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Correlation Statistics of theα-µ Fading Channels
Ugo Silva Dias and Michel Daoud Yacoub

Resumo— Medições de campo em ambientesindoor e outdoor
são utilizadas para validar a função de autocorrelaç̃ao obtida de
maneira exata para o modelo de desvanecimentoα-µ. Além disso,
aproximações precisas e em forma fechada são obtidas e tamb́em
validadas para a funç̃ao de autocorrelaç̃ao e para o espectro de
potência da envolt́oria α-µ. São realizadas comparaç̃oes e um
excelente ajusteàs medidas de campóe observado em ambos os
ambientes isotŕopicos e anisotŕopicos.

Palavras-Chave— Distribuiç ão α-µ, autocorrelação, mediç̃oes
de campo, espectro de potência.

Abstract— Indoor and outdoor field trial measurements are
used to validate the autocorrelation function derived in anexact
manner for the α-µ fading signal. In addition, accurate closed-
form approximations for both autocorrelation function and to
the power spectrum of theα-µ envelope are obtained and also
validated. Comparisons are performed and an excellent fit tothe
field measurements is found in both isotropic and anisotropic
environments.

Keywords— α-µ distribution, autocorrelation, field trials,
power spectrum.

I. I NTRODUCTION

In wireless communications, the multipath fading phenome-
non has been characterized by several important statisticsmo-
dels, notably Rayleigh, Rice, Hoyt (Nakagami-q), Nakagami-
m, and Weibull [1]–[3]. Recently [4], a general physical
fading model, namely theα-µ model, has been described
that considers a signal composed of clusters of multipath
waves propagating in a nonhomogeneous environment. The
resultant envelope in such an environment then follows the
α-µ distribution, which includes as special cases Nakagami-m
and Weibull. Its flexibility renders it adaptable to situations
in which neither of these two distributions yield good fit [4].
Experimental data supporting the usefulness of the Nakagami-
m and Weibull fading models have been widely reported
in the literature (e.g., [5]–[8]). However, to the best of the
authors’ knowledge, works depicting practical situationsin
which higher-order statistics ofα-µ distribution are used have
not been reported in the literature.

In this paper, some second-order statistics for theα-µ
fading channels are (i) derived, (ii) validated through field
measurements, and (iii) compared with those of its particular
cases. With such a target, the autocorrelation function is
obtained in an exact manner. In addition, experimental dataare
collected that fit both isotropic and anisotropic conditions. As
noted by several authors (e.g. [9]), the assumption of a uniform
probability density function (PDF) for the angle of arrival
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(AOA) may introduce errors on the second-order statistics,
particularly correlation functions and level crossing rates. In
addition, a very simple, accurate closed-form approximation
to the autocorrelation function is obtained. This is then used
to derive accurate closed-form approximation to the power
spectrum of theα-µ envelope, which is also validated through
field measurements.

II. T HE α-µ AUTOCORRELATIONFUNCTION

The temporal autocorrelation function (ACF)AR(τ) of the
α-µ envelopeR can been obtained from its generalized joint
moments, as derived in [4, Eq. 29], as

AR(τ) , E[R(τ)R(t + τ)] =

r̂2Γ2
(
µ + 1

α

)
2F1
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µ
2

α Γ2(µ)
(1)

wherer̂ = α
√

E[Rα] is theα-root mean value ofRα, Γ(z) =∫
∞

0 tz−1 exp(−t)dt is the Gamma function,2F1(·, ·; ·; ·) is the
hypergeometric function [10, Eq. 15.1.1],ρ(τ) is the temporal
autocorrelation coefficient (ACC) of a squared Rayleigh en-
velope [4, Eq. 36], andE[·] denotes the expectation operator.
Using the space-time duality of the wireless channel [11], then
ωDτ = 2πd/λ, whereωD is the maximum Doppler frequency
in rad/s,d denotes distance, andλ is the carrier wavelength.
Thus, the spatial ACFAR(d) of R can be straightforwardly
found in terms of the spacial ACCρ(d) as
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In this work, we address the general case of anisotro-
pic/isotropic fading scenarios, for which the distribution of
the angle of arrival of the multipath waves are nonuni-
form/uniform. A widely used model for the directional AOA
is the parametric Von Mises (Tikhunov) distribution [12].
For this model, the spatial squared Rayleigh ACC can be
obtained as (3), as shown at the top of the next page, in which
0 ≤ ζ ≤ 1 indicates the amount of directional reception,
I0(·) is the modified Bessel function of the first kind and
zeroth order [10, Eq. 9.6.16],ϕ ∈ [−π, π) represents the mean
direction of the AOA, andk ≥ 0 controls the beamwidth.
In particular, forζ = 0, the composite anisotropic/isotropic
model reduces to the isotropic scenario with uniform AOA, for
which ρ(d) = J2

