
of the majorization theory on MIMO channels with respeci real function of several variables. In this case, the domai
to optimization problems. Another contribution concerhs t is considered a subset &" whose elements can compared
study of upper and lower bounds on the ergodic chann@tough majorization. Specifically, a real-valued funatip :

capacity [40]. A C R” — R is said to beSchur-convexn A if [35], [37],
This section is dedicates to presentation and applicatipgg]
this mathematical tool into a optimization problem studied x <y onA, impliesp(x) < ¢(y). (4)

wireless communications. Specifically, we consider a pmabl

involving the capacity of a MIMO channel in which theSimilarly, ¢(-) is said to beSchur-concaven A if
channel state information (CSlI) is perfectly known at tlaas-
mitter. For this situation, we will investigate the poskipiof
obtaining an optimal point without the direct use of Lagrang There are some criteria that allow us to specify whether a

x <y on A, impliesp(y) < p(x). (5)

multipliers. function is Schur-convex or Schur-concave, without raggir
the direct application of the definition. One of them, is the
B. Majorization Theory Basics following theorem [35, Proposition 3.H.2] which considéis
The majorization relationship allows us to compare twsetD = {x = (z1,22, + ,Zpn) ER" ; 1 > 22 >+ > 2y}

vectorsx = (z1, 22, - ,&,) andy = (y1,42, - ,yn) Of R whose entries are arranged in a descending sequence.



Theorem 4.1:Let o : D — R be a real function defined by The channel matribH € C"=*"T is considered deterministic
o(x) =>"", gi(z;), where eacly; : R — R is differentiable. and of rankr. The noise vectomn € C"#*! is considered
Thenp(-) is Schur-convex orD if and only if to be Zero-Mean Circularly Symmetric Complex Gaussian
(ZMCSCG) with covariance matrix?I,, ..

Thus, when the channel is known at the transmitter, the
Similarly, () is Schur-concave orD if and only if channel capacity is given by [7]
gi(a) < gi,(b) whenevera > b. r

For understanding this result, we consider the function C= Zlog2 {1+
¢ : D — R defined by i=1

gi(a) > gi;1(b) whenevera >b, i=1,2,--- ,n—1. (6)

i P
bitT )\i] , (10)
o“nrtr
n where )\; is a eigenvalue oHH" with )\; > Ai+1 and p;
p(x) = ZlogQ (14 kayz;), (7) is the power allocated in théh sub-channel, which satisfies
i=1 Z::z pi = nr.
where, k > 0 and a; > a;.; > 0. Note that, each According to Paulrajet al. [7], the mutual information
function g;(z) = log, (1 + kayz) is concave. In addition, Maximization problem is given by

gi(a) < giy,(b) whenevera > b, i =1,2,--- ,n — 1. Thus, r piPr

©(+) is Schur-concave function oB. max p(p) = Zlogg [1 + = )\l} . (11a)
Another  criterion to characterize  Schur-convex P i=1 a-nr

and  Schur-concave functions is calledSchur's ) -

condition[38, Lemma 2.5]. From this condition, we can subject to:;pi = nT- (11b)

verify also that the definitions of convexity and Schur- . o L .
convexity functions are not equivalents, i.e., there is In add'tm this IS a convex optimization problem, since
Schur-convex function that is not convex function (see [4ihe objective function and constraint are concave func-

Example 11.3.15]). tions. Thus, its guarantees the existence of an optimalt poin
PP = (PP, -, p) which maximizes the objective

. T t
C. Majorization Theory and Optimization funcﬂon [;]. By the Lagrange multipliers method eap??
is determined as follows [7]

