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Correlation Statistics of the-p Fading Channels

Ugo Silva Dias and Michel Daoud Yacoub

Resumo— Medi¢Bes de campo em ambientedoor e outdoor (AOA) may introduce errors on the second-order statistics,
sdo utilizadas para validar a funcdo de autocorrelagio obtida de  particularly correlation functions and level crossingesatin
maneira exata para 0 modelo de desvanecimente .. Alem disso,  5qqition, a very simple, accurate closed-form approximation
aproximacodes precisas e em forma fechad&e obtidas e tamt&m h L . -
validadas para a fungio de autocorrelago e para o espectro de to the _autocorrelatlon function is obtglnec_i. This is theadus
poténcia da envolbria a-u. Sio realizadas comparades e um 10 derive accurate closed-form approximation to the power
excelente ajusteas medidas de camp@ observado em ambos os spectrum of they-y envelope, which is also validated through
ambientes isotpicos e anisotbpicos. field measurements.

Palavras-Chave— Distribui¢ a0 a-u, autocorrelacio, medi@es
de campo, espectro de péncia. II. THE a-p AUTOCORRELATIONFUNCTION

Abstract— Indoor and outdoor field trial measurements are The temporal autocorrelation function (ACR)s(r) of the

used to validate the autocorrelation function derived in anexact -/ €nvelopeR can been obtained from its generalized joint
manner for the a-p fading signal. In addition, accurate closed- moments, as derived in [4, Eq. 29], as

form approximations for both autocorrelation function and to

the power spectrum of the o~y envelope are obtained and also AR(T) 2 E[R(T)R(t + T)] =

validated. Comparisons are performed and an excellent fit tahe JOTS 1 11

field measurements is found in both isotropic and anisotrom P12 (n+ 5) 2 F1 (-5, — gy (7)) 1)
environments. M% I2(p)

Keywords— «-p  distribution, autocorrelation, field trials, wheres = W is the a-root mean value oR®, I'(z) =
power spectrum. 0 4y 1 i . \
Jo_ t7~texp(—t)dt is the Gamma function,F (-, -;-;-) is the
hypergeometric function [10, Eq. 15.1.}],7) is the temporal
|. INTRODUCTION autocorrelation coefficient (ACC) of a squared Rayleigh en-
In wireless communications, the multipath fading phenomeelope [4, Eq. 36], and’[] denotes the expectation operator.
non has been characterized by several important statisties Using the space-time duality of the wireless channel [gnt
dels, notably Rayleigh, Rice, Hoyt (Nakagag)i-Nakagami- wpT = 27d/\, wherewp is the maximum Doppler frequency
m, and Weibull [1]-[3]. Recently [4], a general physicaln rad/s,d denotes distance, andis the carrier wavelength.
fading model, namely thex-x model, has been describedThus, the spatial ACFAx(d) of R can be straightforwardly
that considers a signal composed of clusters of multipaigund in terms of the spacial AC@(d) as
waves propagating in a nonhomogeneous environment. The
resultant envelope in such an environment then follows the ) = PPT2 (u+ 2) o Fy (=2, =15 i p(d))

a-p distribution, which includes as special cases Nakagami- Agr(d) = T o 2)
and Weibull. Its flexibility renders it adaptable to sitwais T (p)
in which neither of these two distributions yield good fit.[4] In this work, we address the general case of anisotro-
Experimental data supporting the usefulness of the Nakagaiic/isotropic fading scenarios, for which the distributiof
m and Weibull fading models have been widely reporteile angle of arrival of the multipath waves are nonuni-
in the literature (e.g., [5]-[8]). However, to the best ok thform/uniform. A widely used model for the directional AOA
authors’ knowledge, works depicting practical situatidns is the parametric Von Mises (Tikhunov) distribution [12].
which higher-order statistics ef-y distribution are used have For this model, the spatial squared Rayleigh ACC can be
not been reported in the literature. obtained as (3), as shown at the top of the next page, in which
In this paper, some second-order statistics for theg 0 < ¢ < 1 indicates the amount of directional reception,
fading channels are (i) derived, (i) validated throughdielfo(") is the modified Bessel function of the first kind and
measurements, and (i) compared with those of its pagiculzeroth order [10, Eq. 9.6.16}, € [, ) represents the mean
cases. With such a target, the autocorrelation function g§ection of the AOA, andk > 0 controls the beamwidth.
obtained in an exact manner. In addition, experimental aa [N particular, for¢ = 0, the composite anisotropic/isotropic
collected that fit both isotropic and anisotropic condiipAs Model reduces to the isotropic scenario with uniform AOA;, fo
noted by several authors (e.g. [9]), the assumption of aumif Which p(d) = J§(27d/\), whereJo(:) is the Bessel function
probability density function (PDF) for the angle of arrivaPf the first kind and zeroth order [13, Eq. 8.401].