0 (2πd/λ), whereJ0(·) is the Bessel function
of the first kind and zeroth order [13, Eq. 8.401].

A. The Moment-based α-µ-estimator

The moments of theα-µ envelope are given as [4]E[Rk] =
r̂kΓ(µ+k/α)

µk/αΓ(µ)
. From this, an equality is defined that is useful for
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the estimation of the parameters of this distribution. In essence
[4],

E2[Rβ]

E[R2β] − E2[Rβ ]
=

Γ2(µ + β/α)

Γ(µ)Γ(µ + 2β/α) − Γ2(µ + β/α)
(4)

in which β is chosen arbitrarily. For two distinct and arbitrary
values ofβ, two equations are set up so that the physical
parametersα andµ are encountered. For a particular case in
which β = 1 and β = 2, (4) yields an estimator in terms
of the first and second moments. Of course, from (4), other
moment-based estimators can be used.

B. The Nonlinear ζ-ϕ-k-estimator

The unknown parametersζ, ϕ, andk of the nonlinear model
(3) can be estimated by means of a numerical procedure as
follows. They can be evaluated by the nonlinear least squares
method [14], which provides consistent estimates. In essence,

(ζ̂ , ϕ̂, k̂) = argmin
ζ,ϕ,k

MSE (5)

whereMSE = N−1
∑N

l=1[ρ̂(d) − ρ(d)]2 with ρ(d) given in
(3) and N is the total number of sample data. In particular, for
the isotropic scenario with uniform AOA,MSEisotropic =

N−1
∑N

l=1[ρ̂(d) − J2
0 (2πd/λ)]2.

III. T HE α-µ ENVELOPE POWER SPECTRUM

The power spectrumSR(γ) of the α-µ fading envelopeR
is the Fourier transform1 of its ACF AR(d) as defined in (2).
Although this leads to an exact calculation, it seems that no
closed-form expression can be found. In this section,a simple,
accurate closed-form approximation to SR(γ) is derived for
the isotropic scenario. To this end, the following expansion of
the hypergeometric function2F1(·) is used [10]

2F1
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α
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+
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+
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+ ... (6)

In (6), dropping the terms of order beyond two, the exact
α-µ ACF AR(d) can be approximated bỹAR(d) as

AR(d) ≈ ÃR(d) =
r̂2Γ2

(
µ + 1

α

)

µ
2

α Γ2(µ)

(
1 +

ρ(d)

α2µ

)
(7)

The maximum deviation between the exact (2) and the
approximate (7) solutions occurs ford = 0, for the hyper-
geometric series in this case contains only positive terms

1The Fourier transformF(γ) of a functionf(x) is defined here asF(γ) =∫ ∞
−∞ f(x) exp(−jγx)dx.
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Fig. 1. Maximum deviation of the approximated and exactα-µ autocorre-
lation functions.

and ρ(d) has its maximum atd = 0. Defining ∆AR(0) =
[AR(0) − ÃR(0)]/r̂2, Figs. 1 and 2 plot this deviation as a
function of α and µ. Indeed, the deviation isnull for α = 1
independently ofµ values, i.e. the approximate formulation in
(7) is indeed exact forα = 1. In addition, forα > 1 andµ ≥ 1,
such a deviation is smaller than1.85%. As α → ∞ and/or
µ → ∞ both AR and ÃR tend to r̂2 and ∆AR(0) = 0. For
α → 0 and/orµ → 0, the deviation tends to infinity. However,
α < 1 and µ < 0.5 are rarely found in real situations. In
fact, α < 1 and µ < 0.5 lead to a condition corresponding
to a fading parameter (Nakagami-m parameter) smaller than
0.09375. Moreover,α > 1 andµ ≥ 1 correspond to a fading
parameter greater than 0.25. Thus, for practical purposes,the
proposed approximation is indeedexcellent.

