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Abstract—Wireless data usage is growing now faster than ever
before. In order to attend the increasing demand for wireless
services and considering that frequency spectrum is a scarce and
expensive resource, wireless are required to operate as efficiently
as possible. In this context, the application of mathematical
optimization methods in the study and design of key function-
alities of wireless systems has acquired great relevance. This
papers surveys some applications of optimization methods to
wireless communications problems. Among them, game theory
and majorization theory have got increasing attention in the
last few years and are described in some more details. An
application of optimization methods to solve a concrete problem
in modern wireless communications, namely, the maximization
of the ergodic capacity of a Coordinated Multi-Point systemwith
statistical Channel State Information at the Transmitter is also
provided.

Index Terms—wireless communications, optimization methods,
game theory, majorization theory.

I. I NTRODUCTION

Wireless data usage is growing now faster than ever before.
In order to attend the increasing demand for wireless services
and considering that frequency spectrum is a scarce and
expensive resource, modern wireless networks are requiredto
operate as efficiently as possible.

In this context, the application of mathematical optimization
methods in the study and design of key functionalities of
wireless systems has acquired great relevance. The myriad of
methods that find application in wireless communications is
so extensive as the list of important problems that permeate
this area.

The list of methods includes classic optimization methods,
such as linear, convex, semi-definite, and integer optimization;
multi-objective optimization tools, such as game theory; and
approximative methods, such as the majorization theory and
statistical approximations.

The list of problems includes power allocation, subcarrier
assignment, linear and non-linear precoding, SDMA grouping,
multicast beamforming, and ergodic capacity maximization.

In this work, it is not our intent to be either exhaustive or
intensive in the analysis of mathematical methods applied to
wireless communications, but to point out some key techniques
that have found considerable application in this area.

Most applications referred in this work require a conven-
tional background on optimization methods, covering aspects
like

• optimization problem formulation: objective function(s)and
problem constraints;

• problem classification: linear, quadratic, convex, concave,
or semi-definite problems, among others;

• nature of optimization variables: continuous, integer, or
mixed-integer together with related aspects, such as relax-
ations;

• multi-objective optimization;
• duality, bounds and approximations; among other aspects.

An overview of all these optimization concepts does not
fit into the scope of this work. However, all these topics
are widely addressed in specialized literature, e.g., in [1]–[3],
among others.

This work is organized as follows. Section II provides
a list of applications of optimization methods in wireless
communications, specially regarding resource allocation. The
applications are addressed only very briefly, more to give
an rough idea of the variety of optimization problems found
in wireless communications. Sections III, IV, and V address
specific optimization tools which are gaining visibility inthe
last few years. In these sections, the topics are addressed in
some more details. Section III describes some key aspects
of game theory, while section IV provides the fundamentals
of majorization theory. Section V illustrates an application of
optimization methods to solve a concrete problem in modern
wireless communications. Finally, section VI presents some
conclusions.

II. RESOURCEALLOCATION IN MIMO SYSTEMS

Optimization methods have found considerable application
in resource allocation. A well-known example concerns the
maximization of the minimum Signal to Interference-plus-
Noise Ratio (SINR) among a set of co-channel links through
centralized power control [4, Ch. 6], which can be reduced to
an eigenvalue problem using Lagrange methods.

In more recent studies considering systems whose air inter-
faces base on Orthogonal Frequency Division Multiple Access
(OFDMA) and Multiple Input Multiple Output (MIMO), the
optimum resource allocation for a set of relevant scenarioshas
been determined with the help of optimization methods. For
example, considering that each subcarriern ∈ {1, 2, . . . , N}
of an OFDMA system is assigned to a Single-User (SU)
j ∈ 1, 2, . . . , J , convex optimization can be used to show
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that the total system throughput is maximized by decoupling
power allocation from subcarrier assignment; by assigning
each subcarriern to the userj⋆n with the highest channel norm,
i.e.,

j⋆n = max
j

‖hj,n‖2 (1)

with hj,n being the channel coefficient for userj on sub-
carrier n; and by allocating power to each subcarrier us-
ing Water-Filling (WF) [5], [6]. The same result extends
straightforwardly to SU MIMO (and Multiple Input Single
Output (MISO) as particular case as well) systems consider-
ing linear precoding based on Singular Value Decomposition
(SVD) [7], with ‖hj,n‖2 replaced by an adequate channel
norm (e.g.,‖Hj,n‖F

or ‖hj,n‖2) and WF performed across
spatial and subcarrier dimensions. Indeed, spatial precoding
is fundamental for an efficient resource allocation in MIMO
systems and, considering perfect Channel State Information at
the Transmitter (CSIT), optimal (or near-optimal) precoding
vectors can be determined with help of Lagrange and other
optimization methods for several linear and nonlinear criteria,
such as Matched Filter (MF), Zero-Forcing (ZF), Wiener’s,
and Minimum Mean Square Error (MMSE) criteria [8], [9].