The authors are with the Wireless Technology Laboratorys§iék), De- .
partment of Communications, School of Electrical and Cor@pEngineering, A. The Moment-based a-y-estimator
University of Campinas, PO Box 6101, 13083-852, Campin&s, Bgazil (e- The moments of the-u envelope are given as [4][R*] =

mail: [ugo,michel]@wisstek.org). This work was partly popted by FAPESP .k . L . .
(06/06825-8). % From this, an equality is defined that is useful for
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3)

CI() (\/kQ — (27Td/>\)2 +]4’/deCOS(QD)/>\) —+ (1 — C)J()(Z’]Td/)\)]()(k)
p(d) = o)

the estimation of the parameters of this distribution. lseese
[4]’ 0.10 -

. 1=5,3,2,105,0.3

E?[R’] _ I?(p+ B/a)
B[R?P] - B*[RA] ~ T(w)T(u +26/a) = T?(u + 6/@)( "
in which 3 is chosen arbitrarily. For two distinct and arbitrary=
values of 3, two equations are set up so that the physicak °* 1
parametersy and i are encountered. For a particular case i
which 8 = 1 and 8 = 2, (4) yields an estimator in terms
of the first and second moments. Of course, from (4), other

moment-based estimators can be used.

B. The Nonlinear ¢-¢-k-estimator

The unknown parametecs ¢, andk of the nonlinear model !
(3) can be estimated by means of a numerical procedure as
follows. They can be evaluated by the nonlinear least sguafég. 1. Maximum deviation of the approximated and exaet. autocorre-
method [14], which provides consistent estimates. In egsenion functions.

(é, ?, l%) = argmin MSE (5)
Cpsk
where MSE = N=1 >N [5(d) — p(d)]? with p(d) given in
(3) and N is the total number of sample data. In particular, f
the isotropic scenario with uniform AOAM SE;sotropic =
NS () — TG (2md/ )P,

and p(d) has its maximum atl = 0. Defining AAz(0) =
(#AR(O) — Ag(0)]/72, Figs. 1 and 2 plot this deviation as a
unction of @ and p. Indeed, the deviation iaull for o = 1
independently of: values, i.e. the approximate formulation in
(7) is indeed exact far = 1. In addition, fora. > 1 andp > 1,
such a deviation is smaller than85%. As @ — oo and/or
[1l. THE a-p ENVELOPE POWER SPECTRUM 1 — oo both A and Ax, tend to7? and AAx(0) = 0. For
The power spectrun$z () of the a-u fading envelopeR o — 0 and/orp — 0, the deviation tends to infinity. However,
is the Fourier transform of its ACF Ax(d) as defined in (2). « < 1 and u < 0.5 are rarely found in real situations. In
Although this leads to an exact calculation, it seems that faxct, « < 1 andp < 0.5 lead to a condition corresponding
closed-form expression can be found. In this sectiosimple, to a fading parameter (Nakagamiparameter) smaller than
accurate closed-form approximation to Sr(v) is derived for 0.09375. Moreovery > 1 andp > 1 correspond to a fading
the isotropic scenario. To this end, the following expans6 parameter greater than 0.25. Thus, for practical purpaies,

the hypergeometric functiogF (-) is used [10] proposed approximation is indeexcellent.
11 p(d) (1 —a)2p(d) Now, taking the Fourier transform of (7), as shall be seen, an
2P | ==, —=iwp(d) | =1+ =>4+ 75 + accurate approximation to Sr () can be written in a closed-
a o« a?p 20t (p? + )
) 5 3 form formula as
(1 - 20() (1 B 04) 14 (d) (6) 919 1
606 (1% + 302 1 20) Sp(y) ~ 2 (u+2)
In (6), dropping the terms of order beyond two, the exact paI2(p)
a-p ACF Ar(d) can be approximated by r(d) as A A\ 2
X (5(’7) + ﬁK 1-— (—) (8)
A2F2 ( + 1) (d) Tratp 2
~ A _r KT o p
Ap(d) ~ Ag(d) = 1AT2(p) <1+ oﬂu) for |y| < 2/\, whered(-) is the Dirac delta function and

