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Abstract—This paper presents an analysis of radiation and 

absorption properties of cylindrical gold nanodipoles in the 
transmitting mode. The conventional antenna theory and the 
linear method of moments are used for the theoretical analysis of 
these antennas in the near-infrared and lower optical frequencies 
(100−500THz). Radiation and absorption parameters, such as 
input impedance, efficiency, radiation and loss resistance are 
calculated in function of frequency for different dipole’s lengths 
and radii. The presented results can be useful to design efficient 
nanodipoles and to perform the input impedance matching of 
these antennas with plasmonic optical transmission lines. 
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I. INTRODUCTION 
Optical antennas are metal nanostructures used to transmit 

or receive optical fields [1]-[2]. This definition is similar to that 
of conventional radio frequency (RF) and microwave antennas. 
The main difference between these two regimes (RF-
microwave and optical) occurs due to physical properties of the 
metals at optical frequencies where they cannot be considered 
as perfect conductors because of the plasmonic effects [3]. 
Recently comprehensive reviews on optical antennas have been 
presented in [4]-[5]. In these works, the authors described 
recent developments, antenna parameters, applications, future 
trends and challenges. 

A potential application of optical antennas is to provide a 
good matching between guided plasmonic waves and radiated 
fields, and vice versa. One example of enhancement of the 
reception of propagating surface plasmons using nanodipoles 
placed in front the waveguide’s end aperture is given in [6]. 
Another example is enhancement of the near field of an 
aperture optical fiber probe by using a monopole near this 
aperture [7]. Also, a nanodipole can provide a better 
enhancement and confinement of the radiated fields of a 
semiconductor laser diode [8]. In all these examples, the 
dimensions and resonances of the antennas were optimized to 
improve the energy transfer between the guided and radiated 
fields. These problems can be viewed as a classical input 
impedance matching design, in analogy with the theory of RF-
and microwave antennas. 

To take advantage of the well established input impedance 
matching techniques of RF-microwave antennas, it is necessary 
to extend the antenna theory to the optical domain. To do this, 
plasmonic waveguides and nanoantennas can be represented by 
equivalent optical transmission lines (OTL) and impedances, 
respectively. In this way, a plasmonic OTL based on array of 
nanoparticles, acting as lumped nanocircuit elements, have 
been proposed in [9].  Other examples of OTL and equivalent 

circuit analysis can be found in [10]-[11]. An optical 
nanocircuit composed by a receiving and an emitting 
nanoantenna connected by a two-wire OTL is presented in 
[12]. In this paper, the authors performed the input impedance 
matching varying de length of the nanodipoles. 

Input impedances of isolated nanoantennas in the 
transmitting mode were investigated in [13]-[16]. In [13], the 
input impedance of silver linear nanodipoles with different 
length and loading is analyzed. The effect of different materials 
and sizes on the input impedance of linear nanodipoles is 
presented in [14]. The peculiar properties of loop nanoantennas 
are presented in [15]. Plasmonic folded dipole nanoantennas 
with better radiation efficiency are investigated in [16]. In all 
these works, the principal objective is to analyze the input 
impedance and the resonance properties of nanoantennas, and 
minor attention has been given to the absorptive and efficiency 
properties of the nanoantennas, which is very important to 
design efficient plasmonic optical nanocircuits. 

In this paper, we present a radiation and absorption analysis 
of gold linear nanodipoles in the transmitting mode. The 
conventional antenna theory and the linear method of moments 
with sinusoidal basis functions and equivalent surface 
impedance are used for the theoretical analysis in the near-
infrared and lower optical frequencies (100−500THz). 
Radiation and absorption parameters, such as input impedance, 
loss and radiated power, efficiency, loss and radiation 
resistance are calculated in function of frequency for different 
dipole’s length and radius. Our results give some useful 
conclusions for design efficient nanodipoles and to make the 
input impedance matching of these antennas with OTLs. The 
following sections present the theoretical model, results, and 
conclusions. 