Resource allocation in Multi-User (MU) MISO and MIMO
scenarios also deserved considerable attention regardingopti-
mal solutions. In [10], [11], the problem of SINR balancing
with individual SINR constraints of [4] has been generalized
and fast iterative algorithms for solving the problem in MU
MISO scenarios have been devised by exploiting uplink-
downlink duality [12]. The authors separate precoding and
power optimization problems, with the former being formu-
lated as a generalized MMSE precoding problem and solved
with help of Lagrange optimization [11], [13]–[15] and the
latter being formulated as a standard eigenvalue problem, as
in [4], [11]. The two problems are solved alternately and the
proposed algorithm is shown to converge after just a few
iterations [10], [11].

While in [10], [11], as well as in other works, the set of
users being multiplexed in space is predefined, the selection of
these users constitutes itself an important problem, namely, the
Space Division Multiple Access (SDMA) grouping problem.
Since “half” users can not be selected to receive data, the
SDMA grouping problem is an integer and usually non-linear,
non-convex optimization problem. Several works gave optimal
or suboptimal solutions to the SDMA grouping problem using
different mathematical tools and heuristics, as listed in [16],
[17]. For example, some authors select users according to
certain optimization criteria and solve the problem using
Semidefinite Programming (SDP) [18], [19]. In [20], [21], the
SDMA grouping problem is formulated as an integer quadratic
optimization problem, which is non-convex. By using diagonal
loading, integer relaxations, and rounding, an approximation
problem is formulated and solved using convex-optimization.
Moreover, in [21] the subcarrier assignment to SDMA groups
is formulated as an integer optimization problem, namely,
a standard assignment problem, and solved using Munkres’
algorithm [22].

From the above list of problems, it can be noted that
different optimization methods have found many applications

in wireless communications. In the sequel, some optimization
tools and problems that have been acquiring increasing impor-
tance in wireless communications are described.

III. G AME THEORY

A. Introduction

Game theory is a branch of applied mathematics which
provides a basis for the analysis of interactive decision-making
processes [3]. It provides tools for predicting what might
happen when individuals with conflicting interests interact,
or more generally, for analyzing optimization problems with
multiple conflicting objective functions. It also uses models to
study interactions with formalized incentive structures called
games, which are based on mathematical models of con-
flict and cooperation amongrational and intelligent decision-
makers.

An individual is said to berational if each one of his
decision-making behaviors is consistent with the maximization
of an expected utility, and he is also said to beintelligent if
he understands everything about the structure of the situation,
including the fact that others individuals are also rational and
intelligent decision-makers. In fact, these two assumptions are
fundamental for the structure of the game.

Game theory can be applied in a variety of fields, includ-
ing economics, international relations, evolutionary biology,
political science, and military strategy.

The history of game theory originates from the works [23]
by Waldegrave (1713), Cournot (1838), Darwin (1871), Edge-
worth (1881), Zermelo (1913), Borel (1921), and Ville (1938).
In modern times the major works by Von Neumann and
Morgenstern, e.g.,Theory of Games and Economic Behavior
published in 1944, provided an axiomatic development of
utility theory, which dominates the current economic thought
and also introduced the formal notion of a cooperative game.
Another important name is Jonh Nash, who contributed to
the development of both non-cooperative and cooperative
game theory [24]–[26], e.g., with the existence proof of an
equilibrium in finite1 non-cooperative games, the so-called
Nash Equilibrium (NE), which is probably his most important
contribution in the field.