. . K (-) is the complete elliptic integral of the first kind [7, Eq.
a Trr]c?ximz(:em(%nsgﬁj\;:iﬂgno?cettj\pf?gr iheo ?;?Ctthéz)h ar:edr_ ”3?.’112.1]. As a check for the correctness of these results, we
22metric series in this case contai;s ;)nl ositizg termngte that, fora = 2 (Nakagamim condition), . = 1 (Weibull
9 yp condition), and(«, 1) = (2,1) (Rayleigh condition), (7) and
LThe Fourier transformF(+) of a function f (x) is defined here a&(y) = (8) SPecialize into [5, Egs. 4 and 9], [3, Egs. 5 and 6], and
22, f(z) exp(—jyz)dw. [11, Egs. 1.3-16 and 1.3-27], respectively.
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Fig. 2. Maximum deviation of the approximated and exaet autocorre- Fig. 3. a-p autocorrelation functions for isotropic fading scenari¢s= 0,
lation functions. anda = 7/4 (exact: solid; approximated: dot).

A. Sample Examples

The exact and approximate normalized autocorrelation-func 10
tions of thea-p envelopes are shown in Figs. 3 to 6, for
isotropic ¢ = 0) and anisotropic{ = 0.8) fading scenarios, 05
and for several different values of fading parameters. FEr.
the isotropic fading scenario, = 1 and ¢ = 0. Note the =
excellent match in all of the cases. The slightly poorerltesulfﬁ 067
for (a, ) < (1,0.5) are expected, because (7) deteriorates i+
this range, as already mentioned. Note thaty asd/ory tend i 0.4
to infinity, the a-p. process becomes constant functions, i.e3
Ag(d) — 7. <

The approximation (8) to the-u envelope power spectrum
is compared to the exact formulation (obtained by numerical
integration) in Figs. 7 and 8. Both exact and approximated °-°0'00 .
spectra are plotted fqu = 0.5,1, and3 anda = 0.5, 1, and d/\

2. (The DC component was omitted in these comparisons.) It

can be seen that the differences are seen to be minimal ﬁ%l’ 4. «-p autocorrelation functions for isotropic fading scenari¢os= 0,
(o, ) > (1,0.5). The counterpart of the unity autocorrelatiorand . = 7/4 (exact: solid; approximated:dot).

function asa and/ory tend to infinity is purely DC spectrum,

i.e., Sg(vy) — 76(y) for @« — oo and/ory — oo.

a=05,1,15,2,3,4,5,00

0.2 4

estimated by the moving average method, with the average
IV. FIELD TRIALS AND VALIDATION being conveniently taken over samples symmetrically aljac

A series of field trials was conducted at the Universit)® €YY point. From the data collected, the long term fading
as filtered out and the fading parameterand ., as defined

of Campinas (Unicamp), Brazil, in order to validate th : . : ;
autocorrelation function and the power spectrum of the previously, was estimated, as well as the anisotropic qes

w1 envelope. To this end, the transmitter was placed on ti'?e_ﬁ?dk' lized irical lati d
rooftop of one of the buildings and the receiver travelled e normalized empirical autocorrelation was compute

through the campus as well as within the buildings. Th%ccording to

N—-A
mobile reception equipment was especially assembled i®r th Ag (A) = w 9)
purpose. Basically, the setup consisted of a verticallppoéd ol T

omnidirectional receiving antenna, a low noise amplifier, Wherer; is the i-th sample of the amplitude sequendé,is
spectrum analyzer, data acquisition apparatus, a notebgk total number of samples is the discrete relative distance
computer, and a distance transducer for carrying out th‘as'gdifference, andiy, () denotes an empirical estimate4f; (.).

sampling. The transmission consisted of a CW tone at ke empirical correlation coefficient was calculated as
GHz. The spectrum analyzer was set to zero span and centered . N
at the desired frequency, and its video output used as the H(A) = AR (A) - E*(R) (10)

—~

input of the data acquisition equipment. The local mean was V(R?)
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Fig. 5. «-u autocorrelation functions for anisotropic fading scemsr{ = Fig. 7. «a-p envelope power spectrum for isotropic fading scenarios and
0.8, k=1, p=0, anda = 7/4 (exact: solid; approximated: dot). a = T/4 (exact: solid; approximated: dot).
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d/\
Fig. 6. «-u autocorrelation functions for anisotropic fading scessr{ = Fig. 8. «a-u envelope power spectrum for isotropic fading scenarios and
0.8, k=1, =0, andu = 7/4 (exact: solid; approximated: dot). u = T/4 (exact: solid; approximated: dot).