Now, taking the Fourier transform of (7), as shall be seen, an
accurate approximation to SR(γ) can be written in a closed-
form formula as

SR(γ) ≈
r̂2Γ2
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for |γ| < 2/λ, where δ(·) is the Dirac delta function and
K(·) is the complete elliptic integral of the first kind [7, Eq.
8.112.1]. As a check for the correctness of these results, we
note that, forα = 2 (Nakagami-m condition),µ = 1 (Weibull
condition), and(α, µ) = (2, 1) (Rayleigh condition), (7) and
(8) specialize into [5, Eqs. 4 and 5], [3, Eqs. 5 and 6], and
[11, Eqs. 1.3-16 and 1.3-27], respectively.



XXVII SIMP ÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT 2009, DE 29 DE SETEMBRO A 2 DE OUTUBRO DE 2009, BLUMENAU, SC

0 2 4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5

 

 

α = 1, 10, 5, 3, 2, 1, 0.8, 0.5

µ

∆
A

R
(0

)

Fig. 2. Maximum deviation of the approximated and exactα-µ autocorre-
lation functions.

A. Sample Examples

The exact and approximate normalized autocorrelation func-
tions of theα-µ envelopes are shown in Figs. 3 to 6, for
isotropic (ζ = 0) and anisotropic (ζ = 0.8) fading scenarios,
and for several different values of fading parameters. For
the isotropic fading scenarios,k = 1 and ϕ = 0. Note the
excellent match in all of the cases. The slightly poorer results
for (α, µ) < (1, 0.5) are expected, because (7) deteriorates in
this range, as already mentioned. Note that, asα and/orµ tend
to infinity, the α-µ process becomes constant functions, i.e.,
AR(d) → r̂.

The approximation (8) to theα-µ envelope power spectrum
is compared to the exact formulation (obtained by numerical
integration) in Figs. 7 and 8. Both exact and approximated
spectra are plotted forµ = 0.5, 1, and3 andα = 0.5, 1, and
2. (The DC component was omitted in these comparisons.) It
can be seen that the differences are seen to be minimal for
(α, µ) > (1, 0.5). The counterpart of the unity autocorrelation
function asα and/orµ tend to infinity is purely DC spectrum,
i.e., SR(γ) → r̂δ(γ) for α → ∞ and/orµ → ∞.

IV. F IELD TRIALS AND VALIDATION

A series of field trials was conducted at the University
of Campinas (Unicamp), Brazil, in order to validate the
autocorrelation function and the power spectrum of theα-
µ envelope. To this end, the transmitter was placed on the
rooftop of one of the buildings and the receiver travelled
through the campus as well as within the buildings. The
mobile reception equipment was especially assembled for this
purpose. Basically, the setup consisted of a vertically polarized
omnidirectional receiving antenna, a low noise amplifier, a
spectrum analyzer, data acquisition apparatus, a notebook
computer, and a distance transducer for carrying out the signal
sampling. The transmission consisted of a CW tone at 1.8
GHz. The spectrum analyzer was set to zero span and centered
at the desired frequency, and its video output used as the
input of the data acquisition equipment. The local mean was
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Fig. 3. α-µ autocorrelation functions for isotropic fading scenarios, ζ = 0,
andα = 7/4 (exact: solid; approximated: dot).
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Fig. 4. α-µ autocorrelation functions for isotropic fading scenarios, ζ = 0,
andµ = 7/4 (exact: solid; approximated:dot).

estimated by the moving average method, with the average
being conveniently taken over samples symmetrically adjacent
to every point. From the data collected, the long term fading
was filtered out and the fading parametersα andµ, as defined
previously, was estimated, as well as the anisotropic onesζ,
ϕ, andk.