B. Non-cooperative Static Games Basics

In a non-cooperative game, eachplayer of a set of players
adjusts his strategy to optimize his own ability (utility) to
compete with others. It is relatively easy to delineate the
main ingredients of a conflict situation: a player has to make
a decision and each possible decision leads to a different
outcome or result, which are valued differently by that player.
This player may not be the only one who decides about a
particular outcome; a series of decisions by several individuals
may be necessary. If all these players value the possible
outcomes differently, the seeds for a conflict situation arethere.
The players involved do not always have complete control over
the outcome. Indeed, some uncertainties might influence the

1The class of games in which the players have afinite number of alternatives
to choose from is called finite games.
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outcome in an unpredictable way so that it is (partly) based on
data not yet known and not determined by the other players’
decisions.

Strategy: A strategy is a complete contingent plan, or a
decision rule, that defines theaction a player will select in
every different state of the game. A simple real-world situation
helps distinguishing between actions and strategies: if a player
has to decide between fishing and going to work next day, then
a strategy is “if the weather report predicts dry weather, then
the player will go fishing, otherwise he will go to his office”.
Thus, what actually will be done depends on quantities not
yet known and not controlled by the decision-maker, e.g., the
weather condition. On the other hand, any consequence of such
a strategy, after the unknown quantities are realized, is called
an action. A player has apure-strategywhen he always picks
a single strategyamong those available in hisstrategy set. An
alternative for a player is to randomize over the strategiesin his
strategy set, in which case the player has amixed-strategy. In
other words, a mixed strategy is an assignment of a probability
to each pure strategy, whereas a pure strategy is selected with
probability1 and every other strategy with probability0. This
work will only deal with pure strategies, but further definitions
can be found in [3], [27].

Utility: A utility (payoff) function quantifies the motivations
of players. A utility function for a given player assigns a
(real) number for every possible outcome of the game with
the property that a higher (or lower) number implies that
the outcome is more (or less) preferred. Therefore, a player’s
strategy may be formulated as “maximizing (minimizing) his
utility (cost)”.

Strategic-form Game: Strategic form (or normal form)
is a matrix representation of a simultaneous game. For a
two-player game, one player is the “row” (two-dimensional
matrix) and the other is the “column’. ForQ players, each one
is a dimension of aQ-dimensional matrix. Each dimension
represents a strategy, and each matrix entry represents the
utility to each player for every combination of strategies.

Nash Equilibrium: The NE is the most common solution
concept of a game. It is a joint strategy where no player
can increase his utility function by unilaterally deviating [27],
i.e., no player has anything to gain by changing his strategy
while the other players keep their unchanged. Another NE’
interpretation is that it is a mutual best response from each
player to other player’s strategies. It is worth mentioning
that a NE is not always clearly efficient (or Pareto optimal)2

Nevertheless, the NE remains the fundamental concept in
game theory.

In [28], Nash proved that every finite strategic-form game
has at least one mixed-strategy NE. As for pure-strategy
NE, the uniqueness or even existence of such a NE is not
guaranteed. For it, some desirable properties of the structure
of a game must be established.

Further Game Aspects: A game can be classified according
to multiple aspects [3], [27], [29]. Some relevant types of
games are described in the sequel.

2A Pareto-optimal solution is a joint decision of the playersmade in
cooperation such that no other solution can improve the performance of at
least one them, without degrading the performance of the other.

1) Zero-sum Games: the conflicts in a game determine a given
game is classified as eitherzero-sumor nonzero-sum. In a
zero-sum game, a gain for a player is exactly a loss for
the other and the summation of the players’ utility equals
zero. Otherwise, the game is a nonzero-sum one.

2) Static Games: a static game is one in which all players
make decisions (or select a strategy) simultaneously, with-
out knowledge of the other players’ strategies. Although
decisions may be made at different points in time, the game
is simultaneous because each player has no information
about the decision of others.

3) Non-cooperative Games: a game is said to be non-
cooperative when all players make decisions indepen-
dently. Thus, while they may be able to cooperate, any
cooperation must be self-enforcing. Furthermore, players
can communicate with each other but cannot make a deal.

Prisoner’s Dilemma: A classical (and fundamental) exam-
ple game is the well-known “Prisoner’s Dilemma” [29], which
has been popularized by the mathematician Albert W. Tucker.
This example shows a hypothetical situation: two criminals,
e.g., Bonnie and Clyde, are arrested for committing a crime
in unison, but the police do not have enough proof to convict
either. Thus, the police separate the two and offer a deal:
if Bonnie testifies to convict (betrays) Clyde, she will get
a sentence of 10 years if he also betrays her, or go free
otherwise. However, if Bonnie does not betray (i.e., be silent)
Clyde, she will get a sentence of 20 years if Clyde betrays
her, or otherwise get a sentence of 2 years. The same deal is
offered to Clyde. The strategic form is shown in the matrix
below.