II. THEORETICAL MODEL 
To analyze linear nanodipoles we use the method of 

moments (MoM) approximation with sinusoidal basis 
functions and equivalent surface impedance [17]. Fig. 1 shows 
the geometry of the original problem, the equivalent moment 
method and circuit models of the nanodipole. In this figure, L 
is the length of the arms, d is the nanodipole gap, and a is the 
radius. The total length of this antenna is Lt=2L+d. 

In the radiation problem of the Fig. 1, the gold material of 
the antenna is represented by the Lorentz-Drude model for the 
complex permittivity ε1= ε0εr1 [17], where 
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Fig. 1.  Geometry of nanodipole: original problem (left), method of 
moments model (midlle), equivalent circuit model (right). 

being: ε∞=8, ωp1=13.8×1015s−1, Γ=1.075×1014s−1, ω0=2πc/λ0, 
λ0=450nm, ωp2=45×1014s−1, and γ=9×1014s−1. This model is a 
good approximation for the wavelengths λ>500nm. The losses 
in metal are described by surface impedance Zs. This surface 
impedance can be obtained approximately by considering 
cylindrical waveguide with the mode TM01. In this case, the 
surface impedance is given by 
 

)(2
)(

11

0

TaJaj
TaTJZs ωεπ

= ,   10 rkT ε= ,  000 εµω=k . (2) 

 

The boundary condition for the electric field satisfied at the 
surface’s conductor is IZaEE slis =⋅+ )( , where al is a unitary 
vector tangential to the surface of the metal, Es is the scattered 
electric field due the induced linear current I on the conductor, 
Ei the incident electric field from the voltage source (Fig. 1), 
and I is the longitudinal current in a given point of the 
nanodipole. 

The integral equation of the scattered field along the length 
l of the nanodipole is given by 
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The numerical solution of the problem formulated by (1)-
(3), is performed by linear MoM as follows. Firstly, we divide 
the total length Lt=2L+d in N=2Na+2 total straight segments, 
where Na is the number of segments in L−0.5d, with size 
∆L=(L−0.5d)/Na (white segments in Fig. 1), and two segments 
in the middle with size ∆L=d (gray segments in Fig. 1). Later, 
the current in each segment is approximated by sinusoidal basis 
functions. The expansion constants In are shown in Fig. 1 
where each constant define one triangular sinusoidal current. 
To determine these constants, we use N−1 rectangular pulse 
test functions with unitary amplitude and perform the 
conventional testing procedure. The following linear system of 
equations is obtained 
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where Zmn is the mutual impedance between sinusoidal current 
elements m and n, ∆m=1/2[∆Lm+∆Lm+1], and Vm is only non 
zero in the middle (m=N/2), where VN/2=Vs. The solution of (4) 
gives the current along the dipole, and the input current Is. For 
Vs=1V, the input impedance is Zin=1/Is=(Rr+RL)+jXin, where Rr, 

RL, and Xin are the radiation resistance, loss resistance, and 
input reactance, respectively. The total input power is 
Pin=0.5Re(VsIs

*)=0.5(RL+Rr)|Is|2=Pr+PL, Pr is the radiated 
power and PL the loss power dissipated at the antenna’s 
surface. This later is calculated numerically by 
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The radiated power can be obtained by Pr=Pin−PL, and the 
resistances Rr=2Pr/|Is|2 and RL=2PL/|Is|2. The radiation 
efficiency is calculated by er=Pr/Pin= Pr/(Pr+PL)=Rr/(Rr+RL). 

III. RESULTS AND COMMENTS 

A. Numerical Example 
This section presents the numerical analysis of an example 

nanodipole with L=220nm, a=10nm, and d=20nm. The 
simulations of this nanodipole using the theory presented in the 
previous section, were performed for Na=11 (N=24). With this 
discretization the convergence criteria that we use of 
min(∆L)/a≥1 is satisfied. In this case, we have min(∆L)/a=1.9. 