It was mentioned in the introduction of this section, the ma- s+
jorizaton theory is an interesting tool in solving optintina PP = ( _ nro ) i=1.2. .1 (12)
problems. The next result illustrates the applicabilitytiof ! PrXi) Y
theory in a optimization problem as follow [38, Theorem a'zjwhereﬂ is the water-
Theorem 4.2:Consider the  Schur-concave function
¢ : D4y — R and the following optimization problem:

fill level andz)* = max {x,0}.
If p € Dy, then we have an alternative method which allows
us to obtain an optimal point without the use of Lagrange

max (x), (8a) Multipliers. In fact, the functiorw(:)_ is Schur-concave by

x€Dy situation presented in (7). In addition, by Theorem 4.2 the
) - global maximum is achieved bp®" = 2£1. In particular,
subject to'zzi =X, (8D) i the channel matrix has full rank, i.er, = nr, then the

=t optimum point is given by = 1.

whereD; C D andz; > 0 wheneverx € D.. Then the  Finally, from this brief presentation of the majorization
global maximum is achieved by = 1. theory, we highlight the potential of the method in optintiaa
Proof: Note that, the poink = X1 satisfies the problem problems. Since this mathematical tool is still incipigntl
constraint. In addition, sincg(-) is a Schur-concave functionstudied in wireless communication problems, we visualize

and the majorization relationship in (3) is satisfied, weehayotential prospects of research, e.g., for broadcast dagt re
o(x) < ¢(X), V x € D;. In other words X is a optimum channels.
point. O

V. STATISTICAL PRECODING FORCOMP SYSTEMS USING
D. Application Problem CONVEX OPTIMIZATION

We have showed in this section some results about majorizaCoordinated Multi-Point (CoMP) transmission/receptisn i
tion theory. In oder to apply this knowledge, we consider @ candidate technique for increasing cell-average and cell
single-user MIMO communication with transmit antennas edge throughputs in future wireless systems. In CoMP sys-
andnp receive antennas. We assume the number of transieims, several network nodes (potentially distributed oaer
antennas does not exceeds the number of receive anteng@egraphic area) are linked by means of a fast backhaul to
i.e.,nr < ng. The received signal vectgr € C*#*1 is given a controller unit which centrally coordinates the actiohthe
by nodes. Joint Processing (JP) is a technique which can eahanc

y = Hx +n, (9) CoMP systems’ performance, mainly by employing precoding
el ) ) algorithms based on CSIT gathered with help of the backhaul
where the data vectax € C"7*" is the transmitted signal jy¢astrycture. In general, most precoding techniquesnorely
vector satisfying the total power constraiEt{HxHS} < Pr. on the assumption that the transmitter knows perfectly the



MIMO channel matrix [42], [43]. However, this may not be Moreover, the transmit signal must obey a per-base power
realistic in many practical scenarios and consideringiglartconstraint given by:
availability of CSIT in MIMO systems becomes an important 1%
issue, which might have a significant impact on the spectral g {Ztr {chb]XLb]H}} —tr {T[b]T[b]H} _
efficiency of the system. ]

In [44] the authors optimize the input covariance matrices i K
order to maximize the approximation of the ergodic capacity — — tr {Z TE’]TECZ’]H} <P b=1,2,.... Ny,
Firstly, they find the ergodic capacity for a downlink MU k=1
MIMO CoMP system and evaluate24%-order approximation
for the ergodic capacity considering that the transmittes
access to both the mean and the covariance matrices )
the channel. In the sequence, they derive the optimal inglt IS the power constraint of B&
covariance using convex optimization tools. In [12], the problem of maximizing the sum rate of a

The considered system model in [44] is the downlink of ¥U-MIMO system is considered. Therein, uplink-downlink
multi-cell MU MIMO system composed by, Base Stations duality is u;ed to transform the problem into a w_ell—struew
(BSs) andK cochannel Mobile Stations (MSs) arbitrarilyconvex uplink MU-MIMO channel problem. In this work, the
distributed within the system coverage area. Each BS Ggnsidered downlink channel hae transmit antennas and
equipped withN; transmit antennas and each MS with. ©ach receiver had/ receive antennas.
receive antennas. The BSs are synchronously connected to a
central processing unit, thus characterizing a CoMP siract A. Ergodic Downlink Capacity Optimization of a MU MIMO
Hereafter (V;, N,., Ny, K) will be used to represent the overallCoMP System