10,10 0,20 Betray

20, 0 2, 2 Not Betray

Betray Not Betray

B
on

ni
e

Clyde

Thus, each player’s strategy is “Betray” or “Not Betray”. This
game is classified as non-cooperative and static because the
players do not exchange any information with each other.
Besides, they make decisions independently (i.e., separately in
different rooms) and simultaneously. The only equilibriumin
this example game is "Betray\Betray". However, this solution
is inefficient because "Not Betray\Not Betray" provides a
better output than the NE. This Pareto-optimal solution can
be reached if Bonnie and Clyde cooperate.

Application Problems: In modern wireless networks, sig-
naling is normally used to obtain information, such as channel
conditions, used to perform, e.g., optimal resource allocation.
However, this signaling represents a considerable overhead
for communications and its reduction can greatly increase
spectrum utilization and the number of served users, thus
improving the network performance.

One form of reducing signaling overheads is to do resource
optimization using only local information. This is especially
important if the system topology is distributed. In some wire-
less network scenarios, it is hard for an individual user to know
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the channel conditions of the other users. The users cannot
cooperate with each other. They act selfishly to maximize their
own performance in a distributed fashion.

There are some major problems in wireless communications
that may fit into such model of competition for resources.
Namely, we may cite power control, antenna selection, re-
source allocation, spectrum sharing, interference mitigation,
among several other. For optimization methods in those prob-
lems we refer the reader to the following references [27], [30]–
[32]. A very recent application on antenna selection is reported
in [33]. A very good collection of papers dealing with game
theory in wireless systems can be found on [34].

IV. M AJORIZATION THEORY

A. Introduction

Majorization theory has been developed from the expansion
of the mathematical theory of inequalities. It establishesa
comparison between two vectors ofRn from the decreas-
ing reordering of the their coordinates and following some
restrictions. Some known results of the majorization theory
include theLorentz curve(1905), which determines how the
distributions of income or wealth can be compared for a given
population; theprinciple of transferof Hugh Dalton (1920),
which also applies to the context of income distribution; and
the Hadamard inequalityintroduced by Issai Schur (1923),
among other results [35].

In order to formalize these ideas, among others, the bookIn-
equalitiesof Hardy, Littlewood and Pólya (1934) [36], was the
first to unify the existing subjects about majorization theory.
They have presented definitions, notations and development
of results of this new mathematical formalism. After that,
important results have emerged, e.g., in matrix analysis, linear
algebra, optimization, and in statistical problems, whichwere
documented in the bookInequalities: Theory of Majorization
and its Applicationsby Marshall and Olkin [35], that is
considered the leading reference on the subject.

The majorization theory has interesting results applied to
optimization problems, such as the reformulation of non-
convex problems into equivalent convexs problems [6], [37].
Consequently, majorization theory became an ally in solving
problems in various subject areas, including wireless commu-
nication [37], [38]. Zhanget al. [39] lists some applications
of the majorization theory on MIMO channels with respect
to optimization problems. Another contribution concerns the
study of upper and lower bounds on the ergodic channel
capacity [40].

This section is dedicates to presentation and application
this mathematical tool into a optimization problem studiedin
wireless communications. Specifically, we consider a problem
involving the capacity of a MIMO channel in which the
channel state information (CSI) is perfectly known at the trans-
mitter. For this situation, we will investigate the possibility of
obtaining an optimal point without the direct use of Lagrange
multipliers.

B. Majorization Theory Basics

The majorization relationship allows us to compare two
vectorsx = (x1, x2, · · · , xn) andy = (y1, y2, · · · , yn) of Rn

from its coordinates. For that purpose, we consider the vectors
[x] =

(

x[1], x[2], · · · , x[n]

)

and [y] =
(

y[1], y[2], · · · , y[n]
)

also of Rn obtained by reordering the coordinates in a de-
creasing order from the vectorsx andy, respectively. Thus,
x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n]. The
vectorx is majorized byy, and writesx ≺ y, if the following
conditions are met [35]:

k
∑

i=1

x[i] ≤

k
∑

i=1

y[i], 1 ≤ k ≤ n− 1, (2a)

n
∑

i=1

x[i] =

n
∑

i=1

y[i]. (2b)