The normalized empirical autocorrelation was computed
according to

ÂR (∆) =

∑N−∆
i=1 riri+∆∑N−∆

i=1 r2
i

(9)

whereri is the i-th sample of the amplitude sequence,N is
the total number of samples,∆ is the discrete relative distance
difference, and̂AR (.) denotes an empirical estimate ofAR (.).
The empirical correlation coefficient was calculated as

ρ̂ (∆) =
ÂR (∆) − Ê2(R)

V̂ (R2)
(10)
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Fig. 5. α-µ autocorrelation functions for anisotropic fading scenarios, ζ =
0.8, k = 1, ϕ = 0, andα = 7/4 (exact: solid; approximated: dot).
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Fig. 6. α-µ autocorrelation functions for anisotropic fading scenarios, ζ =
0.8, k = 1, ϕ = 0, andµ = 7/4 (exact: solid; approximated: dot).

where Ê(·) and V̂ (·) denote the estimate of the mean and
the variance, respectively. Finally, the fading and anisotropic
parameters could be estimated for all measurements.

The empirical autocorrelation function was compared
against the corresponding theoretical formula (2) and plotted
as a function ofd/λ with the same parametersα and µ
estimated from the experimental data. Furthermore, the mean
error deviation2, ǫ, was computed for each case. Figs. 9(a) to
9(c) show some sample plots comparing the experimental and
theoretical anisotropic autocorrelation data for different values
of the α-µ, Weibull, and Nakagami-m distributions, as well
as, for distinct parameters of the Von-mises model (ζ, ϕ, and
k). Table I shows the values of the parameters, the minimum

2The mean error deviation between the measured dataxi and the theoretical
value yi is defined asǫ = 1

N

∑N
i=1

|yi−xi|
xi

, whereN is the number of
points. For the present calculations, the errors were estimated for points in
the interval [0, 1.43λ], within which larger deviations occur.
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Fig. 7. α-µ envelope power spectrum for isotropic fading scenarios and
α = 7/4 (exact: solid; approximated: dot).
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Fig. 8. α-µ envelope power spectrum for isotropic fading scenarios and
µ = 7/4 (exact: solid; approximated: dot).

MSE, and the mean error deviationǫ for each sample result.
Observe theexcellent fit and how the theoretical curves tend
to keep track of the changes of the concavity of the empirical
data. Theα-µ model fits betters than Weibull and Nakagami-
m ones, as expected, because it provides one more degree of
freedom.

The α-µ envelope power spectrum formulation (8) is then
compared against that obtained empirically (measured data).
To this end, we used the discrete Fourier transform (DFT)3 to
compute the Fourier transform of the empirical autocorrela-
tion. Figs. 10(a) to 10(c) show some sample plots comparing
the experimental and theoretical power spectrum for different
values of the fading parameters. Again, anexcellent fit can
observed.

3The DFT was implemented by the FFT (Fast Fourier transform) algorithm.
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(a) Indoor measurement.
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(b) Outdoor measurement.
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(c) Outdoor measurement.

Fig. 9. Empirical versus theoretical normalized autocorrelation functions (anisotropic scenarios).
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(c) Indoor measurement.

Fig. 10. Empirical versus theoretical normalized power spectrum functions (isotropic scenarios).

TABLE I

ESTIMATED VALUES OF THE FADING PARAMETERS AND ANISOTROPIC MODEL.

Fig. Approximate orientation α̂ µ̂ m̂ α̂Weibull ζ̂ k̂ ϕ̂ min(MSE) ǫα−µ ǫα ǫm

to transmitter (%) (%) (%)
9(a) Parallel 2.39 0.73 1.04 1.98 0.8 9.7 0 8.1E-4 0.29 0.33 1.55
9(b) Parallel 2.75 0.83 1.53 2.45 0.8 10 0 7.6E-4 0.40 0.45 1.30
9(c) Perpendicular 1.99 1.03 1.02 2.02 0.9 4.9 45 7.8E-4 0.58 0.96 1.17

V. CONCLUSIONS

In this paper, we reported the results of field trials aimed at
investigating the second-order statistics of theα-µ fading sig-
nal, namely the autocorrelation function and envelope power
spectrum. Anexcellent agreement between the experimental
and the theoretical data was found. The measurements validate
the autocorrelation formula derived in an exact manner in [4]
for the α-µ fading signal. Moreover, anaccurate closed-form
approximation to the power spectrum of theα-µ envelope was
also obtained and validated.
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