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Progressive Edge-Growth in IRA Codes
Mauro Q. Lustosa e Weiler A. Finamore

Resumo— Este artigo aborda o uso do algoritmo Progressive
Edge-Growth (PEG) para a construção de códigos IRA. Os
códigos IRA (Irregular Repeat-Accumulate) são códigos irreg-
ulares baseados em matrizes esparsas que permitem codificação
em tempo linear para canal AWGN (ruı́do aditivo gaussiano
branco) ou canais com apagamento. O algoritmo Progressive
Edge-Growth, elaborado originalmente para códigos LDPC foi
aplicado para construção de grafos de códigos IRA visando a
redução do número de ciclos e melhores propriedades de distância
mı́nima. Uma avaliação da versão aprimorada do algoritmo PEG
é apresentada juntamente a uma proposta de método alternativo
e comparação dos resultados.

Palavras-Chave— IRA, PEG, LDPC, códigos em grafos, condi-
cionamento de ciclos.

Abstract— This article addresses the use of the Progressive
Edge-Growth (PEG) algorithm for use with IRA codes. IRA
codes are channel codes on sparse-graphs that allow linear-time
encoding, with near capacity performances on the AWGN, and
Binary Erasure channels. Originally conceived for LDPC codes,
the PEG algorithm was applied to the construction of IRA graphs
with the goal of reducing the occurrences of short cycles and
improve the distance properties. An evaluation of the enhanced
look-ahead variation of the PEG algorithm is presented along
with an alternative method and a comparison of practical results.

Keywords— IRA, PEG, LDPC, Sparse Graph Codes, girth
conditioning.

I. INTRODUCTION

Irregular Repeat-Accumulate were introduced by Hui Jin,
Khandekar & McEliece [1] in 2000, providing a family of
codes that use linear-time encoding and iterative decoding
while communicating reliably at rates close to channel ca-
pacity. The authors proved these codes can achieve channel
capacity on the binary erasure channel with remarkably good
performance on the AWGN channel.

IRA codes are a particular case of the LDPC codes, as they
work by adding parity bits to very large blocks. The code
is represented by a matrix containing relatively few non-zero
elements, i.e. a sparse matrix. A simple manner for describing
such a matrix is by keeping track only of the positions (and
values, which are not implicit in the non-binary case) of
the few non null elements. While classic LDPC parity check
matrices don’t necessarily follow any visible pattern, the non-
systematic part of IRA matrices is composed of the main
diagonal and the subdiagonal filled with ones, as shown in
(1), while all other elements are null. For this characteristic
format, IRA codes are also called Staircase Codes.
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The parity-check matrices represent a bipartite graph, which
we call the Tanner Graph (after R. Michael Tanner). A bipartite
graph is composed of
• two disjoint sets of nodes;
• edges that join only nodes in distinct sets;
The two disjoint sets are labeled variable-nodes, whose

values are given by the symbols that compose a codeword; and
check-nodes that impose parity constraints on the variable-
nodes at the opposite ends of its incident edges. Variable nodes
either belong to the class of information-nodes (uκ ∈ U ,
κ ∈ {1, 2 . . . , k}), that carry the original message; or parity
nodes (wµ ∈ W , µ ∈ {1, 2 . . . ,m}) that carry the redundant
bits. Variable nodes may also be labeled cj ∈ N , j ∈
{1, 2 . . . , n} (where N , U ∪W and n = m + k) in contexts
where no distinction needs to be made between parity and
information variable-nodes. Check-nodes are denoted zi ∈M,
i ∈ {1, 2 . . . , m}. See Figure (1) for an example of the Tanner
graph of an IRA code (in the example, the graph does not
include nodes of degree three or four).
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Fig. 1. A sketch of the Tanner graph of an IRA code: Λi is the fraction of
information nodes with degree i in U ; © are variable-nodes; ¤ are check-
nodes
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The degree of a node is given by its number of adjacent
nodes (or incident edges). Graphs where all nodes in each
class have the same degree are called regular graphs. During
decoding, variable-nodes and check-nodes exchange messages
through their edges. While a variable-node with a high degree
receives more messages from neighboring check-nodes, these
messages are more useful when they come from a check-node
with a lower degree. The trade-off between these interests
resulted in the use irregular degree distributions (i.e. a pre-
defined statistical distribution of degrees in the graph’s nodes)
which yield graphs that perform better than regular ones [2].
IRA codes are described in [1] as right regular (i.e. all check-
nodes have the same degree).1

The iterative decoding of IRA (and LDPC) codes uses
the message passing algorithm [4][5]. The structure of the
graph determines how efficiently the decoder will perform,
and in order to optimize the decoding capabilities of a graph
we should optimize three properties of the graph: the degree
distribution, the edge permutation and the block length.

