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Unified Analysis of Generalized Selection
Combining over Arbitrary Fading Channels
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Abstract— We derive general, unified expressions for the pro-
bability density function, cumulative distribution funct ion, and
mean SNR of generalized selection combining operating over
multibranch, arbitrary, correlated, non-identical fading channels.
The expressions are written in terms of the joint probability
density function of the branch signals and allow for the equal-
gain and maximal-ratio methods in the combining stage. As
an application example, we analyze the case of exponentially
correlated Rayleigh channels. The analytical results are fully
validated through Monte-Carlo simulations. In passing, new
important expressions for the joint distribution and density of the
order statistics of arbitrary correlated variates are also derived.

Keywords— Arbitrary fading channels, generalized selection
combining, order statistics.

I. I NTRODUCTION

Much attention has been recently given to the generalized
selection combining (GSC) scheme. This technique was first
proposed in [1], [2] as a suitable tradeoff between perfor-
mance and complexity and has found applicability in rake
receivers for wideband and ultra-wideband communication
systems [3]. The GSC chooses theL largest signals out of
M available branches and combine them on a equal-gain
(EGC) or maximal-ratio (MRC) basis. The respective hybrid
schemes are called here selection/equal-gain combining (SEC)
and selection/maximal-ratio combining (SMC).

Most published works on GSC are limited to independent
diversity channels (see, for instance, [3], [4] and references
therein). In practical systems, however, some sort of correla-
tion among the channels often occurs, and the investigation
on how this affects the performance is certainly of interest.
The SMC performance over identically distributed, identically
correlated Nakagami-m channels has been investigated in [5].
In this work, we providegeneral, unified expressions for the
probability density function (PDF), cumulative distribution
function (CDF), and mean SNR of SEC and SMC operating
over multibranch, arbitrary, correlated, non-identicalfading
channels. The expressions are written in terms of the joint
PDF of the branch signals. To illustrate the usefulness of
our general unified approach, sample numerical results are
examined for the case of exponentially correlated Rayleigh
channels—clearly, our expressions can be applied to any other
fading scenario for which the joint envelope PDF is known.
Monte-Carlo simulations fully validate the analytical results.
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In passing, new important expressions for the joint PDF and
CDF of the order statistics of arbitrary correlated variates are
also derived.

II. SYSTEM MODEL

ConsiderM correlated non-identically distributed branch
envelopesR1, . . . , RM following an arbitrary joint PDF
fR1,...,RM

(· · · ). At any instant, the SEC and SMC schemes
choose the1 ≤ L ≤ M largest branch signals and combine
them via EGC and MRC, respectively. LetO1 ≥ O2 ≥
· · · ≥ OM denote the order statistics ofR1, . . . , RM . Then,
the combiner output envelopeR can be written as

R =

{ ∑L

n=1
On/

√
L, SEC

√
∑L

n=1
O2

n, SMC
(1)

andγ = R2/2N0 is the output SNR,N0 being the noise power
in each branch. Next, we derive the PDFfR(·) and CDFFR(·)
of R in terms offR1,...,RM

(· · · ). In addition, the mean SNR
γ̄ = E{γ} is also attained. (E{·} denotes expectation.)

III. O RDER STATISTICS

It is clear from (1) thatR is a function ofO1, . . . , OL.
Thus, our first task is to find the joint PDFfO1,...,OL

(· · · ).
An event-based representation for the corresponding jointCDF
FO1,...,OL

(· · · ) is given by

FO1,...,OL
(o1, . . . , oL) = Prob

( M⋃

n1=1

{

Rn1
≤ o1; Rn2

≤ o2

∀n2 6= n1; · · · ; RnL
≤ oL ∀nL 6= n1, . . . , nL−1

})

(2)

which can be expressed in terms offR1,...,RM
(· · · ) as

FO1,...,OL
(o1, . . . , oL) =

M∑

n1=1

M∑

n2=1

n2 6=n1

· · ·
M∑

nL−1=1

nL−1 6=n1,...,nL−2

M−L+1
︷ ︸︸ ︷
∫ oL

0

· · ·
∫ oL

0

∫ oL−1

0

· · ·
∫ o1

0

fR1,...,RM
(r1, . . . , rM )

drn1
· · · drnL−1

drnL−1
, o1 ≥ · · · ≥ oL (3)

where drnk
, 1 ≤ k < M , denotes theM − k differentials

present indr1, . . . , drM but not in drn1
, . . . , drnk

. Then,
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differentiating (3), the desired joint PDF is obtained as

fO1,...,OL
(o1, . . . , oL) =

M∑

n1=1

M∑

n2=1

n2 6=n1

· · ·
M∑

nL=1

nL 6=n1,...,nL−1

M−L
︷ ︸︸ ︷
∫ oL

0

· · ·
∫ oL

0

fRn1
,...,RnL

,RnL
(o1, . . . , oL, rnL

)drnL
(4)

where Rnk
and rnk

, 1 ≤ k < M , denote the M − k
branch envelopes not appearing inRn1

, . . . , Rnk

and their respective sample values. Note, in (4), that
fRn1

,...,RnL
,RnL

(rn1
, . . . , rnL

, rnL
) = fR1,...,RM

(r1, · · · , rM )
∀n1, . . . , nL. Expressions (3) and (4) are important new
generalizations of previous results on order statistics for
independent branches (see, for instance, [1, Eqs. (5) and (6)])
and a crucial step to our generalized solutions.