In other words, the vectory majorizes the vectorx if the
coordinates ofy are more “dispersed” or “spread out” than
the coordinates ofx [35], [37]. To the understanding of this
definition, we consider the vectorsx = (3; 3; 3; 3; 3),
y = (5; 4; 3; 2; 1) and z = (7; 5; 2; 0, 8; 0, 2) of R5.
Note that, we have the following majorization relationships:
x ≺ y ≺ z. Figure 1 illustrates the behavior of the coordinates
of its vectors.

vectorx vectory vectorz

0, 2
0, 81

22

33333 3

4

55

7

≺ ≺

Figure 1. Geometric interpretation of the majorization relationship.

There is an extensive list of properties involving the ma-
jorization relationship, which can be found in [35], [41].
However, for this work, we highlight the following:

X

n
1 ≺ x, (3)

wherexi ≥ 0,
∑n

i=1 xi = X and 1 is a vector ofRn whose
coordinates are equal to 1, i.e.,1 = (1, 1, · · · , 1).

In the mathematical fundamentals, a real functionf : I ⊂
R → R is said to be nondecreasing inI if, ∀x1, x2 ∈ I, x1 ≤
x2, f(x1) ≤ f(x2). Similarly, Schur (1923) [35] generalized
this concept of order preservation by considering the case of
a real function of several variables. In this case, the domain
is considered a subset ofRn whose elements can compared
through majorization. Specifically, a real-valued function ϕ :
A ⊂ Rn → R is said to beSchur-convexon A if [35], [37],
[38]

x ≺ y on A, impliesϕ(x) ≤ ϕ(y). (4)

Similarly, ϕ(·) is said to beSchur-concaveon A if

x ≺ y on A, impliesϕ(y) ≤ ϕ(x). (5)

There are some criteria that allow us to specify whether a
function is Schur-convex or Schur-concave, without requiring
the direct application of the definition. One of them, is the
following theorem [35, Proposition 3.H.2] which considersthe
setD = {x = (x1, x2, · · · , xn) ∈ R

n ; x1 ≥ x2 ≥ · · · ≥ xn}
whose entries are arranged in a descending sequence.
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Theorem 4.1:Let ϕ : D → R be a real function defined by
ϕ(x) =

∑n
i=1 gi(xi), where eachgi : R → R is differentiable.

Thenϕ(·) is Schur-convex onD if and only if

g′i(a) ≥ g′i+1(b) whenever a ≥ b, i = 1, 2, · · · , n− 1. (6)

Similarly, ϕ(·) is Schur-concave onD if and only if
g′i(a) ≤ g′i+1(b) whenevera ≥ b.

For understanding this result, we consider the function
ϕ : D → R defined by

ϕ(x) =

n
∑

i=1

log2 (1 + kαixi), (7)

where, k ≥ 0 and αi ≥ αi+1 ≥ 0. Note that, each
function gi(x) = log2 (1 + kαix) is concave. In addition,
g′i(a) ≤ g′i+1(b) whenevera ≥ b, i = 1, 2, · · · , n − 1. Thus,
ϕ(·) is Schur-concave function onD.

Another criterion to characterize Schur-convex
and Schur-concave functions is calledSchur’s
condition [38, Lemma 2.5]. From this condition, we can
verify also that the definitions of convexity and Schur-
convexity functions are not equivalents, i.e., there is
Schur-convex function that is not convex function (see [41,
Example II.3.15]).

C. Majorization Theory and Optimization

It was mentioned in the introduction of this section, the ma-
jorizaton theory is an interesting tool in solving optimization
problems. The next result illustrates the applicability ofthis
theory in a optimization problem as follow [38, Theorem 2.21]

Theorem 4.2:Consider the Schur-concave function
ϕ : D+ → R and the following optimization problem:

max
x∈D+

ϕ(x), (8a)

subject to:
n
∑

i=1

xi = X, (8b)

whereD+ ⊂ D and xi ≥ 0 wheneverx ∈ D+. Then the
global maximum is achieved byx = X

n 1.
Proof: Note that, the pointx = X

n 1 satisfies the problem
constraint. In addition, sinceϕ(·) is a Schur-concave function
and the majorization relationship in (3) is satisfied, we have
ϕ(x) ≤ ϕ(x), ∀ x ∈ D+. In other words,x is a optimum
point. �

D. Application Problem

We have showed in this section some results about majoriza-
tion theory. In oder to apply this knowledge, we consider a
single-user MIMO communication withnT transmit antennas
andnR receive antennas. We assume the number of transmit
antennas does not exceeds the number of receive antennas,
i.e.,nT ≤ nR. The received signal vectory ∈ CnR×1 is given
by

y = Hx+ n, (9)

where the data vectorx ∈ CnT×1 is the transmitted signal
vector satisfying the total power constraintE

{

‖x‖22

}

≤ PT .