The work presented in this document does not involve
optimizing degree distributions, focusing on graph con-
struction methods for relatively short block-lengths (k =
500, 1000, 2000 bits). Figure 1 depicts a graph of message
block-length k, with m additional parity nodes. The box
between the variable-nodes and parity nodes represents the
random permutations of the edges in the graph. The edges join-
ing the parity nodes wj and check-nodes zj are pre-defined.
Parity nodes ensure that all the nodes directly connected to
the check-nodes will sum to zero, and their value is given by

wj = wj−1 ⊕
∑

l∈Uzj

ul, (2)

where Uzj denotes the information-nodes joined with check-
node zj .

The message passing algorithm relies on products of indi-
vidual probabilities to factor joint probabilities. These joint
probabilities are then marginalized into probabilities of single
variables and the process repeats in a recursive manner. The
values estimated by this algorithm become inaccurate when
probability products of dependent variables are used as joint
probabilities. This dependency is very strong when two sets
of variables nodes Nzk

and Nzl
∈ N — each set composed

of the neighborhoods of check-nodes zk and zl, respectively
— contain more than one element in common. In a Tanner
Graph, this coincidence is called a length-four cycle. In fact,
these are cycles that may occur in all even numbered lengths
2 depending on how the edges are drawn, and are inevitable
for graphs without degree-one nodes. However, these distorted
probabilities might not prevent successful decoding if we
manage to make these cycles long enough. Therefore we want
to maximize the graph’s girth, it’s shortest cycle length.

1see [3] for exceptions to this rule
2a length-two cycle would mean one check-node being joined with one

variable node by two edges, which cancels the variable-node’s influence on
this check

II. PROGRESSIVE EDGE-GROWTH ALGORITHM

The Progressive Edge-Growth algorithm, first presented in
[6] for construction of sparse graphs for LDPC codes, was
used in this work to design IRA codes following the degree
distributions presented in [1]. We also modified the look-ahead
enhanced version of the algorithm to verify its effects on the
decoder’s performance.

Progressive Edge-Growth is a method for the construction of
Tanner Graphs proposed in [6]. It attempts to make the graph’s
girth to be made as long as possible by maximizing the local
girth (the shortest cycle including the current variable-node)
at each new edge that is placed. The PEG algorithm proceeds
along the variable-nodes, in order of increasing degree, in a
manner that each new edge has as little impact on the graph’s
girth as possible.

We can observe all the paths (sequence of adjacent edges)
that include one particular node by expanding it as the root
of a tree using the current edges as in Figure 2. The check-
nodes that are joined with the root are said to be in depth 0, the
other variable-nodes adjacent to the check-nodes in depth 0 are
roots to the subsequent subtree. Evidently, every element that
is present in a tree reaches all others through the current edges,
and a cycle of length 2(l + 1) is completed if an additional
edge is drawn between the root and a check-node that appears
for the first time in depth l. The set of check-nodes reached
by node uj at depth l is denoted Ml

uj
, its complementary

check-nodes being in M̄l
uj

.

Y 6
1

I] º } 6 3 o 7 3

KI M º K 6 M 6 O º O 6M º O ± 6̧

}
depth 1

}
depth 0

d d d d d d d d d

. . .

}
depth 2

. . . . . .

Root h

} 6>
ºK Mº K 6

>6}
O¸±O6̧b bb b b b

Fig. 2. An example of a tree drawn to depth 2.

IRA codes are peculiar in the sense that all check-nodes are
already connected before we start drawing the edges, meaning
there are no two disjoint subgraphs in an IRA graph. Once a
variable-node enters the graph by receiving its first edge, every
additional edge incident on this same node shall complete a
cycle.

The PEG algorithm inserts information-nodes (uj) into the
graph, by joining it with other nodes, in order of increasing
degree (duj ). E represents the complete set of edges that
composes the graph, Euj is the sub-graph of depth zero rooted
in uj and Eκ

uj
is the κth edge in Euj .