The calculated input impedance Zin is shown in Fig. 2. This 
figure also presents the result simulated by the Comsol 
software. We observe a good agreement of the results in the 
range 100−400THz. In general, for higher optical frequencies 
F>400THz, the surface impedance approximation (2), of the 
linear method of moment used here, is not valid [18]. In this 
case, the contribution of the transversal current in the 
nanodipole will be significant and it should be taken into 
consideration [19]. 

The data of Fig.2 show that the Zin curve and the resonances 
of nanodipoles are similar to the conventional RF-microwave 
dipoles. The difference is that the resonances of nanodipoles 
are shifted for lower frequencies, because the effective 
wavelength of the material is smaller than the external 
wavelength. This behavior is known as scaling rule for optical 
antennas [20]-[21]. 

The first four resonances of this nanodipole defined by Xin=0 
are: Fλ/2=136THz (first short-circuit resonance), Fλ=221THz 
(first open-circuit resonance), F3λ/2=330THz (second short-
circuit resonance), and F2λ=379THz (second open-circuit 
resonance). These resonances are of type short or open circuit; 
it depends on the form of their current distributions (Fig. 3).  

 

Fig. 2.  Input impedance of nanodipole with L=220nm, a=10nm, and 
d=20nm. The simulation with MoM was made for Na=11 (N=24). 
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Fig. 3.  Current distribution along nanodipoles at resonances. 

In Fig. 4, we present the loss power (PL), radiated power 
(Pr), loss resistance (RL), and radiation resistance (Rr) versus 
frequency.  Fig. 5 shows the directivity (D), gain (G) and 
radiation efficiency (er) of the nanodipole versus frequency. 
The parameters D and G were calculated in the far field zone in 
the x direction (Fig. 1). The inset in this figure presents the 
radiation diagram of gain for different resonant frequencies. 

We observe in these figures that the maximum of PL and Pr 
occurs at the short-circuit resonances, and the maximum of RL 
and Rr occur at the open-circuit resonances. The values of the 
radiation efficiency are small when compared with those for 
RF-microwave antennas. This is due the high losses of the 
metal in optical frequencies. The maximum of the radiation 
efficiency of this nanodipole is er=0.39, and it occurs at the 
open-circuit resonance Fλ=221THz. This means that the 
maximum efficiency and maximum input power are in 
different frequencies. Also, maximum efficiency and better 
input impedance matching of this nanodipole with a given 
OTL, in general, are in different frequencies. This happen 
because the characteristic impedance of an OTL not necessary 
matches with the input impedance of the nanodipole at 
maximum efficiency [12]. 

The maximum gain of this nanodipole is G=−2.27dB, and it 
occurs at maximum efficiency (Fig. 5) because the directivity 
is nearly constant, about D=1.5 (≈1.9dB). The shape of the 
radiation diagram of gain of this nanodipole in the plane xz is 
approximately the same as that of a small dipole. 

 

Fig. 4.  Loss power (PL), radiated power (Pr), loss resistance (RL), and 
radiation resistance (Rr) versus frequency. 

 

Fig. 5.  Directivity (D), gain (G) and radiation efficiency (er) of the 
nanodipole versus frequency. 

B. Parametric Analysis 
This section presents a parametric analysis of nanodipoles 

with different values of the arm length L and radius a. The 
objective is to investigate the variation of the radiation and 
absorption properties of nanodipoles with different sizes.  

Figs. 6-7 show the variation of the input impedance for 
L=100, 125, 150, and 175nm, for a=10 and 20nm, respectively. 

 

Fig. 6.  Input impedance of the nanodipole with L=100, 125, 150, and 
175nm, for a=10nm. 

 

Fig. 7.  Input impedance of the nanodipole with L=100, 125, 150, and 
175nm, for a=20nm. 
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We see in this figures that with increasing of L and fixed 
radius, the resonances of the dipole are shifted to lower 
frequencies, and for increasing of a, for fixed L, the resonances 
are increased. This dependence of the resonances  is similar to 
the variation of the resonances of nanorods illuminated by a 
plane wave [20]-[21], where one observes a linear dependence 
of the resonant wavelengths λres with L, and with variable 
inclination of the linear curve for different values of a. These 
figures also show that the widths of the Rin curves, around the 
open-circuit resonances, are broader for larger values of a. In 
other words, the impedance bandwidth is increased for larger a. 
This result is similar for the case of RF-microwave broadband 
dipoles with smaller aspect ratio L/a. We also notice that with 
fixed a the values of Rin are increased for larger L.  