The channel matrixH ∈ CnR×nT is considered deterministic
and of rankr. The noise vectorn ∈ CnR×1 is considered
to be Zero-Mean Circularly Symmetric Complex Gaussian
(ZMCSCG) with covariance matrixσ2InR

.
Thus, when the channel is known at the transmitter, the

channel capacity is given by [7]

C =

r
∑

i=1

log2

[

1 +
piPT

σ2nT
λi

]

, (10)

whereλi is a eigenvalue ofHHH with λi ≥ λi+1 and pi
is the power allocated in theith sub-channel, which satisfies
∑r

i=i pi = nT .
According to Paulrajet al. [7], the mutual information

maximization problem is given by

max
p

ϕ(p) =

r
∑

i=1

log2

[

1 +
piPT

σ2nT
λi

]

, (11a)

subject to:
r

∑

i=1

pi = nT . (11b)

In addition, this is a convex optimization problem, since
the objective function and constraint are concave func-
tions. Thus, its guarantees the existence of an optimal point
popt =

(

p
opt
1 , p

opt
2 , · · · , popt

r

)

which maximizes the objective
function [1]. By the Lagrange multipliers method eachpopt

i

is determined as follows [7]

p
opt
i =

(

µ−
nTσ

2

PTλi

)+

, i = 1, 2, · · · , r, (12)

whereµ is the water-fill level and(x)+ = max {x, 0}.
If p ∈ D+, then we have an alternative method which allows

us to obtain an optimal point without the use of Lagrange
multipliers. In fact, the functionϕ(·) is Schur-concave by
situation presented in (7). In addition, by Theorem 4.2 the
global maximum is achieved bypopt = nT

r 1. In particular,
if the channel matrix has full rank, i.e.,r = nT , then the
optimum point is given bypopt = 1.

Finally, from this brief presentation of the majorization
theory, we highlight the potential of the method in optimization
problems. Since this mathematical tool is still incipiently
studied in wireless communication problems, we visualize
potential prospects of research, e.g., for broadcast and relay
channels.

V. STATISTICAL PRECODING FORCOMP SYSTEMS USING

CONVEX OPTIMIZATION

Coordinated Multi-Point (CoMP) transmission/reception is
a candidate technique for increasing cell-average and cell-
edge throughputs in future wireless systems. In CoMP sys-
tems, several network nodes (potentially distributed overa
geographic area) are linked by means of a fast backhaul to
a controller unit which centrally coordinates the actions of the
nodes. Joint Processing (JP) is a technique which can enhance
CoMP systems’ performance, mainly by employing precoding
algorithms based on CSIT gathered with help of the backhaul
infrastructure. In general, most precoding techniques often rely
on the assumption that the transmitter knows perfectly the
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MIMO channel matrix [42], [43]. However, this may not be
realistic in many practical scenarios and considering partial
availability of CSIT in MIMO systems becomes an important
issue, which might have a significant impact on the spectral
efficiency of the system.

In [44] the authors optimize the input covariance matrices in
order to maximize the approximation of the ergodic capacity.
Firstly, they find the ergodic capacity for a downlink MU
MIMO CoMP system and evaluate a2nd-order approximation
for the ergodic capacity considering that the transmitter has
access to both the mean and the covariance matrices of
the channel. In the sequence, they derive the optimal input
covariance using convex optimization tools.

The considered system model in [44] is the downlink of a
multi-cell MU MIMO system composed byNb Base Stations
(BSs) andK cochannel Mobile Stations (MSs) arbitrarily
distributed within the system coverage area. Each BS is
equipped withNt transmit antennas and each MS withNr

receive antennas. The BSs are synchronously connected to a
central processing unit, thus characterizing a CoMP structure.
Hereafter (Nt, Nr, Nb, K) will be used to represent the overall
structure of the system. Figure 2 shows this representationfor
a case withNb = K = 3.