A. Look-Ahead enhanced version

While the PEG algorithm clearly maximizes each
information-node’s local girth at each stage, there is no cer-
tainty on whether the graph will retain its girth in later stages
of the algorithm. As an enhancement of PEG, [6] proposes
the Look-Ahead enhanced version that verifies the impact that
each new edge would cause on the graph.
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Algorithm 1 Progressive Edge-Growth Algorithm for IRA
Codes

for j = 1 to k do
for κ = 0 to duj

− 1 do
if κ = 0 then

E0
uj
←− edge(zi, uj), where E0

uj
is the first edge

incident to uj and zi is a randomly picked check-
node among those with the lowest degree under the
current graph setting

⋃j−1
ı=0 Euı .

else
expand a tree from information-node uj up to depth
l under the current graph setting such that M̄l

uj
6= ∅

but M̄l+1
uj

= ∅, then Eκ
uj
←− edge(zi, uj), where

Eκ
uj

is the κth edge incident to uj and zi is a
check-node randomly picked from a subset of M̄l

uj

containing only check-nodes with the lowest degree
under the current graph setting.

end if
end for

end for

Instead of choosing randomly from the eligible candidates
as defined in algorithm 1, the Look-Ahead enhanced algorithm
considers hypothetical partial graphs for the cases where each
candidate receives the new edge. The hypothetical partial
graphs are then compared in terms of the maximum depth
to which the local tree would expand before reaching all
check-nodes. The suggested strategy is to choose the candidate
check-node for which the tree expands to the highest depth.

III. EXPERIMENTAL RESULTS

We build IRA codes using the five distributions provided
by [1] with k = {500, 1000, 2000} and tested them on the ad-
ditive white gaussian noise (AWGN) channel for performance
evaluation. With the goal of identifying the possible causes
for unexpected results we also count the number of length-four
cycles in each graph, and generate codewords from low-weight
input messages to have a sample of low weight codewords. The
low weight codewords give an insight into the code’s distance
properties.

A. Rate 1/3

We compare the three approximately distributions from [1]
with k = 1000 and rate approximately 1/3 using the standard
PEG algorithm (PEG-ST). The table I gives the regular check-
node degree, the mode in the edge degree distribution,3 the
Eb/N0 threshold, and in the bottom rows are the number of
length four cycles and minimum distance of the codes we
generated using the PEG algorithm in its standard version.

We estimate the performance of these codes through simula-
tion, using ten block error events per point to find the approxi-
mated bit error probabilities. At very low bit error probabilities
approaching 10−7 accurate estimations become more time-
consuming and fewer samples are collected (resulting in more

3This is not the same as the node degree distribution, refer to [7] for the
unique relation between the two.

TABLE I
PEG-ST: K=1000, rate ≈ 1

3

Distr. #1 #2 #3
a 2 3 4

mode (λi) λ6 ≈ 0.64 λ13 ≈ 0.49 λ27 ≈ 0.45
max. degree λ6 ≈ 0.64 λ13 ≈ 0.49 λ28 ≈ 0.45

Rate 0.333364 0.333223 0.333218(
Eb
N0

)
thr.

[dB] 0.190 -0.25 -0.371

# 4-cycles 0 0 6
dmin 29 31 31

significant error-margins). In repeated experiments, however,
distributions #2 and #3 show consistently tied performance,
ranking better than distribution #1 as predicted by density
evolution in [1]. The crosses in Figure 3 mark the upper bound
to the actual bit-error probability with confidence interval 0.05.
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Fig. 3. Code performance using degree distributions #1, #2 and #3

Table I shows that the codes built from distributions #2
and #3 were found to have the same minimum distances, but
distribution #3 is more prone to forming cycles due to higher
node-degrees. Fortunately these cycles tend to involve only the
variable nodes of higher degrees, which rely on messages from
many additional nodes for decoding. Nevertheless, length-four
cycles can be catastrophic when they include nodes of degree
two.

It is possible to observe the distance properties of a code
by encoding low-weight messages and plotting the hamming
weight of the resulting codewords. Figure 4 shows one of
such plots, where we can observe the minimum weight (in
logarithmic scale, polar plot) and the minimum weight of the
densest 99% and 95% of these codewords.

The space between the two innermost circles depends on
how many low weighted error patterns could take a received
vector to the nearest valid codeword, causing undetected
errors. Codes obtained from distributions #2 and #1 showed
very similar properties to the ones in Figure 4.

The degree distributions provided for codes with rate ap-
proximately 1

2 are briefly described in table II. These distribu-
tions include higher degrees than the previous three, although
the highest degrees are not the mode, and the distribution #4
does not have information-nodes with degree two. Although
the decoding thresholds obtained through density evolution
favor distribution #5 by 0.078dB, the alleged better distance
properties of distribution #4 keep the decoder from deciding
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low-weight input codewords: k = 1000, n = 3004, method PEG_ST
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Fig. 4. Low weight codewords, distribution #3 n = 2000

towards neighboring codewords, thus achieving lower error-
floors 4 than distribution #5. Figures 5 and 6 show the un-
detected errors that affect the performance of one distribution
but not the other.