Figs. 8-9 present the variation of the loss power (PL) and 
radiated power (Pr) for different L and a, respectively. The 
position of the maximum power in these curves occur at the 
correspondent short-circuit resonances of the input impedances 
shown in Figs. 6-7. This was observed in the example of the 
previous section (Figs. 2 and 4). Also, the maximum values of 
PL and Pr are reduced with increasing the arm length L. 
However, for higher values of a, with fixed L, PL is reduced 
and Pr is increased. To take a better physical understanding of 
these results, it is important to analyze the loss and radiation 
resistance and the equivalent circuit of Fig. 1. 

 

Fig. 8.   

Fig. 9.  Loss power PL for nanodipoles with different values of L=100, 
125, 150, and 175nm, and a=10 and 20nm. 

 

Fig. 10.  Radiated power Pr for nanodipoles with different values of L=100, 
125, 150, and 175nm, and a=10 and 20nm. 

Figs. 10-11 present the dependence on L and a of loss 
resistance (RL) and radiation resistance (Rr).  We observe that 
the maximum values of RL and Rr are in the open-circuit 
resonances of the correspondent input impedance (Figs. 6-7), 
like observed in the example of Fig. 4. For increasing L, with 
fixed a, the curves of RL practically are not changed, and the 
curves of Rr are increased. This means that the increasing of 
the input resistance (Figs. 6-7) is due mainly by Rr. For 
increasing the radius a, both resistances are reduced, but the 
reduction for RL is larger than that observed for Rr. This explain 
the variation of PL and Pr, for different a and fixed L, shown in 
Figs. 8-9. The reduction of PL for higher values of a is due to 
the reduction in the surface impedance Zs (2), which leads to a 
weaker plasmonic effect. This also happens for higher L, 
because the resonances are red-shifted [18]. 

The circuit analysis of these linear gold nanodipoles with 
different values of L and a, and using Vs=1V, the input 
impedance of Figs. 6-7, and the resistances of Figs. 10-11, 
produces the results of loss and radiated power shown in Figs. 
8-9. The radiation efficiency has been calculated and the results 
are presented in Fig. 12. We can conclude that, in general, the 
radiation efficiency is increased for larger values of L and a, i.e 
for larger nanodipoles sizes, where the plasmonic effect is 
smaller. 

 

Fig. 11.  Loss resistance RL for nanodipoles with different values of L=100, 
125, 150, and 175nm, and a=10 and 20nm. 

 

Fig. 12.  Radiation resistance Rr for nanodipoles with different values of 
L=100, 125, 150, and 175nm, and a=10 and 20nm. 
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Fig. 13.  Radiation efficiency (er) for nanodipoles with different values of 
L=100, 125, 150, and 175nm, and a=10 and 20nm. 

IV. CONCLUSION 
This paper presented a theoretical analysis of radiation and 

absorption properties of cylindrical gold nanodipooles in the 
transmitting mode. The linear method of moments with 
sinusoidal basis functions was used to determine the equivalent 
circuit model for nanodipoles with different arm length L and 
radius a. The equivalent circuit was used to calculate the 
losses, radiated power, and efficiency. We observed that the 
maximum radiation efficiency, for all analyzed nanodipoles, 
occur at the first open-circuit resonance, where the input 
resistance is very high. Another important result obtained is 
that, in general, the radiation efficiency of nanodipoles is small, 
but it can be increased for large values of L and a. 

The analysis presented here can be useful to design 
efficient nanodipoles, and to make the input impedance 
matching of these nanodipoles with a given OTL. In future 
works, we shall investigate nanoantennas with different 
materials and geometries to optimize the input impedance and 
radiation efficiency. 
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