BS 2

BS 1

BS 3

...

...

...

...

MS j

...

... H3,j

H2, j

H1,j

BS 2

BS 3

BS 1

C
en

tral P
ro

cessin
g

 U
n

it

Figure 2. Multicell multiuser MIMO system model withNb = K = 3.

The channel is considered frequency-flat, stationary and
takes into account only Rayleigh-distributed small-scalefad-
ing, which is modeled using Jake’s model [45]. The spatial
channel characteristics assume Kronecker-structured covari-
ances.Rtj and Rrj denote the transmit and the receive
covariance matrix of MSj, respectively. Considering this, the
channel matrixHΣj [n] from all BSs to MSj at timen can
be modeled as

HΣj [n] = H̄Σj +Rr
1/2
j HJakes[n]Rt

1/2
j , (13)

whereHb,j is the channel matrix from BSb to MS j, HΣj =
[

H1,j H2,j . . . HNb,j

]

Nr×NbNt

is the joint channel matrix
from all BSs to MSj andHJakes[n] is aNr×NtNb small-scale
fading channel matrix. Moreover,̄HΣj is the mean information
representing the line-of-sight component of the channel. Here,
Rt

1/2
j is the principal square-root ofRtj , such that,Rtj =

Rt
1/2
j Rt

1/2
j . Analogously,Rrj = Rr

1/2
j Rr

1/2
j .

Let Lj denote the number of data streams intended for MS
j, j = 1, 2, . . . ,K. For each MS, anNtNb × Lj precoding
matrix Tj is designed based on the characteristics ofHΣj .
Thus, the transmitted signal for userj is xj = Tjsj , wheresj
is the data stream intended for MSj. For simplicity, streams
are assumed to have i.i.d. ZMCSCG entries, i.e., Gaussian
signaling is assumed.

Moreover, the transmit signal must obey a per-base power
constraint given by:

E

{

K
∑

k=1

tr
{

x
[b]
k x

[b]H
k

}

}

= tr
{

T[b]T[b]H
}

=

= tr

{

K
∑

k=1

T
[b]
k T

[b]H
k

}

6 Pb b = 1, 2, . . . , Nb,

(14)

whereT[b] andT
[b]
k comprises the rows inT andTk corre-

sponding to the transmit antennas at BSb, respectively, and
Pb is the power constraint of BSb.

In [12], the problem of maximizing the sum rate of a
MU-MIMO system is considered. Therein, uplink-downlink
duality is used to transform the problem into a well-structured
convex uplink MU-MIMO channel problem. In this work, the
considered downlink channel hasM transmit antennas and
each receiver hasN receive antennas.

A. Ergodic Downlink Capacity Optimization of a MU MIMO
CoMP System

In order to adapt the work in [12] to the scenario CoMP
MU-MIMO, the authors in [44] propose some changes in the
model proposed by Jindal. They use the statement shown
in [12] that says that the sum capacity of the downlink
MU-MIMO is equal to the sum capacity of the dual uplink
MU MIMO subject to a total power constraintP . Therefore,
they compute the sum capacity considering a global power
restriction, given by the sum of the power restriction of each
base, and later, to apply a power allocation matrix that satisfies
the per-BS power restrictions.

Thus, the optimization problem is to maximize the sum rate
capacity of the uplink MIMO CoMP system with the global
power constraint, it means [44]:

CCoMP = max

{Qi}K

i=1
;Qi≥0;

K∑

i=1

tr{Qi}≤P

log
∣

∣I+GH
i QiGi

∣

∣ , (15)

where Gi = Hi

(

I+
∑

j 6=i H
H
j QjHj

)−1/2

,
Nb
∑

b=1

Pb = P ,

andQi is the uplink input covariance matrix per each useri.
Since it is not be realist in many practical scenarios to

consider that the channel is perfectly known at the transmitter,
in [44] it is assumed that the transmitter has access to statistical
channel state information (CSI), while the receiver has access
to instantaneous CSI. Thus, equation (13) is used in (15).