where E(.) and V(-) denote the estimate of the mean anRI/ISE, and the mean error deviatierfor each sample result.

ther vr;mtanrce, relngcnve:i);h thgl?/’rthﬁ rf]?dlngrar:: mnumt Observe theexcellent fit and how the theoretical curves tend
parameters could be estimated for all measurements. té? keep track of the changes of the concavity of the empirical

The empirical autocorrelation function was comparegy, The,_, model fits betters than Weibull and Nakagami-
against the corresponding theoretical formula (2) andigtot ., 05 a5 expected, because it provides one more degree of
as a function ofd/\ with the same parameters and freedorr,l. ’
estimated from the experimental data. Furthermore, thmmea_l_he a-1 envelope power spectrum formulation (8) is then

error deviatioR, e, was computed for each case. Figs. 9(a) to

9(c) show some sample plots comparing the experimental affPared against that obtained empirically (measured.data

theoretical anisotropic autocorrelation data for differealues '© this end, we used the discrete Fourier transform (BFa)
of the a-u, Weibull, and Nakagamin distributions, as well compute the Fourier transform of the empirical autocorrela

as, for distinct parameters of the Von-mises modek{, and tion. Figs. 10(a) to 10(c) show some sample plots comparing

k). Table | shows the values of the parameters, the minimUfif €xPerimental and theoretical power spectrum for difer
values of the fading parameters. Again, ewellent fit can

2The mean error deviation between the measured:dagad the theoretical observed.
value y; is defined ase = & >N | Wi=%il where N is the number of

points. For the present calculations, the errors were asgitnfor points in
the interval P, 1.43\], within which larger deviations occur. 3The DFT was implemented by the FFT (Fast Fourier transfotgoriahm.
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(a) Indoor measurement. (b) Outdoor measurement. (c) Outdoor measurement.
Fig. 9. Empirical versus theoretical normalized autodatien functions (anisotropic scenarios).
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Fig. 10. Empirical versus theoretical normalized powercspen functions (isotropic scenarios).

TABLE |
ESTIMATED VALUES OF THE FADING PARAMETERS AND ANISOTROPIC MOEL.

Fig. | Approximate orientation & i m | Gweiput | € k ¢ | min(MSE) | ea—y | €a €m
to transmitter (%) | (%) | (%)
9(a) Parallel 2.39| 0.73| 1.04 1.98 08(97]| 0 8.1E-4 0.29 | 0.33| 1.55
9(b) Parallel 2.75| 0.83| 1.53 2.45 08| 10| O 7.6E-4 0.40 | 0.45| 1.30
9(c) Perpendicular 1.99| 1.03| 1.02 2.02 09| 49| 45 7.8E-4 0.58 | 0.96| 1.17
V. CONCLUSIONS [3] U.S. Dias, M. D. Yacoub, G. Fraidenraich, D. B. da Costa] 4. C. S.

Santos Filho, “On the Weibull Autocorrelation and Power Gpem

; : ; ; Functions: Field Trials and ValidationfEEE Commun. Lett., vol. 10,
In this paper, we reported the results of field trials aimed at bp. 710-712, Oct, 2006,

investigating the second-ordgr StatiStiFS of the fading sig- [4] M. D. Yacoub, “The a-p Distribution: A Physical Fading Model for
nal, namely the autocorrelation function and envelope powe the Stacy Distribution,1EEE Trans. Veh. Technol., vol. 56, no. 1, pp.
spectrum. Anexcellent agreement between the experimental _ 27-34, Jan. 2007.

. . [5] U. S. Dias, M. D. Yacoub, J. C. S. Santos Filho, G. Fraidésir,
and the theoretical data was found. The measurementstelida™ .4 'p B da Costa, “On the NakagamiAutocorrelation and Power

the autocorrelation formula derived in an exact manner Jn [4  Spectrum Functions: Field Trials and Validation,” iBEE Internatio-
for the Q- fad|ng S|gna| Moreover, afAccurate Clowd_form nal Telecommunications Syn‘posum, ITS 06, Fortaleza—CE, BraZ|I, Sep

approximation to the power spectrum of the: envelope was 2006, pp. 253-256.
pp p P i P [6] H. Hashemi, “The indoor radio propagation channdpfoc. |EEE,

also obtained and validated. vol. 81, pp. 943-968, Jul. 1993.

[7] G. Tzeremes and C. G. Christodoulou, “Use of Weibull rifisttion
for describing outdoor multipath fading,” iRroc. |IEEE Antennas and
Propagation Soc. Int. Symp., vol. 1, Jun. 2002, pp. 232-235.
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