structure .of the system. Figure 2 shows this represent&dion | order to adapt the work in [12] to the scenario COMP
a case with\V, = K = 3. MU-MIMO, the authors in [44] propose some changes in the
model proposed by Jindal. They use the statement shown
in [12] that says that the sum capacity of the downlink
MU-MIMO is equal to the sum capacity of the dual uplink
MU MIMO subiject to a total power constrait. Therefore,
they compute the sum capacity considering a global power
restriction, given by the sum of the power restriction ofteac
base, and later, to apply a power allocation matrix thasBes
the per-BS power restrictions.

Thus, the optimization problem is to maximize the sum rate
Figure 2. Multicell multiuser MIMO system model with, = K = 3. capacity of the uplink MIMO CoMP system with the global

. . _ power constraint, it means [44]:
The channel is considered frequency-flat, stationary and

(14)

pwhere Tl and T comprises the rows ift and'T;. corre-
sgpnding to the transmit antennas at BSrespectively, and

takes into account only Rayleigh-distributed small-sda=  Ccomp = max log|I+ G/'Q:G;|, (15)
ing, which is modeled using Jake’s model [45]. The spatial {Q-;}lK:I;QiZO;_Eltr{Qi}gP

channel characteristics assume Kronecker-structuredricov .

ances.R¢; and R,; denote the transmit and the receive o ( HA _)—1/2 Al _
covariance matrix of MG, respectively. Considering this, theWhere Gi = Hi (142, Hy Q/H, ' b; Byo= P

channel matrixHs;[n] from all BSs to MS; at timen can andQ; is the uplink input covariance matrix per each uger
be modeled as Since it is not be realist in many practical scenarios to
_ 1/2 1/2 consider that the channel is perfectly known at the trantemit
Hiy;[n] = Hy; + Ry Hoaefn Rej’”, (13) in [44] itis assumed that the transmitter has access tettali
whereH, ; is the channel matrix from B&to MS j, Hy; = channel state information (CSI), while the receiver hasssc
[Hl,j Hy; ... HNM»]N « NoN is the joint channel matrix to instantaneous CSI. Thus, equation (13) is used in (15).
from all BSs to MSj andTHJakes[n] is aN, x N;N, small-scale  Using the Taylor expansioflog(I + A) = A — %AQ +
fading channel matrix. Moreoves; is the mean information %A3—. ..) in (15) and considering only the two first terms, the
representing the line-of-sight component of the channeteH authors in [44] obtain, after some mathematical maniporhesti

Rt;/Q is the principal square-root dk¢;, such thatR,; = the 2"-order approximation of the ergodic capacity as:
1/2 1/2 1/2 1/2 _
Rtj/ Rtj/ . Analogously,R;; = Rrj/ R, /2, Ceomp = max tr {X;Q;} —

Let L; denote the number of data streams intended for MS

K
i Qi f(: ;Qi>0; tr{Q;}<P
jr g =1,2,..., K. For each MS, alV,N, x L; precoding {Qi)iZ1:Qiz0: 2 +r{Qu)

matrix T; is designed based on the characteristicsHa{;. 1 (t R..C-1 2 ir{R. 2
. . . -z ne riQif) +
Thus, the transmitted signal for usgis x; = T;s;, wheres; 2 r{Re }7 (tr{ i Qb
is the data stream intended for MS For simplicity, streams + tr {Ry;,Q:} Tr (HE,Q;Hy,;C; 'Ry, C; ') +

are assumed to have i.i.d. ZMCSCG entries, i.e., Gaussian
signaling is assumed.

tr {XiQi}Q) ) (16)



being simulations, they assume the CoMP-cell scenario congistin
T -1 of 3 coordinated cells with BSs placed in the center of each