Using the Taylor expansion(log(I + A) = A − 1
2A

2 +
1
3A

3−. . .) in (15) and considering only the two first terms, the
authors in [44] obtain, after some mathematical manipulations,
the 2nd-order approximation of the ergodic capacity as:

C̄CoMP = max

{Qi}K

i=1
;Qi≥0;

K∑

i=1

tr{Qi}≤P

tr {XiQi}−

−
1

2

(

tr
{

RtiC
−1
i

}2
(tr {RriQi})

2
+

+ tr {RriQi}Tr
(

H̄H
ΣiQiH̄ΣiC

−1
i RtiC

−1
i

)

+

tr {XiQi}
2
)

, (16)
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being

Xi =
(

H̄ΣiC
−1
i H̄H

Σi + tr
{

RtiC
−1
i

}

Rri

)

. (17)

Thus, the optimization problem which must be solved is:

max

{Qi}K

i=1
;Qi≥0;

K∑

i=1

tr{Qi}≤P

F (Qi), (18)

where

F (Qi) =
1

δ + 1
tr {XiQi} −

1

2(δ + 1)2

(

tr
{

RtiC
−1
i

}2

(tr {RriQi})
2
+ tr {RriQi}

Tr
(

H̄H
ΣiQiH̄ΣiC

−1
i RtiC

−1
i

)

+ tr {XiQi}
2
)

,

(19)

Xi is defined in (17), andδ is a parameter which guarantee the
convergence and must be appropriately chosen for the SNR of
interest.

Using the Karush-Kuhn-Tucker (KKT) conditions to attain
both the primal and dual optimal solutions [1], the Lagrangian
of (19) can be written as [44]:

L(Qi,Zi, ν) =− F (Qi)− tr {ZiQi}+ ν(tr {Qi − P})

=
1

2(δ + 1)2

(

tr
{

RtiC
−1
i

}2
(tr {RriQi})

2
+

+ tr {RriQi} tr
{

H̄H
ΣiQiH̄ΣiC

−1
i RtiC

−1
i

}

+

+ tr {XiQi}
2
)

−
1

δ + 1
tr {XiQi}−

− tr {ZiQi}+ ν(tr {Qi − P}) (20)

whereZi andν are dual variables.
If Xi is invertible, the matrixQi which maximizesF (Qi)

is given by [44]:

Qi = (δ + 1)2X
−1/2
i

(

Z̃i +
1

δ + 1
I+ νX−1−

− Θ1R̃ri −Θ2S̃i

)

X
−1/2
i , (21)

where

Z̃i = X
1/2
i ZiX

1/2
i , R̃ri = X

1/2
i RriX

1/2
i ,

S̃i = X
1/2
i H̄ΣiC

−1
i RtiC

−1
i H̄H

ΣiX
1/2
i ,

Θ1 = (δ + 1)2
(

tr
{

RtiC
−1
i

}2
tr {RriQi}+

+ tr
{

H̄ΣiC
−1
i RtiC

−1
i H̄H

Σi

})

,

Θ2 = (δ + 1)2 tr {RriQi} .

In [44], the author compare the average sum rate obtained
with the proposed algorithm and the upper bound on the
ergodic sum rate, which corresponds to the perfect CSIT and
performs an iterative water-filling [12] when the number of
transmit and receive antennas (Nt and Nr) is equal to2.
Such result can be seen in Figure 3. Moreover, They consider
the case where the ergodic sum rate is approximated by
only the first term of the Taylor expansion. We can notice
that in low SNRs, the proposed algorithms in [44] have
similar performance and the difference gap between them
and the upper bound is high. When the SNR increases, the
performance of the proposed algorithms improves and the2nd-
order algorithm performs close to the upper bound. In such

simulations, they assume the CoMP-cell scenario consisting
of 3 coordinated cells with BSs placed in the center of each
cell and one user is placed randomly in each cell. These users
are considered as the ones selected by a scheduling algorithm
to transmit.
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Figure 3. Comparison of the ergodic sum rate obtained with the proposed
algorithms and with the upper bound (iterative water-filling) in a scenario
(2,2,3,3).

Finally, we can conclude that the use of convex optimization
tools in the design of input covariance matrix obtains good
simulation results. Thus, convex optimization tools have key
functionalities in solving problems of the wireless systems.

VI. CONCLUSIONS

In this paper, we provided a very brief survey on optimiza-
tion methods applied to solve relevant problems in wireless
communications. As exposed, there is a large number of opti-
mization methods, ranging from classic mathematical to more
distributed multi-objective optimization. A considerable (but
not complete at all) list of references in the areas have been
provided. Moreover, a concrete application of optimization to
solve a wireless optimization problem has also been described.
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