IV. OUTPUT STATISTICS

Now, the CDF ofR can be obtained by integrating (4) over
the L-dimensional volume defined by

{

o1 ≥ o2 ≥ · · · ≥ oL and
∑L

n=1
on/

√
L ≤ r, SEC

o1 ≥ o2 ≥ · · · ≥ oL and
√

∑L

n=1
o2

n ≤ r, SMC
(5)

This geometrical approach has been used in [4]. Here, we
develop a unified treatment for SEC and SMC. From (5), it is
not difficult to find the appropriate integration limits for each
order statistic. The resulting output CDF is

FR(r) =

∫ sL

iL

· · ·
∫ s1

i1

fO1,...,OL
(o1, . . . , oL)do1 · · · doL (6)

(ik, sk) =







(

ok+1,
√

Lr−PL
n=k+1

on

k

)

, k < L, SEC
(

ok+1,

√
r2−P

L
n=k+1

o2
n

k

)

, k < L, SMC
(

0, r√
L

)

, k = L, SEC and SMC
(7)

wherefO1,...,OL
(· · · ) is given in (4). Differentiating (6) with

respect tor yields the output PDF

fR(r) =

∫ sL

iL

· · ·
∫ s2

i2

ṡ1fO1,...,OL
(s1, o2, . . . , oL)do2 · · · doL

(8)

ṡ1 ,
ds1

dr
=

{ √
L, SEC

r√
r2−

P

L
n=2

o2
n

, SMC (9)

Note from (4), (6), and (8) thatfR(·) and FR(·) are written
as sums of finite-range(M − 1)-fold and M -fold integrals
of fR1,...,RM

(· · · ), respectively. These results are general
and can be applied to any fading environment for which
fR1,...,RM

(· · · ) is known.
Using (8), the mean SNR of GSC in arbitrary fading can

be calculated as̄γ =
∫ ∞
0

r2

2N0
fR(r)dr. However, evaluating it

numerically renders difficult convergence, due to the infinite
upper limit and to the intricacy offR(·) as shown in (8).
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Fig. 1. CDF of SEC and SMC for exponentially correlated Rayleigh branches
with ρ = 1/2 (analytical solution: solid; simulation: scatter).

This problem can be circumvented by the change of variables
s = exp(−r), yielding a more efficient integral representation

γ̄ =

∫ 1

0

ln2 s

2N0s
fR(− ln s)ds (10)

We reinforce that (8) is intended to be replaced into (10), so
that the mean SNR of GSC is also written as a finite-range
M -fold integral offR1,...,RM

(· · · ).

V. A PPLICATION EXAMPLE

In this section, to illustrate the usefulness of our new
general unified expressions, we apply (6) and (10) to obtain
the CDF and the mean SNR of SEC and SMC over unit-
power exponentially correlated Rayleigh channels, whose joint
envelope PDF is given by [6, Eq. (11)]

fR1,...,RM
(r1, . . . , rM ) =

2MrM

(1 − ρ2)M−1

exp



−
r2
1 + r2

M + (1 + ρ2)
∑M

n=1

n 6=1,M
r2
n

1 − ρ2





M−1∏

n=1

rnI0

(

2

∣
∣
∣
∣

ρ

1 − ρ2

∣
∣
∣
∣
rnrn+1

)

(11)

where ρ|n−m| is the correlation coefficient between the un-
derlying Gaussian components of the Rayleigh envelopes at
the nth and mth branches,n 6= m. In this case, (6) and
(10) can not be solved in closed-form and must be evaluated
numerically. For practical values ofM (e.g.M ≤ 5), theM -
fold numerical integrations can be easily attained in standard
software packages, although they become intricate asM
increases. The resulting curves are shown in Figs. 1 and 2
for M = 4 and have been computed in Mathematica. In
order to validade the new analytical expressions, Monte-Carlo
simulation results are also shown in scatter, and an excellent
match is verified in all of the cases.
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Fig. 2. Mean SNR of SEC and SMC for exponentially correlated Rayleigh
branches (analytical solution: solid; simulation: scatter).

In the figures, the GSC schemes are denoted by SEC(L, M )
and SMC(L, M ), and γ̄i stands for the mean value of the
SNR γi at each branch. Of course, SEC(1, M )≡SMC(1, M ),
SEC(M, M ), and SMC(M, M ) are the well-known selection
combining (SC), EGC, and MRC schemes. Note that SMC
improves asL increases and always outperforms SEC. Indeed,
the performance of SEC approaches that of SMC asL decre-
ases and/orρ increases. As expected, in Fig. 2,γ̄ → Lγ̄i for
both SEC and SMC asρ → 1. More interestingly, for SEC—
as opposed to SMC—the increase ofL does not necessarily
improve the performance. Note, for instance, in Fig. 2 for
ρ / 1/2 and in Fig. 1, that SEC(3, 4) outperforms SEC(4, 4).
This intriguing behavior of SEC has already been reported for
independent branches in [4]: it may be that the inclusion of
the signal of one more branch does not overcome the addition
of the noise at that branch.

VI. CONCLUSIONS

In this work,general, unifiedexpressions for the PDF, CDF,
and mean SNR of SEC and SMC operating overmultibranch,
arbitrary, correlated, non-identicalfading channels have been
derived in terms of the joint PDF of the branch signals. The
new expressions apply to any fading scenario for which the
joint envelope PDF is known, and their use has been illustrated
for exponentially correlated Rayleigh channels. Monte-Carlo
simulations fully validated the analytical results. In passing,
new important expressions for the joint PDF and CDF of the
order statistics of arbitrary correlated variates have been also
derived.
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