TABLE II
PEG-ST K=1000,rate ≈ 1

2

Distr. #4 #5
a 8 8

mode (λi) λ12 ≈ 0.33 λ7 ≈ 0.22
Rate 0.50227 0.497946(

Eb
N0

)
thr.

[dB] 0.344 0.266

# 4-cycles 2895 3969
dmin 12 18

Figures 7 and 8 show histograms with the weight of
randomly generated valid codewords for codes obtained from
distributions #4 and #5 and k = 500. The histograms resemble
a Normal probability mass distribution but do not provide a
good basis to determine with a good degree of certainty which
code has the higher minimum distance. The random encoding
of low-weight messages is, therefore, not an effective method
for establishing the distance properties of LDPC codes, even
for block lengths as short as 500.

B. Enhanced Versions
The large number of length-4 cycles in the graphs generated

from distributions #4 and #5 motivate the use of the look-
ahead enhanced version of the PEG algorithm (PEG-LA) for
better results. The complexity of the look-ahead enhanced
version increases quadratically with the block-length, since
the algorithm expands a new local graph for each check-node
that is eligible for receiving an edge. For practical codes, this
imposes a very high cost in computation time.

4see [8], for more on distance properties of LDPC codes
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Fig. 5. Code performance using degree distribution #4
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Fig. 6. Code performance using degree distribution #5
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Fig. 7. histogram of low-weight codewords for distribution #4, k = 500

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3

weight

co
un

t

PEG−ST hamming weight histogram: k=500, distribution #5

 

 
normalized weight histogram

µ = 246.9855, σ2 = 3874.3374

Fig. 8. histogram of low-weight codewords for distribution #5, k = 500
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Fig. 9. Code performance using degree distribution #4 with the PEG look-
ahead enhanced version
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Fig. 10. Code performance using degree distribution #4 with the PEG look-
ahead reversed version

The bit-error performance does not differ drastically be-
tween the standard PEG and the Look-Ahead enhanced
method, but the latter does show an improved performance
at high SNR. The criterium for deciding which check-node
makes the best candidate for receiving a new edge in the
PEG-LA method is noteworthy. Choosing the hypothesis that
leads to the deepest tree may be a misleading strategy since a
graph that expands as a tree with many depth levels is a graph
with a large maximum cycle-length, but not necessarily a large
girth. In fact, graphs with short girth will expand slowly as
less new check nodes are reached at each subsequent depth
level. Graphs with large girth will add more new check-nodes
to the tree at each step during the tree expansion, reaching all
check-nodes in fewer steps.

As an alternative strategy, the reverse criterium was adopted
for a new version which we label PEG-LAR (PEG look-
ahead reverse). The check node that reaches all others in
less expansion steps is joined with the current variable node.
The results of the simulated transmissions using the code
generated with the PEG-LAR algorithm with distribution #4
and k = 1000 are in Figure 10. Since the complexity of the
PEG-LAR algorithm is the same as in the PEG-LA and the
results are clearly inferior, we conjecture that it is not a good
alternative for the two other competitors.5

5In the article originally submitted in may 2009, the results were slightly
favorable to the PEG-LAR algorithm. With additional simulations, it was
established that the code built by the PEG-LAR method did not perform as
well as the code that used the PEG-LA.

IV. CONCLUSION

We applied the Progressive Edge-Growth algorithm for con-
struction of IRA graphs using different degree distributions.
For relatively short block-lengths we could obtain graphs
without cycles for distributions with low degrees. As the
maximum degree and the mode of the distribution approach
values in the order of magnitude of the number of check-nodes
it becomes impossible for the algorithm to generate a cycle-
free graph. Codes with cycles can still achieve satisfactory
results, although far from the theoretical bounds.

We investigated the effectiveness of the look-ahead en-
hanced version of the PEG algorithm, with poor results when
considered the added complexity of this method. We adapted
the PEG look-ahead algorithm to an original alternative ver-
sion by reversing the decision criterium for the placement of
edges in the enhanced algorithm. This version showed a de-
cline in performance, while maintaining a high computational
cost. Yet, there is no proof, to the author’s knowledge, that the
look-ahead enhanced PEG algorithm shall increase the graph’s
girth more efficiently than the standard version.
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