X (H&C Hy; +tr {R“ }R”) ' (17) cell and one user is placed randomly in each cell. These users
Thus, the optimization problem which must be solved is:are considered as the ones selected by a scheduling afgorith

to transmit.
max F(Qy), (18)
{Qi}E,;Qi>0; -§1 tr{Q;}<P

i
o
O

—O— Iterative Waterfilling ,;5!
where -m- Proposed Algorithm: Second-order Approximation \,,"
1 9 - % - Proposed Algorithm: First-order Approximation {fl
_1 :
FQ) =—— tr {XiQi} — ———— (tr R.,C;
5 +1 2(0+1)2 (R, }

[y
o
T

(tr {Re;Qi})" + tr {Rey Qi)
Tr (A, Qs C; 'R CY) + 0 {X,Q.})
(19)
X, is defined in (17), and is a parameter which guarantee the
convergence and must be appropriately chosen for the SNR
interest.
Using the Karush-Kuhn-Tucker (KKT) conditions to attain

both the primal and dual optimal solutions [1], the Lagramgi
of (19) can be written as [44]: 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

% -4 -2 0 2 4 6 8
L(Qi.Zi.v) = — F(Q) — tr{Z:Q;} + v(tr {Q; — P}) (3) Low SN velues.
1
:m (tr {RtiC;I}Q (tr {R;Qi})* +
+tr{R”Qz}tr {HE, QzH& TRy G+
—tr {ZzQz} + V(tr {Qz — P}) (20)

whereZ; andv are dual variables.
If X; is invertible, the matrixQ; which maximizesF'(Q;)
is given by [44]:

Ergodic sum rate in bits/channel use
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[ | =B~ Proposed Algorithm: Second—order approximation

al
al

= % - Proposed Algorithm: First—order approximation D

a
o
T

N
a
T

I
o
T

w
o
T

w
o
T

N
ol
T

Qi =(5+1)°X 1/2(z+L1+uX1

Ergodic sum rate in bits/channel use

o+1
_1 2 20
-0 er - 92 ) / ) (21)
1%
where
Zi— X22,X'2 R, — X'/?R,,X\/?, W 2 14 16 gNR Izr? - 22 24 26 28 %0
S, = 1/2szc 1thc 1H§11X11/2, (b) High SNR values.
_ 2 -1 ) Figure 3. Comparison of the ergodic sum rate obtained wighptfoposed
© (6 + 1 (tr {111“ % tr {R”QZ} + algorithms and with the upper bound (iterative water-fjf}inin a scenario
+tr {HZZ Ry, C;'HE ), (2.233).

© 6+ 1)°t R . . L

2= (0+1)%0r {ReiQi} ~ Finally, we can conclude that the use of convex optimization

In [44], the author compare the average sum rate obtain@@ls in the design of input covariance matrix obtains good
with the proposed algorithm and the upper bound on tR@nulation results. Thus, convex optimization tools haeg k

ergodic sum rate, which corresponds to the perfect CSIT afighctionalities in solving problems of the wireless syssem
performs an iterative water-filling [12] when the number of

transmit and receive antennad/,(and N,) is equal to?2. VI. CONCLUSIONS

Such result can be seen in Figure 3. Moreover, They considetn this paper, we provided a very brief survey on optimiza-
the case where the ergodic sum rate is approximated tign methods applied to solve relevant problems in wireless
only the first term of the Taylor expansion. We can noticeommunications. As exposed, there is a large number of opti-
that in low SNRs, the proposed algorithms in [44] havmization methods, ranging from classic mathematical toemor
similar performance and the difference gap between thafistributed multi-objective optimization. A considerablbut
and the upper bound is high. When the SNR increases, tiw complete at all) list of references in the areas have been
performance of the proposed algorithms improves an@tfhe provided. Moreover, a concrete application of optimizatio
order algorithm performs close to the upper bound. In sueblve a wireless optimization problem has also been desgtrib
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